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Abstract

Higham, D.J.,, Monotonic piecewise cubic interpolation, with applications to ODE . plotting, Journal of
Computational and Applied Mathematics 39 {1992) 287204,

Given a set of solution and derivative values, we examine the problem of constructing a piecewise cubic
interpolant which reflects the monotonicity preseat in the data. Drawing on the theory of Fritsch and Carlson
(1980), we derive a simple algorithm that, if neeessary, adds one or two extra knots between existing knots in
order to preserve monatonicity. The new algorithm is completely local in nature and does not perturb the
input data. We show that the algorithm is particularly suited to the case where the daia arises from the
discrete approximate sobution of an ODE.
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1. Infroduction

Piecewise cubic Hermite interpolation is a popular method for fitting a continuously
differentiable curve through a discrete set of solution and derivative data. One minor defect in
this approximation technique is that monotonicity present in the data will not necessarily be
reflected by the interpolant. For this reason several authors have derived algorithms which
“massage” the derivative data, thereby guaranteeing that monotonicity will be preserved
[1,4,6,7,10]. In this work, we present an alternative algorithm which, if necessary, adds one or
two new knots in each subinterval. The resulting technique is completely local and does not
alter the input data. We argue that this approach is particularly suited to the special case where
the numerical solution of an ODE is to be plotted. The relevant theory of Fritsch and Carlson
[7] is introduced in the next section, and in Section 3 we derive the new algorithm. The
subproblem of plotting ODE data is discussed briefly in Section 4.
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2. The resulis of Fritsch and Carison

Suppose we are given a set of knots x p <X, < - <x, and corresponding function and
derivative data {y}”, and {d}[.,. We may then define the unique piecewise cubic Hermite
interpolant p(x) & C'[x,, x,] that satisfies

() plx) =y, 1<i<n;

(i) p'lx)=d,1<i<n

(i) p(x) is a cubic polynomial on [x;,, X, b 1<i<n—1.

On the interval [x,, x,,,] we denote the secant slope by A=y, —v)/x,., —x,), and we
say that the data is monotone on this interval if

d; diy
=0,
A, A;

i i

=0,

when A+ 0 or if A, =d,=d,_, =0. In many applications it is desirable that monotonicity of
the data should be reflected in the interpolant. Necessary and sufficient conditions for p(x) to
be monotonic on [x,, x,,,] were determined by Fritsch and Carlson [7] and are summarised in
the foliowing lenmma,

Lemma. If A;=d,=d,., =0, then p(x) is monotonic on | x,, X1 ) Udn this case p(x) reduces to
a constant function.) If A; = 0, then letting
d diy

a _ — e ———

H A.F B{' A ?

i H

plx) is monotonic on [x,, x,, ] if and onty if (a;, B,) €., where the monotonicity region # is
shown in Fig. 2.3. Formally, .# = {(«, )| dla, Bz 0 Ulla, BYI0<a <3, 0< B <3}, where
dla, B)=a - 2a+p -3 /Gla + 8 - 2).

Note that for A, # 0, the condition for the data to be monotonic is that (a;, B,) lies in the

first quadrant of R Hence it is clear that there exists monotonic data for which the
corresponding cubic Hermite interpolant is not monotonic (for example, if a;>4 or 8, > 4). To
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Fig. 2.1. The monetonicity region .. Fig. 3.1. Quantities in parentheses are tangent slopes,
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avoid this problem, Fritsch and Carlson proposed an algorithm for perturbing the derivative
data d, so that the monotonicity of the data is unchanged, and is reproduced in the interpolant.
To apply the algorithm, a region 7 —.# satistving

(e, B)ed = (a*, B*)e T, forD<a* <a, 0<B*<pB,

must be chosen. The algorithm ensures that the new data {x;, y, d}} satisfies
dF/A,dr /AYe T, 1<i<n—1.

Fritsch and Carlson had in mind the application where the derivative data {d} is not
supplied directly, but rather is computed from the function data {¥.} by the use of, for example,
three point difference formulas. In this case it is natural fo consider altering the {d,} values in
order to produce a monotonic cubic spline. We point out that the algorithm may “‘unneces-
sarily” perturb the data, since it ensures that the (a;, B;) pairs lie in  rather than .#.
Alternative techniques for perturbing the d; values have since been proposed in [1,4,6,10].

In this work, we are concerned with the application where the data arises from the discrete

solution of an initial-value ODE problem
y'(x) =f(x, 3(x), v(a)=y,, a<x<b,

Here we are given approximations v =y(x,) and d;=f(x, vi}=y'{x;). (In the case of a
system of ODEs we consider each component of the solution separately.) In this situation we
will generally have an equal amount of confidence in the solution data y, and the derivative
data d,, since if f satisfies a Lipschitz condition, the asymptotic order of accuracy of d, is the
same as that of y,. Hence it scems undesirable to change the derivative values. Note that
altering d; also relaxes the condition that the residual p'(x) ~ f(x, p(x}) be zero at the knots.

The main purpose of this work is to present an aiternative algorithm for preserving
monotonicity in cubic splines. With this algorithm, if the original cubic Hermite does not
preserve monotonicity in an interval, then we insert one or two extra knots, with corresponding
solution and derivative data. As pointed out by Fritsch and Carlson, two disadvantages of
adding knots are that the amount of extra storage required for the data, and the amount of
search time needed to evaluate the spline will both be increased. However, as we will see in
Section 4, the percentage of intervals [x;, x,,,] on which the cubic Hermite fails to preserve
monotonicity is typically very small in the case of ODE data. Also, the storage requirements of
the original spline cannot be determined a priori, since the number of knots » depends on both
the differential equation and the accuracy requirement,

We mention that other shape-preserving technigues which use the idea of adding knots have
appeared in the literature; see, for cxample, {1,111 In the former reference, by altering the
derivative data the {«;, B;} values are forced into a region which contains .#, and then, if
necessary, an extra knot is added in cach interval. (The algorithm proposed here differs in that
it is completely local and does not change the {d} data.)

i

3. An algorithm for adding knots

We now develop an algorithm for adding knots in those intervals where the data is
monotone, but the corresponding cubic polynomial is not. For simplicity of notation, we label
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the data {x;, y,, d; x,, y,, d,} and we let

¥, — ¥ d d
A=E ----—I, a=—, Bzwi.
Xy — X, A

(We may assume that A < 0, since if A = 0, then the cubic Hermite is monotone if and only if
the data is monotone.) For the moment we assume that the data is monotonic increasing with
a2 (. If (&, B) &.4#, then we hope to add a new knot, X ews With corresponding data y,,, and
dyew SO that y, <y <y, d . =0 and the cubic Hermites on (x), ¥, and {x .., x,] are
both monotonic increasing. Figure 3.1 illustrates the situation. We let Ay and Ay denote the
secant slopes on the left and right intervals; that is,

yzzew—wy] M#y2mynew

Ap=—, R,

X new - X2~ X new
and we write x ., =x, + ], where I=x,—x,, and 0<r<1. The new data is completely
specified by 4, , r and d,,,,. We also define

d, d d

new new
al = — == ==

AL’ B[_, AL 3

to be the alpha and beta values on the new left and right infervals. We aim to make
(ey, By ) &4 and (ag, Bp) €4, Since (¢, B) &4 and « > B, we must have a > 3 (see Fig. 2.1).
In other words, the derivative value d, is more than three times as large as the secant slope A.
To alleviate this, we must choose A > A, say A, = KA for some K > 1. For reasons which will
become clear shortly, we choose K > 1w, so that ay < 3. The monotonicity condition, Yoew < V2,
then implies that » must be chosen to satisfy » < 1/K. From Fig. 3.1 we sece that Ag <A and
hence Bg > B. Since (ay, By) €4 = g, <4, we cannot hope for the algorithm to succeed

unless B < 4. Assuming 8 < 4, and using the fact that

(1-r)
ﬁRmﬁlmrK"

it follows that by choosing r < (4 — ) /(4K — B} we force B r < 4. (Notice that this represents a
stronger restriction on r than the monotonicity constraint r < ] /K. 1t is clear from Fig. 2.1
that given any B, < 4 there exists a value a, €1, 3] such that (ag, Br) €. After choosing
such a value for ap, we set d. =apby=agA(l ~rK)}/(1 7). Since Ag <A, we have
Br=dpe /AL <d.,/Ap = ay < 3. Finally, since we have forced ap <3, it follows that
(e, B E#.
The resulting algorithm for adding a knot is straightforward:
(i} choose K > {a, and r < (4 — B) /(4K — B);

(ii) choose ay =[1, 3] such that (ag, B(1—r)/(1 —rK)) et
(iti) let ¥, =x; +rl, yoo, =y, +HKA, d . = ap A1 = rK) /(1 ~ 1),

The search in (ii) could be performed, for example, by decreasing o, from 3 to 1 in steps of
0.1. It is guaranteed to finish at, or before, ag = 1. It can be shown that this algorithm also
handles monotonic decreasing data for which « = 8 and B <4. A corresponding technique for
the case B>« and « <4 can be derived in a similar way. The two versions, with specific
choices for K and r, are summarised as Algorithm 1.
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Algorithm 1. For the case min{a, 8} < 4.
{Generates a new knot in order to preserve menotonicity.)

Algorithm 1A. For o = B8:
(i) let K=11a/3 and r =084 — B} /(4K — B);
(ii) choose ay €[1, 3] such that (ay, B —r}/(1—rK)) ed;
(0 det X oy =2, + 71, Yoo, =y, +rIKA, dy, = ag A1 — 1K) /(1 — 7).

Algorithm 1B. For 8 > a:
(D) let K=1.18/3 and r = 0.8(4 — a) /(4K — &);
(i) choose B, &[1, 3] such that {a(1 —r) /(1 — 1K), B e
(i) let X =2, + (1 =),y =y, + (1= rK)IA, d_, = B, AL = 1K) /(1 — 1),

It is clear from the derivation of Algorithm 1 that with min{a, B} =4 it is not possible to
preserve monotonicity by adding a single knot. However, we show below that in this case two
extra knots will suffice. The basic idea is to pre-process the interval into the form required by
Algorithm 1.

Again, for definiteness, we suppose that the data is monotonic increasing, and we refer to
Fig. 3.1. Suppose now that a > 8 = 4. Our aim is to add the knot Yoo and data y ., d_,, S0
that (a;, B, ) €4 and ay <3. We may then apply Algorithm 1B to the interval [Xpens Xo0 Tt
also scems desirable to avoid an unnecessarily large Br value, so we will aim to keep B, < 2.
As before, we will develop a method for choosing K, r and d,_,. We may choose A, =KA
where K > 1o, which ensures that «, < 3. The monotonicity constraint View <V, then reduces
to r<1/K. The additional constraint 8, < 28 actually imposes the more severe restriction
r < 1/(ZK -~ D. Finally, choose d,.,, so that 0 < ag < 3, that is, 0 < d ey < 3A0 =KD /(1 — 1)
Since 0 <Ap <A, it follows that 8, <ap <3, so{a,, B,) €4 as required. This leads to the
following strategy:

(i) choose K> e, and r < 1/(2K — 1)

(i) tet x ., =x,+ 7,y =v, +rIKA, d_,, = 03M1 —rK) /(1 = r), for some § & [0, 11.
The methed also works for monotonic decreasing data, and there is an analogous version for
the case where B >« =4 which inserts a knot so that (ag, Bp) €, B, <3 and o, <2a.
Algorithm 2 gives the two versions, with specific choices for K, r and 6. (Note that the choice
r=1/(2K — 1) below makes (1 — rK) /{1 — ) = 0.5 in (ii).)

Algorithm 2. For the case min{a, 8} = 4.
(Generates two new knots in order to preserve monotonicity.)

Algerithm 2A, For a > 3
(i) let K=1.1a/3 and r=1/2K - 1);
(D) let x 0, =x, + 71,y =y, +rTKA, d, ., =08 % 3A x 0.5;
(iii} apply Algorithm 1B to [x, ., X,

Algorithm 2B, For 8 > a:
(i) let K=1.18/3 and r=1/(2K —1):

(D) let x ., =x, + A=),y =y, + (1 =rK)IA, e = 0.8 X 3A 2 0.5;

(1ii) apply Algorithm 1A to [xyy x

new ]‘
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As a practical point, we mention that it may be undesirable to insert a knot too close to an
existing knot (in a relative sense). Since r < 0.8 in Algorithm i, and r < (.52 in Algorithm 2,
X ... Can only be close to one end of the current interval if r is small. In Algorithm 1 it is easy
to show that r=0 if either min{a, B} is close to 4, or max{a, B} is large. For example, in
Algorithm 1A, we see from (i) that if € is a small positive quantity, then

0.8 ‘B 41 - eK) 4 de(K -1
rm.eﬁﬁkﬁwéwﬁmw—ii";—f- “"“6( ““.).

The difficulty caused by min{e, 8} = 4 is easily overcome — switch to Algorithm 2, inserting
two new knots rather than one. With Algorithm 2, a tiny » value can only arise if max{e, B} is
large. In such cases, the secant slope differs greatly from one of the derivative values, and
hence the data may be regarded as somewhat inconsistent. In this situation the monotonicity
constraint on y,., makes close knots unavoidabie.

We conclude this section with two numerical examples. In both cases we interpolate over a
single interval. The two sets of {x,, y;, d,} data that we use are Set A4 = {{0, 1, 10}, {1, 3, 6}}, for
which @ =5, =3, and Set B={{-3,0, ~6}, (=2, ~1, —6.1}}, for which « = 6, B=6.1. The
data, which was chosen artificially, may be considered rather extreme in the sense that the
cubic interpolants are far from monotone. On set A, Algorithm 1A adds a new knot at
X oo = 0185 with y,., = 1.68 and d,, =325 On set B, Algorithm 2B gives Xpew & —2.29,

Voew = 036 and d ., = —1.20, and then Algorithm 1A gives x,, = ~2.94, y__ = —0.13 and
d, = —0.82. “Before and after” plots of the cubic Hermite interpolants are presented in Figs.
3.2 and 3.3.

4. DBiscussion

In this section we focus on the case of shape-preserving interpolation for ODEs, and
mention some related work [2,81. In [2] Brankin and Gladwell used standard software to solve a
range of stiff and nonstiff ODEs taken from the package [S]. Among the statistics that they

i ; i -1 i ] i E

0 2 4 .6 8 1 -3 ~2.8 2.6 -2.4 -2.2 -2
Fig. 3.2. Cubic Hermite interpolants for data set 4. Fig. 3.3, Cubic Hermite intcrpolants for data set B,
{Dotted linc = before Algorithm 1A; solid line = after {Dotted line = before Algorithm 2B; solid line = after
Algorithm 1A.) Algorithm 2B.)
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Table 4.1

Proportion of intervals where cubic Hermite preserved monotenicity

Relative loca! error tolerance o 101 10F 1w 10-¢ T

. _m______.__.._%_h_%__mﬂ_w__.__‘m%_%____,___“%_h____%__,__

Nonstiff tes( set (.98 0.99 0.949 1.0

Stiff test set 0.92 0.94 0.96 (.98
_W_M_w_ﬂ_ﬁ_%m_m_ﬁ_ﬂ_ﬁw‘w

recorded were the proportion of intervals {x,, x, +1] on which the cubic Hermite interpotant
preserved monotonicity, These values are reproduced (from the technical report (2] with
permission) in Table 4.1. The fact that the proportion of “successfyl” intervals increases as the
error tolerance decreases is not surprising. As the tolerance is reduced, the data {y,, d)}
becomes more accurate, and the corresponding cubic Hermite nterpolant converges to the true
sofution, inheriting the same shape, However, even at the lax tolerances of 107" and 10-2 we
see that the cubic Hermite interpolant would preserve monotonicity on the vast majority of

steps.

most intervals, the technique proposed here of using one cubie per interval by default and two
or three cubics per interval in the exceptional cases seems to be a reasonable alternative from

the points of view of efficiency and ease of use.
Another important characteristic of an ODE interpolant is the focal order of accuracy.

Defining the local solution wx) over [x,, x,, 11 by
wi(x) = f(x, u(x)), ux;) =y,

we say that an interpolant plx} has local order g if g is the largest integer such that
u(x; + 7h;) —plx; + Th;) = G(A7),

where /1, =x, | —X;, for any fixed re o, 1] If the data i viu1s d, d,.1} comes from a
sufficiently high-order Integration method, then the cubic Hermite mmterpolant and the rational

specifically, suppose that ag the error tolerance tends to zero we have Vi=v{x}+olh ;) and
hence, for Lipschitzian Iodi=flx, y) =flrs, y(x )+ o(h,) =y'(x,) +olh,). Since 4, =
y'(x)+0o(1), it then follows that, for y(x)« 0, a;=1+0o(1), and similarly g =1+ of1)},
ensuring that («,, 8,) ultimately lies inside

We also mention that @ more complicated, and more powerfy] shape—prescwfng algorithm
for ODE interpolation is described in [2]. This scheme combines the cubic Hermite and the
monotonicity / convexity preserving rational cubic interpolant of {3]. The combination provides
& monotonicity- and convexity—preserving interpolant of local order four.
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As & conchiding remark, we point out that it would be useful to have shape-preserving
interpolation schemes of local order greater than four, since many ODE methods achieve
accuracy higher than O(i?} at the knots.
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