
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATRIX ANAL. APPL. c© 2017 Society for Industrial and Applied Mathematics
Vol. 38, No. 2, pp. 343–360

BLOCK MATRIX FORMULATIONS FOR EVOLVING NETWORKS∗

CATERINA FENU† AND DESMOND J. HIGHAM‡

Abstract. Many types of pairwise interactions take the form of a fixed set of nodes with edges
that appear and disappear over time. In the case of discrete-time evolution, the resulting evolving
network may be represented by a time-ordered sequence of adjacency matrices. We consider here the
issue of representing the system as a single, higher-dimensional block matrix, built from the individual
time slices. We focus on the task of computing network centrality measures. From a modeling
perspective, we show that there is a suitable block formulation that allows us to recover dynamic
centrality measures respecting time’s arrow. From a computational perspective, we show that the
new block formulation leads to the design of more effective numerical algorithms. In particular, we
describe matrix-vector product based algorithms that exploit sparsity. Results are given on realistic
data sets.

Key words. centrality, complex network, evolving network, graph, tensor

AMS subject classifications. 05C50, 15A69

DOI. 10.1137/16M1076988

1. Introduction. A multilayer network, also known as a network of networks
[5, 25], is a graph where connections are formed within and between well-defined
slices, each of which is itself a network. In this case it is natural to regard the
connectivity structure as a three-dimensional tensor. We focus here on a specific
type of multilayering where each slice represents a time point. More precisely, let
{G[k]}Mk=1 =

(
V, {E[k]}Mk=1

)
be a sequence of unweighted graphs evolving in discrete

time. Here, the set of nodes V with |V | = n is fixed and the evolution in time is
given by the change in the set of edges, E[k]. With this notation, given the ordered
sequence of time points {tk}Mk=1, the network at time tk is represented by its n × n
adjacency matrix A[k]. As is usual for unweighted networks, the (i, j)th entry of A[k]

equals 1 if there is an edge from node i to node j at time tk, and 0 otherwise. This
type of connectivity structure arises naturally in many types of human interaction.
For example, within a given population, we may record physical interactions, phone
calls, text messages, e-mails, co-authorships, social media contacts, or correlations
between behavior such as energy usage or online shopping; see [22] for an overview.

Although we may regard {A[k]}Mk=1 as a three-dimensional tensor, we emphasize
that, in this context, the third-dimension is very different from the first two. Typical
quantities of interest are invariant to the ordering of the nodes—we may consistently
permute the rows and columns of each A[k], or equivalently, we may relabel the nodes,
without affecting our conclusions. However, for most purposes, it is not appropriate
to reorder the time points. This raises a question that motivates the work presented
here: to what extent can we rely on ideas from the generic multilayer/tensor viewpoint
when studying evolving networks? More specifically, how do we express an evolving

∗Received by the editors May 25, 2016; accepted for publication (in revised form) by D. B. Szyld
January 4, 2017; published electronically May 2, 2017.

http://www.siam.org/journals/simax/38-2/M107698.html
Funding: The work of the second author was supported by EPSRC/RCUK Established Career

fellowship EP/M00158X/1 and a Royal Society/Wolfson Research Merit Award.
†Department of Computer Science, University of Pisa, 56127 Pisa, Italy (caterina.fenu@

for.unipi.it).
‡Department of Mathematics and Statistics, University of Strathclyde, G1 1XQ Glasgow, U.K.

(d.j.higham@strath.ac.uk).

343

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

http://www.siam.org/journals/simax/38-2/M107698.html
mailto:caterina.fenu@for.unipi.it
mailto:caterina.fenu@for.unipi.it
mailto:d.j.higham@strath.ac.uk


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

344 CATERINA FENU AND DESMOND J. HIGHAM

network as a single, large block matrix? In this paper we address this question in the
context of computing node centrality.

In recent years, node centrality indices based on the notion of dynamic walks have
been introduced and discussed [1, 17, 20]. We review their definitions, introduce a
new connection between them and then propose a block matrix representation that
allows us to recover centrality indices by applying standard matrix functions. In more
detail, given the sequence of adjacency matrices {A[k]}Mk=1, we will describe how the
block matrix

(1.1) B :=


αA[1] β2I

αA[2] β3I
. . .

. . .

αA[M−1] βMI
αA[M ]


can be used to capture dynamic centrality. This formulation takes inspiration from
the idea of flattening a tensor, also known as reshaping, unfolding, or matricizing [15,
26, 30], in the sense that it represents a tensor as a single, larger, two-dimensional
array. (However, we note that the matrix B in (1.1) is not a proper unfolding.)
Expressing node centrality as entries of standard matrix functions allows us to consider
customized algorithms that have improved efficiency.

The material is organized as follows. In section 2, we review a class of centrality
measures based on the concept of dynamic walks. In section 3 we then present a block
representation from which these centrality measures can be recovered using standard
matrix functions. Methods for the computation of the centrality measures using the
new block approach are presented in 4. Computational experiments on synthetic
and voice call data are described in section 5. Within these tests, we also study the
supracentrality matrix formulation from [34]. Final conclusions are given in section 6.

2. Centrality. In this section, we review the concepts of time-dependent central-
ity measures from [1, 17, 20] and introduce a new connection between them. Centrality
measures are widely used for identifying influential players in a network. Many such
measures arose within the field of social network analysis, motivated either explicitly
or implicitly from the idea that the network nodes communicate, or pass information,
along the edges; see, for example, [6, 13]. In this way, centrality quantifies a sense in
which a node takes part in traversals. Quoting from [7], “all measures of centrality
assess a node’s involvement in the walk structure of a network.”

For the time-dependent links that we consider here, it has been pointed out by sev-
eral authors that any type of message-passing (or disease-passing) basis for centrality
should account for the time-ordering of the interactions; see, for example, [9, 22, 31].
If X meets Y today and Y meets Z tomorrow, then the path X → Y → Z makes
sense from a message-passing point of view, but Z → Y → X does not. Traversals
must respect the arrow of time.

In [20], as a means to develop a time-dependent centrality measure, the authors
introduced the notion of a dynamic walk as follows.

Definition 2.1. A dynamic walk of length w from node i1 to node iw+1 consists
of a sequence of edges i1 → i2, i2 → i3, . . . , iw → iw+1 and a nondecreasing sequence

of times tr1 ≤ tr2 ≤ · · · ≤ trw such that A
[rm]
im,im+1

6= 0.

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLOCK MATRIX FORMULATIONS FOR EVOLVING NETWORKS 345

This definition was used to define the dynamic communicability matrix

(2.1) Q[j] =
(
I − aA[1]

)−1 (
I − aA[2]

)−1

· · ·
(
I − aA[j]

)−1

=

j∏
s=1

(
I − aA[s]

)−1

.

We assume henceforth that the parameter a satisfies a < 1/maxs ρ(A[s]) with ρ(A[s])
denoting the spectral radius of the matrix A[s]. Each resolvent in (2.1) may then be
expanded as (

I − aA[s]
)−1

=

∞∑
k=0

ak
(
A[s]

)k
.

In view of this, (Q[j])ij can be seen as a weighted sum of the number of dynamic
walks from i to j using the ordered sequence {A[k]}Mk=1, in which the count for walks
of length w is scaled by aw. The overall ability of nodes to broadcast or receive
information in this sense is given by the row and column sums

(2.2) Cbroadcast = Q[j]1 and Creceive = Q[j]T1,

respectively, where 1 is the vector of all ones. See [20] for a more detailed explana-
tion. Numerical tests in [20] showed that these broadcast and receive centralities are
generally very different from the measures that arise when we ignore time-dependency
and consider only the aggregate adjacency matrix

∑M
k=1A

[k], and subsequent work
in [27] showed that they were better able to match the views of social media experts
when applied to Twitter data. Using real interaction data concerning patients and
staff in a large hospital, the study in [9] showed that broadcast centrality adds value
in the search for significant spreaders of disease.

Motivated by the treatment of static networks in [11], the authors in [1] used the
dynamic communicability matrix idea to introduce two kinds of dynamic betweenness:
the nodal betweenness of a node and the temporal betweenness of a time point.

Let Ā
[k]
r denote the matrix obtained from A[k] by removing all the edges involving

node r, that is, Ā
[k]
r = A[k] − E[k]

r , where E
[k]
r has nonzero elements only in row and

column r, which coincide with those of A[k]. Then, the matrix

Q̄[M ]
r =

M∏
s=1

(
I − aĀ[s]

r

)−1

quantifies the ability of nodes to communicate without using node r. The nodal
betweenness of node r [1] is defined as

(2.3) NBr :=
1

(n− 1)2 − (n− 1)

∑∑
i6=j 6=r

(Q[M ])ij − (Q̄[M ]
r )ij

(Q[M ])ij
.

This measure quantifies the relative decrease in information exchange when node r is
removed from the network.

Let {Â[k,q]}Mk=1 denote the adjacency matrix sequence obtained by replacing A[q]

with 0, that is,
Â[k,q] = (1− δkq)A[k],

where δkq is the Kronecker delta. Then, the matrix

Q̂[M,q] =

M∏
s=1

(
I − aÂ[s,q]

)−1

=

M∏
s=1
s6=q

(
I − aA[s]

)−1

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

346 CATERINA FENU AND DESMOND J. HIGHAM

describes how well nodes interchange information without using the connections at
time q. The temporal betweenness [1] of time point q is defined as

(2.4) TB[M,q] :=
1

(n− 1)2 − (n− 1)

∑∑
i 6=j

(Q[M ])ij − (Q̂[M,q])ij
(Q[M ])ij

.

We refer to [1] for further details and illustrative examples involving these measures,

and we note that in practical use the matrices Q[M ], Q̄[M ]
r , and Q̂[M,q] should be

properly scaled in order to prevent over/underflows.
For future convenience, we extend the notation to allow for walks that start and

finish at arbitrary time points. Let us denote by Q[i,j] the dynamic communicability
matrix obtained by multiplying the resolvents corresponding to the ordered sequence
{A[s]}js=i, 1 ≤ i ≤ j ≤M , that is,

(2.5) Q[i,j] =

j∏
s=i

(
I − aA[s]

)−1

=
(
I − aA[i]

)−1

· · ·
(
I − aA[j]

)−1

.

With this notation we can quantify broadcast and receive centralities over any subin-
terval. In general, we may use

(2.6) C
[i,j]
broadcast = Q[i,j]1 and C

[i,j]
receive = Q[i,j]T1

to quantify the ability of a node to spread or receive information, respectively, taking
into account the evolution of the network between ti and tj .

In many applications, such as the spread of rumors or disease, recent walks are
more important than those that started a long time ago. For this reason, the au-
thors in [17] introduced the running dynamic communicability matrix, S [j], obtained
recursively, starting from S [0] = 0, as

(2.7) S [j] =
(
I + e−b∆tjS [j−1]

)(
I − aA[j]

)−1

− I, j = 1, . . . ,M,

where ∆tj = tj − tj−1. In this recurrence, the parameter a is used to penalize long
walks and the parameter b is used to filter out old activity. Overall, S [j] maintains
walk counts that are scaled in terms of length w by aw and chronological age t by
e−bt. Running versions of the broadcast and receive communicabilities are then given
by the row/column sums of the matrix S [j], that is,

(2.8) S [j]1 and S [j]T1.

For use in the next section, the following lemma points out a connection between
the running dynamic communicability matrix S [j] in (2.7) and the dynamic commu-
nicability matrices Q[i,j] in (2.5).

Lemma 2.2. For the running dynamic communicability matrix S [j] in (2.7), we
have

S [j] =

j∑
i=1

(
1− e−b∆ti

)
e−b

∑j
`=i+1 ∆t`Q[i,j] − I,

where ∆t1 =∞.

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLOCK MATRIX FORMULATIONS FOR EVOLVING NETWORKS 347

Proof. The proof uses induction. For j = 1, we have

S [1] =
(
I + e−b∆t1S [0]

)(
I − aA[1]

)−1

− I = Q[1,1] − I.

Suppose that the identity is valid for j = k − 1. We will then show that it is valid
also for j = k. We have

S [k] =
(
I + e−b∆tkS [k−1]

)
Q[k,k] − I

= Q[k,k] + e−b∆tk

[
k−1∑
i=1

(
1− e−b∆ti

)
e−b

∑k−1
`=i+1 ∆t`Q[i,k−1] − I

]
Q[k,k] − I

=

k−1∑
i=1

(
1− e−b∆ti

)
e−b

∑k−1
`=i+1 ∆t`e−b∆tkQ[i,k−1]Q[k,k] +

(
1− e−b∆tk

)
Q[k,k] − I

=

k−1∑
i=1

(
1− e−b∆ti

)
e−b

∑k
`=i+1 ∆t`Q[i,k] +

(
1− e−b∆tk

)
Q[k,k] − I

=

k∑
i=1

(
1− e−b∆ti

)
e−b

∑k
`=i+1 ∆t`Q[i,k] − I,

where we used the fact that Q[i,k−1]Q[k,k] = Q[i,k].

3. Block matrix formulations. Our aim now is to study block matrix repre-
sentations of the data {A[k]}Mk=1 that transform the network sequence into an “equiv-
alent” large, static network with adjacency matrix of dimension Mn. We have two
main requirements for such a representation.

• We would like to be able to interpret this static network in terms of the
interactions represented by the original data.

• We would like to be able to recover the dynamic centrality measures discussed
in the previous section by applying standard matrix functions to this larger
network.

In the case of general multilayer networks, the authors in [32] introduce an influ-
ence matrix W ∈ RM×M such that wij ≥ 0 measures the influence of layer j on layer
i. They then study node centrality via the Mn by Mn matrix

w11A
[1] w12A

[2] . . . w1MA
[M ]

w21A
[1] w22A

[2] . . . w2MA
[M ]

...
...

. . .
...

wM1A
[1] wM2A

[2] . . . wMMA
[M ]

 .

In our specific context, where (a) the layers represent time slices that have a
natural ordering, and (b) centrality concepts are motivated from traversals around
the network, this formulation appears to add little value. If each M × M block
represents a time slice, then the existence of an edge at one time slice should not
influence the propensity for traversal within some other time slice. Hence, only the
simple block-diagonal version (wij = 0 for all i 6= j) makes intuitive sense in our
context.

Returning to Definition 2.1, we note that a dynamic walk may use any number
of edges within a time slice and may then wait until a later time slice and continue

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

348 CATERINA FENU AND DESMOND J. HIGHAM

the traversal. For dynamic communicability defined via (2.1), within each time slice,
use of an edge penalizes the walk count by a and moving from one time slice to the
next carries no penalty. For the more general running measure based on (2.7), waiting
until the next time slice costs a factor e−b∆tj . We may capture this type of weighted
count by introducing a link from a node at one time slice to the equivalent node at the
next time slice; that is, by adding identity matrices along the first superdiagonal to
obtain B ∈ RMn×Mn defined in (1.1), where {β`}`=2,M and α are parameters. The
matrix B represents the interactions among the nodes of the evolving network as a
larger static network with Mn nodes. More precisely, each node in the original data
is copied M times and edges within each time point are represented as connections
among the same group of nodes. Moreover, the information can flow from a time
slice to another by using links that connect each node to its equivalent in the next
time step.

The next theorem confirms that this structure captures the required communica-
bilities when α = a and β` ≡ 1 or β` = e−b∆t` for the two cases, that is, it satisfies
also the second requirement we listed at the beginning of this section.

Theorem 3.1. The dynamic communicability matrices Q[i,j] in (2.5) and the
running dynamic communicability matrices S [j] in (2.7) can be computed by applying
the function f(x) = (1− x)−1 to the matrix B in (1.1).

Proof. It is straightforward to show that the kth power of the matrix B has the
form

Bk =



αkhk
(
A[1]

)
β2α

k−1hk−1(A[1], A[2]) · · ·
∏M

`=2 β`α
k−rhk−r(A[1], . . . , A[M ])

αkhk
(
A[2]

) . . .
...

. . . βMα
k−1hk−1(A[M−1], A[M ])
αkhk

(
A[M ]

)


,

where

hk(x1, x2, . . . , xn) =
∑

l1+l2+···ln=k

x1
l1x2

l2 · · ·xnln

is the complete homogeneous symmetric polynomial of degree k, r = M − 1, and
hk(·, ·, . . . , ·) = 0 if k < 0.

In general, denoting block (i, j), (i, j = 1, . . . ,M) of Bk by [Bk]ij , we have that

[Bk]ij = β[i+1,j]αk+i−jhk+i−j(A
[i], . . . , A[j]), i ≤ j,

where β[i+1,j] denotes the scalar
∏j

`=i+1 β`.

The matrix-valued function f(B) =
∑∞

k=0B
k has blocks

[f(B)]ij = β[i+1,j]
∞∑
k=0

αk+i−jhk+i−j(A
[i], . . . , A[j]) = β[i+1,j]

j∏
`=i

(I − αA[`])−1.

Hence, the dynamic communicability matrices Q[i,j] can be obtained from the block
[f(B)]ij setting β` = 1 for ` = 2, . . . ,M and α = a.

The running dynamic communicability matrices S [j] are obtained starting from
the blocks on the jth block-column. In particular, setting β` = e−b∆t` , α = a, and

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLOCK MATRIX FORMULATIONS FOR EVOLVING NETWORKS 349

D = (1− e−b∆t1 , . . . , 1− e−b∆tM )⊗ In, we have[
j∑

i=1

[Df(B)]ij

]
− I =

j∑
i=1

(
1− e−b∆ti

)
β[i+1,j]Q[i,j] − I

=

j∑
i=1

(
1− e−b∆ti

)
e−b

∑j
`=i+1 ∆t`Q[i,j] − I.

The statement now follows from Lemma 2.2.

Similar statements apply to the betweenness measures in (2.3) and (2.4).

Theorem 3.2. Let Ā
[k]
r denote the matrix obtained from A[k] by removing all the

edges involving node r and let {Â[k,q]}Mk=1 be the adjacency matrix sequence obtained
by replacing A[q] with 0. Then, for f(x) = (1− x)−1,

NBr =
1

(n− 1)2 − (n− 1)

∑∑
i 6=j 6=r

[f(B)]
ij
1M −

[
f(B̄r)

]ij
1M

[f(B)]
ij
1M

,

TB[M,q] =
1

(n− 1)2 − (n− 1)

∑∑
i 6=j

[(f(B)]
ij
1M − [(f(B̂[q])]ij1,M−1

[f(B)]
ij
1M

,

where B̄r and B̂[q] are given by

B̄r =


αĀ

[1]
r I

αĀ
[2]
r I

. . .
. . .

αĀ
[M−1]
r I

αĀ
[M ]
r

 ,

B̂[q] =



αA[1] I
αA[2] I

. . .
. . .

αA[q−1] I
αA[q+1] I

. . .
. . .

αA[M−1] I
αA[M ]


and [(f(B)]

ij
`,k denotes the (i, j)th element of the (`, k)th block of the matrix f(B).

Proof. A proof follows along the same lines as that of Theorem 3.1.

3.1. Another formulation. An alternative block matrix formulation that was
specifically designed for evolving networks appears in [34]. Those authors define the
supracentrality matrix to have the general form

(3.1) M =


εM [1] I
I εM [2] I

. . .
. . .

. . .

I εM [M−1] I
I εM [M ]

 .D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

350 CATERINA FENU AND DESMOND J. HIGHAM

Here, M [k] is an n by n centrality matrix based on A[k]. The authors use the simple
choice M [k] ≡ A[k] to illustrate the idea, but mention that other static centrality
functions could be used, such as the Katz [24] resolvent-based version M [k] ≡ (I −
αA[k])−1 (which is the single time-point case of (2.1)). It is then proposed in [34]
to apply a standard static network centrality algorithm to the supracentrality matrix
M. The parameter ε in (3.1) is included to account for the fact that the identity
matrices represent “between layer” connections that are inherently different from the
“within layer” weights arising from the network data. A key element of (3.1) is the
appearance of identity matrices in the super- and sub-block-diagonal positions. If
the overall centrality measure applied to M is motivated by monitoring traversals
around the large, static Mn by Mn network, then, because of the identity matrices
on the subdiagonal blocks, some of these traversals will be traveling backwards in time
with respect to the original time-stamped data. Similarly, suppose that each A[k] is
symmetric, so that edges are undirected in each time slice. Then, with M [k] ≡ A[k] or
M [k] ≡ (I−αA[k])−1, we see that M is symmetric. However, from the simple example
mentioned in section 2, where X meets Y today and Y meets Z tomorrow, we can see
that time’s arrow introduces asymmetry, even when the individual interactions are
symmetric. In section 5, we will perform some illustrative tests that compare results
from (1.1) and (3.1).

4. Computational tasks. Including a temporal dimension in network data can
pose a considerable computational challenge. For example, a recent study [31] moni-
tored physical proximity for a cohort of around 1000 university students. Alluding to
the large volume of time-stamped data that arose, the authors argue that “there is
currently no coherent theoretical framework for summarizing the tens of thousands of
interactions per day in this complex network.” Focusing on the computation of run-
ning broadcast and receive communicabilities given by (2.8), our aim in this section
is to consider algorithms that can deal with tens of thousands of nodes over multiple
time points.

From Theorem 3.1, setting α = a, β` = e−b∆t` , and f(x) = (1− x)−1, we obtain

(4.1)
S [j]1n = (d⊗ In)T f(B)(ej ⊗ 1M)− 1n,

S [j]T1n = (ej ⊗ In)T f(B)T (d⊗ 1n)− 1n,

where d = [1, 1− β2, . . . , 1− βM ]T , and 1M and 1n are vectors of all ones in RM and
Rn, respectively.

The computation of the running broadcast and receive communicabilities (4.1) can
be dealt with by using two different approaches: the first one involves the computation
of quantities of the kind uT f(B)v, with u,v vectors of length Mn, and the second
one focuses on the solution of a sparse linear system. In the following, we will compare
these methods in terms of execution time and accuracy.

4.1. Use of quadrature formulas. We are interested in computation of quan-
tities of the form

uT f(B)v, u,v ∈ RMn,

with u,v unit vectors and f(B) = (I −B)−1 nonsymmetric.
In particular, u = d⊗ ei,v = ej ⊗ 1M and u = ej ⊗ ei,v = d⊗ 1n, i = 1, . . . , n,

for the broadcast and receive running communicabilities of node i, respectively.
In this case, since both the vectors u and v and the matrix B are very sparse,

the probability of breakdown during the computation is high. For this reason, it is

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLOCK MATRIX FORMULATIONS FOR EVOLVING NETWORKS 351

convenient to add a dense vector to each initial vector (see [2]) and resort to a block
algorithm. In particular, we use the nonsymmetric block Lanczos algorithm [14] and
pairs of block Gauss and anti-Gauss quadrature rules [8, 12, 28].

If U = [u 1] and V = [v 1], then we want to approximate the quantities

UT f(B)V, U, V ∈ RMn×2.

The nonsymmetric block Lanczos algorithm applied to the matrix B with initial
blocks U1 = U and V1 = V yields, after ` steps, the decompositions

B [U1, . . . , U`] = [U1, . . . , U`] J` + U`+1Γ`E
T
` ,

BT [V1, . . . , V`] = [V1, . . . , V`] J
T
` + V`+1∆`E

T
` ,

where J` is the matrix

(4.2) J` =


Ω1 ∆T

1

Γ1 Ω2 ∆T
2

. . .
. . .

. . .

Γ`−2 Ω`−1 ∆T
`−1

Γ`−1 Ω`

 ∈ R2`×2`,

and Ωi, ∆i, and Γi are computed by using the three-term recurrence in the nonsym-
metric block Lanczos algorithm; see [14, 12] for details. Moreover, Ek = eTk ⊗ I2 for
k = 1, 2, . . . , ` are 2× (2`) block matrices which contain 2× 2 zero blocks everywhere,
except for the kth block, which coincides with the identity matrix I2. The `-block
nonsymmetric Gauss quadrature rule G` can then be expressed as

G` = ET
1 g(J`)E1.

As shown in [12], the (`+1)-block nonsymmetric anti-Gauss rule can be computed

in terms of the matrix J̃`+1 as

H`+1 = ET
1 g(J̃`+1)E1,

where

J̃`+1 =

 J` √
2∆T

`√
2Γ` Ω`+1

 ∈ R2(`+1)×2(`+1).

Since f(x) = (1 − x)−1 with |x| < 1 is analytic in a simply connected domain
whose boundary encloses the spectrum of B but is not close to it (see [12] for details),
the arithmetic mean

(4.3) F` =
1

2
(G` +H`+1)

between Gauss and anti-Gauss quadrature rules can be used as an approximation of
the matrix-valued expression UT f(B)V .

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

352 CATERINA FENU AND DESMOND J. HIGHAM

4.2. Resolution of a sparse linear system. Using the same notation as in
subsection 4.1, we need to compute the quantities

uT (I −B)−1v, u,v ∈ RMn.

This can be done by solving the sparse linear system (I−B)x = v and then computing
the scalar product uTx.

The linear system can be solved either directly or iteratively. The peculiarity of
the block formulation allows us to have at hand a regular matrix splitting. In fact,
we have I ≥ 0, B ≥ 0, and ρ(B) < 1. Therefore, the iterative method

x(k+1) = Bx(k) + v,

with given starting vector x(0), converges to the solution x.
Another classical approach to solving linear systems is the LSQR method that

makes use of the Golub–Kahan algorithm. After ` steps of this method with starting
vector q1 = v, the solution x(`) ∈ RMn is defined as

x(`) = P`y
(`) = β1P`C

†
`+1,`e1,

where P` and C`+1,` are computed via the Golub–Kahan algorithm. Then, y(`) ∈ R`

is the solution of the least squares problem

min ‖C`+1,`y
(`) − β1e1‖2,

where β1 = ‖v‖ and e1 is the first vector of the canonical base of size `+ 1.

5. Computational tests. In this section, we perform some numerical tests in
order to judge the effectiveness of the new block matrix formulation, from both the
computational and modeling points of view. First, we compare the methods described
in the previous section against the original approach presented in [17], that is, by using
the recursive formula (2.7). Then we show the relevance of the upper triangular block
formulation compared with the supracentrality matrix approach given in [34].

5.1. Computation using the new block approach. As a first set of exper-
iments, we compare different ways of dealing with the computation of the quantities
defined by (2.8). In particular, we focus on the computation of the running broadcast
communicabilities S [j]1. We recall that the computation of these communicabilities
at a given time step can not be recovered using the same information at a previous
time step, that is, the update of the running broadcast communicabilities S [j]1 needs
the computation of the whole matrix S [j].

We analyze the following methods.
original is the original approach presented in [17]. In particular, we use the mldivide

MATLAB function to compute the inverse of the matrix
(
I − aA[j]

)
in recur-

sion (2.7).
quadrules is the approach based on the Gauss and anti-Gauss quadrature rules

described in subsection 4.1. More precisely, we perform as many steps of
the block nonsymmetric Lanczos algorithm as necessary to obtain a relative
distance

‖G` −H`+1‖max

‖F`‖max
with ‖X‖max := max

1≤i,j≤k
|Xij |

less than 10−3.

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLOCK MATRIX FORMULATIONS FOR EVOLVING NETWORKS 353

linsolv is the first procedure described in subsection 4.2, in which we solve the big
linear system (I −B)x = v using the mldivide MATLAB function.

iterative is the second method proposed in subsection 4.2, namely, the iterative
approach based on the regular matrix splitting I − B. We perform as many
iterations as necessary to reach a relative accuracy of 10−3 on the difference
between two consecutive approximations.

lsqr is the method based on the solution of the linear system obtained by using the
lsqr MATLAB function. In particular, we set the tolerance to 10−3.

We want to test the performance of the methods when the size of the matrix B
in (1.1) increases. This can be done in various ways. As a first approach, in order to
simulate the evolution on a given set of nodes, we independently sample M times from
the same static network model with a fixed number of nodes n. This is done using the
random network package CONTEST [33]. As a second approach, we generate the M
matrices by using the evolving network model proposed and analyzed in [19]. Here,
the network sequence corresponds to the sample path of a discrete time Markov chain,
and hence the adjacency matrices are correlated over time. All computations were
carried out with MATLAB version 9.0 (R2016a) 64-bit for Linux, in double precision
arithmetic, on an Intel Xeon computer with 32 Gb RAM.

Table 1 shows the results obtained for the scale-free random graph model gener-
ated using the pref function of the CONTEST toolbox, which implements a
preferential attachment model. We set a fixed number of nodes n = 103 and let
M range from 20 to 100 in order to test the performance of the methods when the
number of time steps is increasing. The table displays the time required to compute
the running broadcast communicabilities of the n nodes of the evolving network and
the absolute error ‖x− x̃‖∞ = maxi |xi − x̃i|, where x̃ is the approximation and x is
the vector computed with the original approach.

The results clearly show that the quadrature rules based on the block Lanczos al-
gorithm do not improve the performance of the original method, while both methods
based on the resolution of the big linear system work well. In particular, the difference
between the original solution x and the one computed via the mldivide MATLAB func-
tion is at the level of machine precision, as is the one obtained using the lsqr function;
for this reason, the error values are not reported for those two methods. It is also
worth noting that the iterative method gives good results and is very fast, keeping in
mind that we are interested in the rank of the nodes rather than the value of the index.

To investigate the behavior of the methods proposed with respect to the network
model, we performed the same computation as in Table 1 using a range-dependent
random graph generated using the renga function of the CONTEST toolbox. Table 2
shows the results obtained setting n = 103 and varying M from 20 to 100. The results

Table 1
Execution time and absolute error for the computation of the running broadcast communicabil-

ities with n = 1000 and M = 20, . . . , 100. The network model is obtained from the pref function of
the CONTEST toolbox.

original quadrules linsolv iterative lsqr
M time time err. time time err. time
20 3.46e+01 4.36e+01 3.34e-03 4.05e+00 1.17e-02 1.06e-03 3.87e-02
40 7.06e+01 1.06e+02 6.23e-03 2.77e+01 1.12e-02 1.05e-03 6.56e-02
60 1.16e+02 1.52e+02 2.52e-03 6.08e+01 1.40e-02 1.01e-03 6.76e-02
80 1.45e+02 2.44e+02 3.30e-03 1.04e+02 1.62e-02 9.22e-04 9.85e-02
100 1.94e+02 2.48e+02 3.94e-03 1.53e+02 1.94e-02 1.06e-03 1.49e-01

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

354 CATERINA FENU AND DESMOND J. HIGHAM

Table 2
Execution time and absolute error for the computation of the running broadcast communicabil-

ities with n = 1000 and M = 20, . . . , 100. The network model is obtained from the renga function
of the CONTEST toolbox.

original quadrules linsolv iterative lsqr
M time time err. time time err. time
20 3.34e+01 1.27e+02 2.18e-02 8.90e-01 2.48e-02 8.89e-03 1.71e-01
40 6.87e+01 2.23e+02 3.93e-02 2.34e+00 2.58e-02 1.04e-02 3.14e-01
60 1.07e+02 3.40e+02 2.18e-02 3.60e+00 2.61e-02 1.20e-02 4.38e-01
80 1.39e+02 4.55e+02 8.73e-02 4.94e+00 3.02e-02 1.02e-02 5.90e-01
100 1.74e+02 7.09e+02 1.66e-02 6.51e+00 3.31e-02 8.91e-03 7.09e-01

2000 4000 6000 8000 10000

10 -2

1

10 3

10 5
pref

2000 4000 6000 8000 10000

10 -2

1

10 3

10 5
renga

original quadrules linsolv iterative lsqr

2000 4000 6000 8000 10000
10 -4

10 -3

10 -2

10 -1

1

E
x

e
c

u
ti

o
n

 t
im

e

2000 4000 6000 8000 10000
10 -4

10 -3

10 -2

10 -1

1

E
rr

o
r

quadrules iterative

Fig. 1. Log-scale plot of the execution time (upper graphs) and the absolute error (lower graphs)
for the computation of the running broadcast communicabilities with M = 10 and n =
2000, . . . , 10000. The network model is obtained from the pref function (left graphs) and the renga
function (right graphs) of the CONTEST toolbox.

show that the block quadrature rule method and the iterative resolution of the big
linear system are slower and the error is greater than that obtained from pref. How-
ever, the performance of the direct solution of the linear system is faster and gives a
small error. Again, the LSQR method is the best among those proposed.

We now investigate the behavior of the methods when the number of time steps is
fixed and the size of the network increases. Figure 1 shows the results obtained when
M = 10 and n goes from 2000 to 10000 with respect to the pref function (left graphs)
and the renga function (right graphs). It is clear that the computation is strongly
affected by the complexity of the calculation when the number of nodes increases

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLOCK MATRIX FORMULATIONS FOR EVOLVING NETWORKS 355

rather than when the number of time steps is large. Indeed, the original method
needs to invert M matrices of size n whose level of sparsity decreases at each time
step. On the contrary, none of the methods proposed here need the explicit inversion
of the whole matrix. They are based on the approximation of the solution of the linear
system by computing matrix-vector multiplications. The resulting computations are
efficient because the time-slice matrices and the right-hand sides are very sparse. It
is worth noting that we need to wait more than one hour to obtain the value of the
index for a network with 6000 nodes or more by using the original approach. We
see that the method based on the iterative solution of the linear system is not only
the fastest among the five, but tolerates well the change of dimension, making this
approach a very good method for dealing with large networks.

As a second set of numerical experiments, we make use of the triadic closure
model developed in [19]. Starting from an Erdős–Rényi network model [10] with a
given edge density, we generate a sequence of M matrices in which the network at
time point k + 1 is built starting from the network at the previous time point. In
particular, the expected value of A[k+1] given A[k] is

F(A[k]) = (1− ω̃)A[k] + (1T1−A[k]) ◦ (δ1T1 + ε(A[k])2),

where ω̃ ∈ (0, 1) is the death rate, δ1 + ε(A[k])2 is the birth rate with 0 < δ � 1 and
0 < ε(n− 2) < 1− δ, and 1 is the vector of all ones. This model is based on the social
science hypothesis that “friends of friends” tend to become friends; that is, new edges
are more likely between pairs of nodes that are separated by many paths of length 2.

Tables 3 and 4 display the results obtained by setting ω̃ = δ = 20/n2 and ε =
5/n2, where A[1] is an Erdős–Rényi network model with an edge density of 0.1 and
0.3, respectively. We report the execution time and the relative error between the
approximate solution and the solution obtained by using the original approach. The
results show that the computation based on the quadrature rules is ineffective in this
case—NaN indicates that convergence was not attained. This can be explained by

Table 3
Execution time and relative error for the computation of the running broadcast communica-

bilities with M = 10 and n = 2000, . . . , 10000. The network sequence is obtained from the triadic
closure model.

original quadrules linsolv iterative lsqr
n time time err. time time err. time

2000 1.70e+02 1.08e+03 3.95e-01 8.67e+00 8.69e-01 2.32e-03 3.53e+00
4000 1.40e+03 7.13e+03 1.76e-01 4.27e+01 5.43e+00 3.92e-03 1.58e+01
6000 5.15e+03 2.35e+04 8.78e-01 1.10e+02 1.30e+01 3.87e-03 3.98e+01
8000 1.27e+04 5.91e+04 9.94e-01 2.22e+02 2.72e+01 5.02e-03 7.57e+01
10000 2.31e+04 1.05e+05 1.00e+00 1.38e+03 4.64e+01 4.90e-03 1.88e+02

Table 4
Execution time and relative error for the computation of the running broadcast communicabili-

ties with n = 1000 and M = 20, . . . , 100. The network sequence is obtained from the triadic closure
model.

original quadrules linsolv iterative lsqr
M time time err. time time err. time
20 3.95e+01 1.60e+03 2.73e-01 2.54e+00 5.32e+00 5.53e-03 3.46e+00
40 8.27e+01 1.09e+04 NaN 8.82e+00 1.08e+01 7.53e-03 6.28e+00
60 1.31e+02 2.23e+04 NaN 1.90e+01 1.57e+01 9.75e-03 9.25e+00
80 1.63e+02 3.68e+04 NaN 3.29e+01 2.21e+01 1.17e-02 1.27e+01
100 2.17e+02 6.31e+04 NaN 4.59e+01 2.72e+01 6.69e-02 1.68e+01

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

356 CATERINA FENU AND DESMOND J. HIGHAM

taking into account the sparsity level of the matrices involved in the computation,
which does not allow us to gain advantage from the use of matrix-vector products.
On the contrary, the behavior of the methods based on the solution of the linear
system is satisfactory, but again the sparsity level influences the performance of the
iterative method based on the matrix splitting. This fact is more evident in Table 4,
where we obtain comparable results from the methods based on the solution of the
linear system.

The computed examples point out the effectiveness of the new block formulation
relative to the original approach, especially when the dimension of the individual ma-
trices is high. It is clear that inverse-free algorithms based on matrix-vector products
are efficient for very sparse networks. Moreover, these kinds of algorithms work well
on modern machines, since the computation can be fully parallelized.

5.2. New block formulation vs. supracentrality matrix. Having used the
new block formulation (1.1) to develop efficient computational strategies, we now com-
pare the relevance of the associated centrality measures with that of the supracentrality
version (3.1). We first conduct a numerical test based on a synthetic time-dependent
network. We generate the network in such a way that one node has a temporal con-
nectivity pattern that allows it to initiate a disproportionate number of traversals.
We note that this type of hierarchical pattern of interactions has been found, either
explicitly or implicitly, in empirical studies of online behavior. For example, in the
context of online forums, Graham and Wright [16] singled out agenda-setters, who
are responsible for new thread creation, and thereby influence subsequent interac-
tions, writing that “the inclusion of agenda-setting reflects our view that influence is
not limited to the volume of posts alone.” Huffaker et al. [23] discovered hierarchy
within the use of chat features in a massively multiplayer online (MMO) role-playing
game, and found that in general “players send messages to higher-level experts.” It
is therefore useful to have centrality tools that can discover and quantify this type of
influence in the time-dependent setting.

To build a simple data set, we use n = 200 nodes and M = 4 time levels. We
begin by setting each A[k] to be an independent, directed random graph where the
probability of an edge from node i to node j at time k is given by 4/n, independently
of i, j, and k. In this way, each node has an expected out-degree of 4 at each time
level and there is no structure to the interactions. We then remove all edges that
emanate from node 1. Finally, we repeat the following procedure 16 times:

• at time level k = 1 connect node 1 to a uniformly chosen node, n2;
• at time level k = 2 connect node n2 to a uniformly chosen node, n3;
• at time level k = 3 connect node n3 to a uniformly chosen node, n4;
• at time level k = 4 connect node n4 to a uniformly chosen node, n5.

In this way, node 1 is given 16 edges that are guaranteed to have a follow-on effect in
terms of dynamic walks around the network. In the above construction, target nodes
n1, n2, . . . are chosen uniformly and independently across 1, 2, . . . , n, and in a final
processing step, repeated edges within a time level and self-loops are deleted.

The upper-left scatter plot in Figure 2 shows, for each node, the aggregate out-
degree on the horizontal axis against the dynamic broadcast communicability, as given
by the row sums of a normalized version, S [M ]/‖S [M ]‖2, of the dynamic communica-
bility matrix from (2.7). Here we used α = 0.9/ρ?, where ρ? = 4.2 is the maximum
spectral radius over the time levels, and b = 1 with ∆t = 1. In this diagram, node
1 is highlighted with a star symbol. We see that, despite having only a typical ag-
gregate out-degree, node 1 produces by far the highest communicability score, which

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLOCK MATRIX FORMULATIONS FOR EVOLVING NETWORKS 357

Fig. 2. Node centrality scatter plots for a synthetic network. The special node, 1, is marked with
a star. In each case the horizontal axis shows aggregate out-degree. The upper-left and lower-left
diagrams use dynamic communicability and supracentrality-based marginal node centrality, respec-
tively, for the vertical axis. The upper-right and lower-right diagrams repeat the experiment with
the data in reverse time order. By construction, the supracentrality results are invariant to time
reversal.

reflects the fact that its edges have a knock-on effect through time. In the upper-right
diagram in Figure 2, we repeat the test with the time levels taken in reverse order.
In this case, the built-in dynamic walks finish at node 1, rather than starting there,
and the benefit of these walks is now shared more evenly among the randomly chosen
initial and intermediary nodes. The performance of node 1 is now more compatible
with its aggregate out-degree and hence the dynamic communicability measure does
not highlight any special structure.

In the same way, the lower-left and lower-right scatter plots in Figure 2 plot the
aggregate out-degree against a nodal centrality measure based on the supracentrality
matrix (3.1) for the original and time-reversed data, respectively. Here, we used static
Katz centrality matrices along the diagonal, so M [k] = (I − αA[k])−1, with α chosen
as in the first two experiments. To maintain compatibility we also used ε = e. For our
overall centrality measure, we again used the Katz resolvent, that is (I− α̂M)−1, with
α̂ chosen to be a factor 0.9 times the reciprocal of the spectral radius of M. To obtain
a single measure for each node, we used the marginal node centrality measure defined
in [34]. We see that this type of centrality calculation, which does not maintain the
time ordering, fails to highlight the role of node 1.

Next we use a set of simulated voice call data from the IEEE VAST 2008 Chal-
lenge [21]. This dynamic data set is designed to represent interactions between a
controversial socio-political movement, and it incorporates some unusual temporal
activity. The data involves n = 400 cell phone users, giving a complete set of time-
stamped pairwise calls between them. Each call is logged via the send and receive
nodes, a start time, and a duration in seconds. Among the extra information sup-
plied by the competition designers was the strong suggestion that one node acts as

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

358 CATERINA FENU AND DESMOND J. HIGHAM

Fig. 3. Scatter plot of broadcast and supracentrality-based centrality for a 400 node voice call
network. Here, five particular nodes are known to be influential. The ringleader node is marked
with a (red) diamond and four other inner circle nodes are marked with (red) stars.

the “ringleader” within a key inner circle. Based on analyses submitted by challenge
teams, we believe that this ringleader has ID 200, and the rest of the inner circle
consists of four nodes with IDs 1, 2, 3, and 5. Further details can currently be found
at http://www.cs.umd.edu/hcil/VASTchallenge08/index.htm.

This data was studied in terms of temporal centrality in [18], where it was shown
that a continuous-time version of broadcast centrality can identify the key players,
even though they are not the dominant users in terms of aggregate call time.

For our discrete-time experiment, we used 30-minute time windows over days 1
to 6. The symmetric adjacency matrix A[k] recorded whether nodes i and j spent
any time interacting in the kth 30-minute time window. To compute the broadcast
centrality (2.8), we took α to be a factor of 0.9 times the reciprocal of the maximum
spectral radius of the ρ(A[k]) over k, and b = 0.1 with ∆t = 1. As in the previous
experiment, we chose comparable parameters for the supracentrality matrix (3.1).
Here, we used static Katz centrality matrices along the diagonal, so M [k] = (I −
αA[k])−1 with the same α and with ε = eb. The overall centrality measure was then
based on row sums of the Katz resolvent, (I − α̂M)−1, with α̂ chosen to be a factor
0.9 times the reciprocal of the spectral radius of M.

Figure 3 plots the broadcast centrality against the supracentrality-based measure.
Here the ringleader node is marked with a red diamond and the other four inner circle
nodes are marked with red five-pointed stars. We see that both centrality measures
highlight two particular inner circle members and all four inner circle members ap-
pear in the top seven of both centrality rankings. However, for the ringleader, marked
with a diamond, broadcast centrality ranks the node 3rd, whereas the supracentrality
measure places this node 48th (out of 400 nodes). We conclude that, in this exper-
iment, the time-respecting measure is better able to discover the importance of the
ringleader node.

We note that these conclusions are consistent with the results in [29], where an
algorithm was proposed to quantify the asymmetry caused by the arrow of time. Our

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

http://www.cs.umd.edu/hcil/VASTchallenge08/index.htm


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BLOCK MATRIX FORMULATIONS FOR EVOLVING NETWORKS 359

computations also make it clear that, in the Katz setting, use of the supracentrality
matrix also requires a third parameter to be chosen, for the resolvent system involv-
ing M.

6. Conclusions. This work focused on a context where a time-dependent se-
quence of networks is provided for a given set of nodes. Equivalently, we have an
ordered sequence of adjacency matrices, or a three-dimensional tensor. Expressing
the tensor as a large block matrix corresponds to representing the system as a single,
static network in which nodes make multiple appearances. Such a representation has
the advantage that a variety of computational approaches can be designed and tested.
In particular, we found that an iterative method based on a regular matrix splitting
was particularly effective. However, construction of the block matrix representation
must be undertaken with care. In the case of extracting resolvent-based network
centrality measures that are motivated through the concept of traversals through the
network, we highlighted a block matrix structure that makes available time-respecting
centralities and illustrated its practical advantages over an alternative formulation.

Interesting avenues for future work in this context include
• developing strategies for choosing algorithm parameters, a key example being

the length of the time windows, where there is a trade-off between dimen-
sionality and sparsity;

• considering matrix functions other than the resolvent;
• computing other walk-based centrality measures, such as total communica-

bility [4] or hub-authority communicability [3];
• studying block matrix formulations of more general multilayer networks where

time is one dimension of many.

Acknowledgment. The first author would like to thank the Department of
Mathematics and Statistics at the University of Strathclyde for their hospitality during
the time in which this work was initiated.

REFERENCES

[1] A. Alsayed and D. J. Higham, Betweenness in time dependent networks, Chaos Solitons
Fractals, 72 (2015), pp. 35–48.

[2] Z. Bai, D. Day, and Q. Ye, ABLE: An adaptive block Lanczos method for non-Hermitian
eigenvalue problems, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 1060–1082.

[3] M. Benzi, E. Estrada, and C. Klymko, Ranking hubs and authorities using matrix functions,
Linear Algebra Appl., 438 (2013), pp. 2447–2474.

[4] M. Benzi and C. Klymko, Total communicability as a centrality measure, J. Complex Netw.,
1 (2013), pp. 124–149.

[5] S. Boccaletti, G. Bianconi, R. Criado, C. I. D. Genio, J. Gómez-Gardeñes, M. Romance,
I. Sendiña-Nadal, Z. Wang, and M. Zanin, The structure and dynamics of multilayer
networks, Phys. Rep., 544 (2014), pp. 1–122.

[6] S. P. Borgatti, Centrality and network flow, Soc. Networks, 27 (2005), pp. 55–71.
[7] S. P. Borgatti and M. Everett, A graph-theoretic framework for classifying centrality mea-

sures, Soc. Networks, 28 (2006), pp. 466–484.
[8] D. Calvetti, L. Reichel, and F. Sgallari, Application of anti-Gauss quadrature rules in

linear algebra, in Applications and Computation of Orthogonal Polynomials, W. Gautschi,
G. H. Golub, and G. Opfer, eds., Birkhäuser, Basel, 1999, pp. 41–56.

[9] I. Chen, M. Benzi, H. H. Chang, and V. S. Hertzberg, Dynamic communicability and
epidemic spread: A case study on an empirical dynamic contact network, J. Complex
Netw. (2016), doi:10.1093/comnet/cnw017.

[10] P. Erdős and A. Rényi, On random graphs, Publ. Math. Debrecen, 6 (1959), pp. 290–297.
[11] E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM

Rev., 52 (2010), pp. 696–714.

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

http://dx.doi.org/10.1093/comnet/cnw017


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

360 CATERINA FENU AND DESMOND J. HIGHAM

[12] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez, Block Gauss and anti-Gauss quadrature
with application to networks, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1655–1684.

[13] L. Freeman, Centrality in networks: I. Conceptual clarification, Soc. Networks, 1 (1979),
pp. 215–239.

[14] G. H. Golub and G. Meurant, Matrices, Moments and Quadrature with Applications, Prince-
ton University Press, Princeton, NJ, 2010.

[15] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University
Press, Baltimore, MD, 2012.

[16] T. Graham and S. Wright, Discursive equality and everyday talk online: The impact of
“superparticipants”, J. Comput. Mediat. Commun., 19 (2014), pp. 625–642.

[17] P. Grindrod and D. J. Higham, A matrix iteration for dynamic network summaries, SIAM
Rev., 55 (2013), pp. 118–128.

[18] P. Grindrod and D. J. Higham, A dynamical systems view of network centrality, Proc. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20130835.

[19] P. Grindrod, D. J. Higham, and M. C. Parsons, Bistability through triadic closure, Internet
Math., 8 (2012), pp. 402–423.

[20] P. Grindrod, D. J. Higham, M. C. Parsons, and E. Estrada, Communicability across
evolving networks, Phys. Rev. E, 83 (2011), 046120.

[21] G. G. Grinstein, C. Plaisant, S. J. Laskowski, T. O’Connell, J. Scholtz, and M. A.
Whiting, Vast 2008 challenge: Introducing mini-challenges, in Proceedings of the 2008
IEEE Symposium on Visual Analytics Science and Technology, IEEE, 2008, pp. 195–196.

[22] P. Holme and J. Saramäki, Temporal networks, Phys. Rep., 519 (2012), pp. 97–125.
[23] D. Huffaker, J. Wang, J. Treem, M. Ahmad, L. Fullerton, D. Williams, M. Poole, and

N. Contractor, The social behaviors of experts in massive multiplayer online role-playing
games, in Proceedings of the 2009 International Conference on Computational Science and
Engineering, IEEE, 2009, pp. 326–331.

[24] L. Katz, A new index derived from sociometric data analysis, Psychometrika, 18 (1953),
pp. 39–43.

[25] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter,
Multilayer networks, J. Complex Netw., 2 (2014), pp. 203–271.

[26] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455–500.

[27] P. Laflin, A. V. Mantzaris, P. Grindrod, F. Ainley, A. Otley, and D. J. Higham,
Discovering and validating influence in a dynamic online social network, Soc. Netw. Anal.
Min., 3 (2013), pp. 1311–1323.

[28] D. P. Laurie, Anti-Gaussian quadrature formulas, Math. Comp., 65 (1996), pp. 739–747.
[29] A. V. Mantzaris and D. J. Higham, Asymmetry through time dependency, Eur. Phys. J. B,

89 (2016), pp. 1–8.
[30] S. Ragnarsson and C. F. Van Loan, Block tensor unfoldings, SIAM J. Matrix Anal. Appl.,

33 (2012), pp. 149–169.
[31] V. Sekara, A. Stopczynski, and S. Lehmann, Fundamental structures of dynamic social

networks, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 9977–9982.
[32] L. Solá, M. Romance, R. Criado, J. Flores, A. Garćıa del Amo, and S. Boccaletti,

Eigenvector centrality of nodes in multiplex networks, Chaos, 23 (2013), 033131.
[33] A. Taylor and D. J. Higham, CONTEST: A controllable test matrix toolbox for MATLAB,

ACM Trans. Math. Software, 35 (2009), 26.
[34] D. Taylor, S. A. Myers, A. Clauset, M. A. Porter, and P. J. Mucha, Eigenvector-based

centrality measures for temporal networks, SIAM J. Multiscale Model. Simul., 15, pp.
537–574, doi:10.1137/16M1066142.

D
ow

nl
oa

de
d 

06
/1

8/
21

 to
 1

92
.4

1.
11

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

http://dx.doi.org/10.1137/16M1066142

	Introduction
	Centrality
	Block matrix formulations
	Another formulation

	Computational tasks
	Use of quadrature formulas
	Resolution of a sparse linear system

	Computational tests
	Computation using the new block approach
	New block formulation vs. supracentrality matrix

	Conclusions
	References

