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The theory of zeta functions provides an expression for the generating function of non-backtracking
walk counts on a directed network. We show how this expression can be used to produce a centrality
measure that eliminates backtracking walks at no cost. We also show that the radius of convergence of
the generating function is related to the spectrum of a three-by-three block matrix involving the original
adjacency matrix. This gives a means to choose appropriate values of the attenuation parameter. We find
that three important additional benefits arise when we use this technique to eliminate traversals around the
network on the grounds that they are unlikely to be of relevance. First, we obtain a larger range of choices
for the attenuation parameter. Second, a natural approach for determining a suitable parameter range is
invariant under the removal of certain types of nodes, so we can gain computational efficiencies through
reducing the dimension of the resulting eigenvalue problem. Third, the dimension of the linear system
defining the centrality measures may be reduced in the same manner. We show that the new centrality
measure may be interpreted as standard Katz on a modified network, where self loops are added, and
where non-reciprocal edges are augmented with negative weights. We also give a multilayer interpretation,
where negatively weighted walks between layers compensate for backtracking walks on the only non-
empty layer. Studying the limit as the attenuation parameter approaches its upper bound also allows us to
propose a generalization of eigenvector-based non-backtracking centrality measure to this directed network
setting. In this context, we find that the two-by-two block matrix arising in previous studies focused on
undirected networks must be extended to a new three-by-three block structure to allow for directed edges.
We illustrate the centrality measure on a synthetic network, where it is shown to eliminate a localization
effect present in standard Katz centrality. Finally, we give results for real networks.
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1. Motivation

The tasks of community detection and node centrality measurement can both be addressed by quantifying
traversals around a network; either random [1, 2] or deterministic [3, 4]. In particular, the concept of a
walk, which allows nodes and edges to be revisited, forms the basis of the Katz centrality measure
[5, 6], whose limiting value corresponds to eigenvector centrality [7, 8]. However, all walks are not
created equal. Recently, several authors have argued that certain, backtracking, walks, should be ignored.
These walks include at least one back-and-forth flip between a pair of nodes. One concrete justification
for the use of non-backtracking walks (NBTWs) is that localization effects can sometimes be avoided
[9-11]. In the context of community detection, a non-backtracking version of spectral clustering was
proposed in [12]. Moreover, quantities defined using the concept of NBTWs have proved useful in the
framework of undirected networks when tackling decycling problems, as well as dismantling problems
and the problem of optimal percolation (see, e.g., [13, 14] and references therein). A non-backtracking
analogue of eigenvector centrality was developed in [10] for undirected networks, and a Katz version was
proposed in [15] and studied from a matrix polynomial perspective. However, none of those references
handle directed edges. In this work, we therefore address the case of NBTW centrality for directed
networks.

The article is organized as follows. In Section 2, we introduce some background concepts and notation
and, in particular, set up the task of computing NBTW centrality on a directed network. In Section 3,
we review a recurrence that counts NBTWs and leads to a closed form generating function. This allows
us to conclude that NBTW centrality on a directed network may be computed at the same cost as Katz
centrality. Section 4 shows that the new centrality measure may also be interpreted as standard Katz
on a modified version of the network, where self loops and negative versions of non-reciprocal edges
have been added. We also show that the measure may be viewed from a multilayer perspective. The
NBTW centrality measure involves a downweighting parameter whose range of values is determined
by the radius of convergence of the generating function. We show in Section 5 how this upper limit is
related to the spectral radius of a three-by-three block matrix built from the underlying adjacency matrix.
We also show that the spectral radius is unchanged when nodes of certain types are removed, and we
argue that this property can have computational benefits. Section 6 considers the limiting values of the
downweighting parameter. In particular, by allowing the downweighting parameter to approach its upper
bound, we arrive at a generalization to directed networks of the non-backtracking eigenvector centrality
measure proposed in [10]. Section 7 gives a rigorous analysis of the new measure on a synthetic network.
On this example, in the limit of large network size the non-backtracking measure can avoid a localization
issue present in the Katz version. In Section 8, we give experimental results on some real networks, and
we finish in Section 9 with a brief discussion.

2. Background and problem setting

We begin this section with some definitions and notation. Let G = (V, E) be a directed graph (digraph)
with n nodes. Suppose that the graph does not contain self loops (edges from a node to itself) or multiple
edges, and assume moreover that it is unweighted, that is all its edges have unit weight. The graph can
thus be represented by means of an n x n binary adjacency matrix A = (a;;). Here a;; = 1 if there is a
directed edge from node i to node j, and a;; = 0 otherwise.
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56 F. ARRIGO ET AL.

The identity matrix, whose order will be clear from the context, will be denoted by /. The ith column
of the identity matrix of order n will be denoted by e; € R". The vector 0 € R" will be the vector of
all zeros and 1 € R” the vector of all ones. Weuse 1 € R" ' ande; € R* ! (fori = 1,...,n — 1)
to denote the vectors containing the first (n — 1) components of vectors 1 and e;, respectively. We use
[Iv|l> to denote the Euclidean norm of a vector v, and p(M) to denote the spectral radius of a square
matrix M.

We denote a directed edge from i to j by i—j. We call an edge i—j reciprocal, and denote this by
i < j,ifi-j € E and j—~i € E. We denote by S = (s;;) € R"" the adjacency matrix of the subgraph of
G obtained by removing all edges that are not reciprocal. The entries of this matrix may thus be defined

as Sij = a;jdj;.
A walk of length r from node i; to node i, is a sequence of » + 1 nodes iy, i,,...,i,,; such that
ig—»igy) € Eforall £ = 1,2,...,r. A standard result shows that (A");; counts the number of walks of

length r from node i to node j [16]. We will use the notation
abc---h

to denote a walk that uses nodes ab ¢ - - - h in that order. Where necessary, we use = as a placeholder for
a general node and indicate the walk length. So, for example,

P*xl x- %] of length r

denotes a walk from i to j of length r whose third node must be £ .

We denote by D the diagonal matrix whose diagonal entries are D; = (A%); = (S1);. Hence D
counts the number of neighbours of i that are connected to i by reciprocal edges. We use d/"' to denote
the out-degree of node i, that is the number of nodes that i can reach in one step. So d°* := Al is the
vector of out-degrees. Similarly, d}“ denotes the in-degree of node i, that is the number of nodes that can
reach i in one step. In vector form, d := A”1, where A” denotes the transpose of A.

A walk is said to be backtracking if it contains at least one sequence of nodes of the form i £ i, and
non-backtracking otherwise. We will use BTW and NBTW, respectively. We note that NBTWs have
typically been studied on undirected networks [9, 10, 12—14, 17, 18], but the definition continues to make
sense in the directed case. We will denote by p, (A) the matrix whose (i, j)th entry counts the number of
NBTWs of length r from node i to node j. Note that this is the non-backtracking analogue of the matrix
power A”. To illustrate the idea, in Fig. 1 we show an example of a windmill network—this class of

FIG. 1. Windmill network with m = 3 triangles.
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networks will be studied more comprehensively in Section 7. It is easily verified that

01 0 0 0 0 1 01 1 1 1 11
00 0 0 0 01 1 01 1 1 10
00 01 0 01 1 1.0 1 1 11
pA)=A=| 00 0 0 0 O 1 |, ppA=A*~D=|1 11 0 1 1 0
00 0 0 O0 1 1 1 1 1 1 0 1 1
00 0 0 0 01 1 1.1 1 1 0 O
111 1 1 1 0 | | 00101 0 1 0 |
and
1 0 1 2 1 2 0]
01 01 010
1 21 01 2 0
pyA)=(0 1 0 1 0 1 0
1 21 2 1 00
01 01 010
| 0000 0 0 3 |

For example, there are two walks of length three from node 1 to node 2, given by 1272 and 1712. Both
of these are backtracking, and hence (p3(A));, = 0.

The concept of walk counting has proved useful in the development of network centrality measures.
Katz centrality [5] assigns a value k; = e[k to node i according to

(I —ad)k =1, 2.1a)

where o > 0 is a parameter. To ensure that k; > 0, this parameter must be restricted to the range
0 < o < 1/p(A), in which case we may expand the resolvent (I — A ' =T+aA+a?A2+ -+, 50
that k; may be written as

=1+ a4 (2.1b)

r=1 j=1

In this way, we see that k; from (2.1b) may be viewed as a weighted sum of all walks' emanating from
node #, with the count for walks of length r scaled by . In the limit as @ — 1/p(A), the Katz centrality
vector k approaches the Perron—Frobenius vector of A, which corresponds to eigenvector centrality [7, 8],
when the graph under study is strongly connected.

Katz centrality gives the same weight to all walks of the same length. For example, in Fig. 1, 717176
has the same influence on the centrality measure as 712756, even though the latter, non-backtracking,
walk, traverses the network more widely and is likely to be more relevant in terms of message passing

! The unit shift on the right-hand side of (2.1b), which does not affect the relative ordering of the node centralities, may be
regarded as arising from a single walk of length zero.
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or disease spreading. This type of argument motivated the authors in [15] to propose and study a non-
backtracking analogue of Katz centrality, restricted to the case of undirected networks, where A = AT.
Here, the node centrality vector is defined as

b=1+) pA]L, (2.22)

r=1

where 0 < t < 1 is a parameter analogous to «. Hence, node i is assigned the centrality

bi =14 1(p(A); (2.2b)

r=1 j=1

It was shown in [15] that, for undirected networks, the NBTW centrality vector (2.2a) can be computed
as cheaply as the Katz version in (2.1a). Further, in an appropriate sense, the limiting value of b as a
function of ¢ in (2.2a) agrees with the non-backtracking eigenvector centrality measure proposed in [10]
for undirected networks.

Our aim here is to consider the NBTW centrality measure (2.2b) in the case where the network has
directed edges.

3. Recurrence and generating function

We now quote a three-term recurrence that relates p,(A) to p,_(A), p,_»(A) and p,_3(A), and leads to
an expression for the generating function Y~ #'p,(A). The result may be traced back to [19]. A more
accessible treatment from the perspective of graph theory and linear algebra may be found in [20]. We
also note that in the case of an undirected network, the recurrence collapses to a two-term expression that
was discovered independently in the theory of zeta functions of graphs [18] and exploited in [15] from a
network science perspective.

THEOREM 3.1 In the notation above, py(A) = I, pi(A) = A, p»(A) = A> — D and
pr(A) =Ap,—1(A) + (I — D) p,»(A) — (A —S)p,—3(A), Vr=3. (3.1)

Further, let M (t) = I — At + (D — > + (A — S)#3 and suppose ¢ is such that the power series ¢ (A, 1) :=
Y, t'p-(A) converges. Then

M® A, = (1 — ). (3.2)

Proof. See [19, 20]. O

Recall from (2.2a) that we may compute the NBTW centrality vector as b = ¢ (A, t)1. Theorem 3.1
shows that this may be written as the linear system

(I-At+D-DFf+A-9r)b=(1-)L (3.3)
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DIRECTED NON-BACKTRACKING CENTRALITY 59
We see that the coefficient matrix has the same sparsity as I — «A in (2.1a), which shows that NBTW
centrality for a directed network may be computed at least as cheaply as Katz centrality. Further comments
on computational complexity will be given in Section 5.
REMARK 3.1 The results in Theorem 3.1 correspond naturally to a recursive proof on walk length where
new edges are added at the start of a walk. An alternative recurrence for p,(A) could be established via a
proof that adds edges at the end of the walk. This leads to the relationships

pr(A) =Pr-1 (A)A +pr72(A) (I - D) —DPr-3 (A)(A - S)
and
A, DM@ = (1 =),

which are equivalent to (3.1) and (3.2), respectively.

REMARK 3.2 It is easily checked that equation (3.3) reduces to (I — Ar)b = 1, that is to the linear
system (2.1a), when the network does not contain reciprocal edges, and thus p,(A) = A”.

Let us now define, for r > 2, the 3n x n matrix

pr(A)
q-(A) == | p,1(4) | 3.4)
pr-2(A)
Then, if we let
A (I-D) (S—A4)
C:=| I 0 0 € R3¥mx3n (3.5
0 I 0

it holds from Theorem 3.1 that ¢,(A) = Cq,_(A) for r > 3, and thus
q:(A) = C"2qx(A),  forr > 2. (3.6)

This will prove useful in Section 5, where we study the radius of convergence of the power series.

4. Other interpretations

In the previous section we characterized NBTW centrality in terms of a linear system. To add further
insight, we now interpret this system heuristically from two alternative viewpoints.

4.1 Katz on a modified graph

To give another interpretation of the NBTW centrality measure in (3.3), we first note that the walk-
counting motivation for Katz centrality continues to make sense when the edge weights are non-negative
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integers. In this case we interpret an integer weight s as representing s distinct edges between two nodes.
For example, in a transport setting, if there are two roads between Pisa and Florence and three roads
between Florence and Bologna, then there are 2 x 3 = 6 distinct ways to get from Pisa to Bologna with
these roads.

Now, the centrality measure b in (3.3) arises when standard Katz, with « = ¢, is applied to a modified
network with adjacency matrix

() :=A—(D—I)t—(A—S)t,

and with the right-hand side rescaled by a factor 1 — 2. In this modification to the network, each node i is
given a self loop with a integer weight, 1 — D;;, scaled by ¢. Also, the unit weight on each non-reciprocal
edge i-j is decreased by #2. It must therefore be the case that adding these self loops and reweighting
non-reciprocal edges and then applying the standard Katz procedure, with a rescaled right-hand side, is
entirely equivalent to restricting to NBTW counts on the original graph. To understand this equivalence,
we may consider what happens when we count ‘standard walks’ by powering up <7 (¢).

We note that on one hand, this alternative interpretation is conceptually easier, in the sense that we
need only consider standard walks. On the other hand, the interpretation is conceptually harder, in the
sense that we must relate walks on a modified, weighted graph (with scaled integer weights, that for the
loops may even be negative) to NBTWs on the original graph.

When considering traversals around the modified graph, we should regard

* each loop as representing a walk of length 2, since the extra factor of ¢ in its weight indicates that it
is compensating for traversals that use one extra edge, and

* each non-reciprocal edge as representing both a walk of length one and a walk of length 3. In the
latter case, the weight ¢ indicates that the edge is counteracting the presence of traversals that use
two extra edges.

Focusing on distinct nodes i # j and walks of length r, we will give an explanation that relies on induction.
So, we assume that the weighted count for NBTWs of any s < r in the original graph is correctly matched
by the #* coefficient in (1 — #2) (I — t.o/ (1))"" 1. Now, since <7 (¢) is formed from A by adding extra edges
and weights, it is clear that any walk of length r in the original graph is also present in the modified graph,
and in both cases this walk contributes to the " term in the respective Katz resolvent. Our task is now to
show that the modifications in .27 (f) reduce the count in such a way that what remains as the " coefficient
corresponds precisely to the count for NBTWs of length r in A.

For convenience, we will form longer walks by adding edges at the end of shorter walks. With this
viewpoint, the loops in .7 (¢) are used to balance the presence of BTWs of the form

P % oo xLjx]j of length r.

To get an overview of the next step in the argument, we turn to Figs 2 and 3. Here, a walk on the modified
graph reaches node j after r — 2 steps, and it does so via some neighbour £ of j.

Case 1: We focus first on the case where the edge £ is reciprocated, as in Fig. 2. Here s, = s;, = 1
and (S —A), = (§ —A);, = 0. The walk may perform a final backtracking double-step either by visiting
a distinct neighbour 4 # ¢ and returning to j, or by revisiting £ and returning to j. We must distinguish
between these two types because our inductive argument assumes that we have already removed BTWs
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FIG. 2. Illustration of walks on the modified graph, for £ <> j. In reaching node j via its neighbour £, an immediate backtrack to node
£ is eliminated by the loop at node £. Hence the continuation that finishes ¢j¢j must be treated as a special case. Walks finishing
Ljhj for h # € are eliminated by the loop at node j.

FIG. 3. Illustration of walks on the modified graph, variation of Fig. 2 where £—j. In this case, a continuation that finishes £j¢; is
not possible.

of length less than r—so a walk that revisits node £ corresponds to a length r — 1 BTW ending at £. Such
a walk has already been removed from the count, so will not be further propagated when we increase
length by one (i.e. multiply by t.o7 (¢)). In essence, the negative loop attached at node € has already taken
care of this case. In more detail, ignoring node ¢, there are D; — 1 distinct neighbours of j such that
J <> x, each offering a final backtracking double-step. Their presence is compensated for by the loop at
node j. This is consistent with (I — .7 (t)) "' 1, giving part of the required expression. The case

ix---xljlj of length r 4.1
must be treated differently because, by induction, walks on the modified graph of the form
i% - % 0L of length r — 1
have already been removed from the coefficient of t"~'. Hence, we cannot simply propagate the count by
adding the final edge ¢—j. Instead, we must propagate the count from length » — 2 to r. The number of
walks of the form (4.1) is precisely the number of walks of the form

[ % o x L] of length r — 2.

Hence, to deal with walks of the form (4.1) we simply subtract the #~2 coefficient. This is consistent with
(I — 17 (1)) (—1))1, so, overall, a factor 1 — #2 arises in the right-hand side of (3.3).
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layer 1: A layer 2: 0 layer 3: 0

FIG. 4. Representation of the multilayer network described by the matrix C in (3.5).

Case 2: Now consider the alternative case where the edge £—j is not reciprocated, as in Fig. 3. Here
(S —A); =—1and (§ — A);, = 0. The arguments in Case 1 must be adapted slightly because there is
no longer a BTW of length » — 1 ending at £. Since this non-existent walk will not have been removed
at the previous level, we must not add it back in, which explains the extra —(A — §)#? term in %7 (t).

4.2 Relationship to multilayer networks

From Theorem 3.1 and (3.6), since py(A) = I we see that the NBTW counting matrix p,(A) may be
extracted from the upper left #n x n block of the rth power of C. The matrix C can be viewed as the supra-
adjacency matrix associated with a multilayer network. Here, as shown in Fig. 4, we have three layers,
each of which contains the same set of nodes. This type of multilayering structure is usually referred to
as node aligned [21]. In this setting, the diagonal blocks describe interactions within each layer, while
the off-diagonal blocks describe interactions between layers. Forming powers of the matrix C counts
walks around the multilayer structure where edges within and between layers are treated equally. From
(3.5), we see that interactions occurring within layer 1 are described by A, while those occurring within
layers 2 and 3 are both described by a zero matrix. In particular, having entered layer 2 or 3, the walk
may be continued only by moving back up to the previous layer. Intuitively, the effect of moving down the
layers is to introduce negatively weighted walks that cancel the contribution of the BTWs within layer 1.
Moving back up the layers, to return to layer 1, causes extra edges to be traversed; so we take one extra
step on moving from layer 2 back to layer 1 and two extra steps on moving from layer 3 to layer 2 and
then to layer 1. These extra steps are needed to match the number of edges used by the equivalent BTWs
taking place within layer 1.

5. The radius of convergence

In this section, we study the radius of convergence of the power series ¢ (A, ) in Theorem 3.1. The
parameter ¢ > 0 represents a weight for walks taking place in the network under study; therefore, it is
natural to require ¢ € (0, 1), so that shorter walks are given more importance than longer ones.> From a
practical perspective, it is necessary to know what further restriction, if any, is required. The following
theorem shows that 1/p(C) is a lower bound on the radius of convergence which is sharp when there is
at least one directed cycle, where C is defined as in (3.5). An example, where there are no directed cycles

2 1t is worth mentioning that the series defining ¢ (A, r) makes sense for r € C. We restrict ourselves to the case of € (0, 1)
since we are interested in the application to network science.
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is given by
01 1
A= 0 0 1
0 0 O
Here the radius of convergence for ¢ (A, ¢) is infinite; whereas 1/p0(C) = 1.

THEOREM 5.1 The radius of convergence Ry of the power series ¢ (A, 1) = Zfio t'p.(A) is

R — 1/p(C) if there is at least one directed cycle;
*~ |oo if there are no directed cycles, in which case p(C) = 1.

Proof. Recall (3.4) and (3.6), and, for the sake of convenience, set p,(A) = 0 for all » < 0. We then have

A 1
q1(A) = 1 and ¢o(A):=| 0 |,
0 0

and thus ¢g,(A) = Cgqo(A) and g,(A) = Cq,(A) — go(A) = (C* — I)go(A). Then a straightforward
computation shows

PA 1) = 1P (A) =[1,0,01" Y 1'q.(A) +1+1A
r=0

r=2

= qo(A)" Z trC’ZCD(A)) +I+1A
= qo(A)" (Zt C"3(C* — Dgo(A) + qo(A) + ffh(A))

= qo(A)" | D1 C"q0(A) + qo(A) + 1Cqo(A) — 1 Zt quo(A>)

> >
[o-

) Zr C’> qo(A)

= qo(A)"

and thus the series ¢ (A, 1) convergesif Y .~ #"C” does, thatisif p(C) < 1. Moreover, the only possibility
for Ry # 1/p(C) is when p(C) = 1.

Suppose that there are no directed cycles. Then, there are no NBTWs of arbitrary length, and hence
Ry =00

Conversely, suppose that there is at least one directed cycle. Note first that 1 is an eigenvalue of
C, since C1 = 1, and hence, p(C) > 1. There are two cases. If p(C) > 1, then the first part of the
proof shows that Ry = 1/p(C). If p(C) = 1, observe if i is a node in a directed cycle of length k then
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64 F. ARRIGO ET AL.

(Pw(A)); = 1foralln = 1,2,3,..., implying Ry < 1. Hence, 1 = 1/p(C) < R, < 1, and thus
Ry, =1=1/p(C). O

THEOREM 5.2 Let R,, be the radius of convergence of ¥ (A,1) = Zfio t"A" and let R, be the radius of
convergence of ¢ (A, 1) = Zrio t'p,(A). Then, Ry < Ry.

Proof. Since every NBTW is a walk, elementwise it holds that p,(A) < A”. This implies that elementwise

lp(A, D] < ¥ (A, D]

and hence the radius of convergence of the right-hand side is less than or equal to the radius of convergence
of the left-hand side. 0

Theorem 5.2 shows that the interval in which the downweighting parameter of Katz centrality is
allowed to vary is not reduced when f () = (1 —z)~! is applied to .27 (¢) instead of A. Indeed, generically,
in the former case ¢ € (0, 1/p(C)), while in the latter r € (0, 1/p(A)).

In the next subsection, we show that the spectral radius of C does not change when certain types of
nodes are removed from the graph. This property is not shared by the matrix A, whose spectrum changes,
in general, under this type of node (and edge) removal.

5.1 Pruning and the spectral radius

In the remainder of this section we assume without loss of generality that the graph under study is weakly
connected, that is that each node in the network is reachable from any other node when all the edges
are regarded as having no orientation. (Otherwise, the problems that we study below break down into
essentially independent subtasks). A node i will be called a source node if it only has outgoing links and
thus d™ > 0 and d™" = 0; similarly, i will be referred to as a dangling node if d™ > 0 and d™ = 0, that
is if it only has incoming links. For the sake of clarity in the exposition, we will assume that the graph
represented by A has only one source (respectively, dangling) node, namely node n.* If the graph has more
than one, the following reasoning can be applied iteratively. In the remainder of this section we adopt the
following notation. We denote by A = (g;) the (n — 1) x (n — 1) adjacency matrix of the graph obtained
after node 7 is removed. The matrix S = (5;) will have entries s;; = @;a; and the diagonal matrix D will

be such that D;; = (22),»,«. If nis a source, then Ae, = 0 and e’ A = [a}, 0] = [a,1, A2y - - - » Anp-1, 0], where
A = (ay) are the entries of the adjacency matrix; similarly, if » is a dangling node, then e’A = 07 and
Ae, = [a(,0]" = [ai,, s, . . ., @y-14,0]". Note that, since the graph is assumed to be weakly connected

and since n is either a source or a dangling node, ac # 0 or az # 0. Once node 7 is removed from the
graph, the three-by-three block matrix analogue of (3.5) used to determine the number of NBTWs in the
new graph has the form

A (I-D) S-4)
1 0 0 e R(3n73)x(3n73)'
0 I 0

o
i

3 This can be obtained after relabelling the nodes and, consequently, after a symmetric permutation applied to the matrix A.
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The following theorem tells us that removing source and dangling nodes from a network does not
alter the spectral radius of the three-by-three block matrix used to determine the number of NBTWs.

THEOREM 5.3 In the above notation,
det(\] — C) = (A> — A) det(AI — C).

Proof. Let F(\) = I\*> — A)?> 4+ (D — I)A + (A — S). The matrix equation

M—A D—1 A=S|[1I A A x* x FQ)
—I A 0 0 I M|=|-1 0 o |,
0 —1I Wi 0 0 I 0 -1 0

where * denotes a block whose exact form is not relevant for the argument, shows that det(Al — C) =
det F()). Similarly, one can prove that det(Al — C) = det F (L) =: det(I\> —AX?> + (D — DA+ (A —5)).
It is easily seen that

[ F o eac
F(\) = [ hoal A -2 } (5.1

where the functions g(A) and i(1) are defined as:

(1) g)=0,h() =1—2A%*ifd™ =0;
(2) h(}) =0,g(0) =1-2ifd" =0.

Hence, F (1) is block triangular and the statement immediately follows. U

The class of nodes that can be removed from the network without affecting the radius of convergence
of (A, 1) = ), p.(A)t" is broader than the one we just described. Let us call node i a reciprocal leaf
connected to node j if Ae; = A”e; = e;; here, the node has a single neighbour, connected by a reciprocal
edge. Suppose now with no loss of generality that node # is a reciprocal leaf and is connected to node
n — 1. The following result shows that we can also safely remove reciprocal leaves from the network.

THEOREM 5.4 In the notation above,
det(A — C) = 22 det(\I — O).
Proof. A proof may be given along the same lines of that of Theorem 5.3 by using the fact that now

F()‘-) + )‘-/énfl/e\,{, _)‘-2/e\n71
Fo) = st 3
—A%e A

n—1
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and

i = 4l (’F\()‘)) n—2,1:n—
det F(3) = A* det(F(2) + 1&,-1€, ;) + A’ det ([ —A12’e‘T2: | ])

= A3 det(F(L) + 28, 1€l ) — A det(F (M) 1n 212
= A3 det F(h) 4+ A* det(F (M) 1ma.1m2 — A* detF(A)) 1m.1m-2
= A detF),

where in the second-to-last equality we have expanded the determinant with respect to the last row (or,
equivalently, column). g

Theorems 5.3 and 5.4 are computationally relevant because, as established in Theorem 5.1, in order
to understand what range of ¢ values is valid, we require p(C). The results show that before computing
p(C) we are allowed to iteratively prune sources, dangling nodes and reciprocal leaves from the network.
In the next section, we show for completeness that the linear system defining the NBTW centralities is
also amenable to the same type of pruning. We note that similar ideas have been proposed to reduce the
cost of the linear system solve associated with Katz and PageRank, where the coefficient matrix has a
related structure; see, e.g., [22, 23].

5.2 Pruning the linear system

In this section, we study how the linear system (3.3) changes when source nodes, dangling nodes and
reciprocal leaves are removed from the network. First, let us assume, without loss of generality, that
node 7 is the only source (respectively, dangling) node in the network. We describe what happens in the
two different cases, depending on the type of node. We adopt the same notation as in Subsection 5.1.
Furthermore, b will denote the vector containing the first # — 1 components of the NBTW centrality
vector b = (b;).

)] dfj’ = 0. Intuitively, since 7 is a source node, it sends information to the rest of the graph, and
thus its importance, as measured in terms of walk counts, will depend on the importance of the nodes it is
pointing to. On the other hand, the importance of the other nodes will not be affected by the importance
of node n, since there is no route connecting these nodes to n. Algebraically, the matrix M (¢) can be

written as
M M(t) 0
| @P=pal 1-2 |

where here and in the following M H=I- At + (B —D* + (Z — ’.S\’)t3 , and thus (3.3) is equivalent to

M@®b = (1 — )1
b, = 1 + ralb.
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(2) d* = 0. Here, because n has no access to the rest of the network, we know that its centrality
value is 1. Indeed, the linear system (3.3) can be rewritten

M@®b =1 — )1+ rac]
b, =1.

Note that the nodes pointing to node n and, more generally, the other nodes that can reach it, gain some of
their importance from the presence of node n. This is why the right-hand side of the system is perturbed
by the pruning operation.

Let us now consider the case where n is a reciprocal leaf connected to node n — 1. This last case
results as a combination of the above two, when ac = ag ='€,_,; the importance of node 7 is non-trivial
and that of all the other nodes is computed by modifying the right-hand side of the system to take into
account the leaf removal. It can be shown that

nl
—fe, 1

M) + %6, &7, —ie,_
M(I):[ (t) o 1}

and hence (3.3) can be written as

M@nb =1 -1 4176, ]
b, =0 -1 +1tb,_,.

Overall, we conclude that the NBTW measure may be computed by solving a linear system whose
dimension is that of the network remaining after all source/dangling nodes and reciprocal leaves have been
pruned, and then, if required, recovering the centrality of the pruned nodes via simple scalar recurrences.

6. Limiting behaviour

In [15], it was shown in the undirected case that the Katz-style NBTW measure recovers the eigenvector
version of [10] as the attenuation parameter approaches its upper limit. Here we show that in the more
general case of directed edges, a related eigenvector limit arises. This gives a natural generalization of
the work in [10] to the directed case, and we note that the lack of symmetry takes us from a two-by-two
block matrix to a new three-by-three extension.

In order to make the dependence on the attenuation parameter explicit, in the remainder of this section
we use b(#) in place of b to denote the NBTW centrality vector. The theorem also considers the more
straightforward ¢ — 07 limit.

THEOREM 6.1 Let b(¢) be the NBTW centrality vector, defined as in (3.3), with ¢ € (0, p(C)~!). Then,
the ranking produced by b(r) converges to that produced by the vector of out-degrees d® = (d™) as
t— 0t.

Moreover, suppose that I — p(C)~!C has rank 3n — 1. Then, ast — (1/p(C))~ the ranking produced
by b(#) converges to that given by the first n components of the eigenvector of C associated with the
eigenvalue p(C).
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Proof. By using (2.2b) and the definition of ¢ (A, t) one finds that entrywise
bi(t) = e/ p(A, 01 = 1+ d™t + O(t*)

and the first part of the statement follows.

For the second part, we first note that p(C) must be an eigenvalue of C.* Then note that, since b(¢)
solves (3.3), it follows that

b(¢) U—-At+D-DP+A-95)b@®)
I —1C) th(1) = 0
?b(t) 0

Hence, for 0 < t < p(C)~', b(¢) solves the NBTW system (3.3) if and only if

b(t) 1
I—tC)| @) |=0-=1>] 0
?b(t) 0

So, to study the limiting behaviour, t — p(C)~!, we can focus on

1
A1=>HU—-tC)'| 0
0

At this point observe that I — tC can be seen as a matrix whose entries depend analytically on the
real variable ¢. As such, it admits an analytic singular value decomposition (see, e.g., [24-26]). In more
detail, we can write

3n
[-1C=UNOTZOVO" =) oiuwvi(e),

i=1

where U(¢), V() are orthogonal and analytic for all real ¢, X (¢) is diagonal and analytic for all real ¢,
u;(7) (respectively, v;(¢)) is the ith column of U () (respectively, V(¢)) and o;(t) = (2(t));;. We assume,
without loss of generality, that the functions o;(¢) are labelled in such a way that

o1(p(C)™) = - = 03,1 (p(C) ) > 03,(p(C)) = 0.
Since I — tC is invertible for all 0 < t < p(C)~!, we can write
1

3n
2 -1 — (1 _ 42 Ul_(t) N 12 U3, (7) 03,(1)
(I -)U —10) g = t);ai(t)ul(t) =(1-t )_63,1(1)U3n(t)+0<—63n_1(t)>’

4 This follows from results in the theory of matrix polynomials, see, e.g., [15, 27-30] and references therein.

120z aunp g1 uo Jasn ybinquip3 10 Alsiaaiun Aq SZ80E0Y/¥S/1L/9/31911./18U0d/W oo dno-olWwspese//:sdny woJj papeojumoq



DIRECTED NON-BACKTRACKING CENTRALITY 69

where

vi(1) == vi(0)"

SO M

Now, define

g _ USn(t)
e

The rankings given by S(t) and b(7) are equivalent, since they only differ by an overall scalar multiplicative
factor.
To conclude the proof, it now suffices to observe that

e u(t) #O0forallt € [0, p(C)'], as can be shown by technical arguments similar to those in [15];
e 03,(t)/03,—1(t) — O fort — p(C)~}, since by assumption / — p(C)~'C has rank 3n — 1;

e ug,(¢) is the right singular vector corresponding to o3,(t), and therefore converges to the right null
space of I — p(C)~'C ast — p(C)~!, that is the eigenvector of C associated with p(C). O

We note that, using the results in [ 18, 20], it is possible to prove that the assumption that (I — o (C)~'C)
has rank 3n — 1 is automatically satisfied when the underlying graph is strongly connected. Hence, any
problem may be broken down into a set of subproblems for which the assumption holds.

7. Analysis for windmill networks

In this section, we introduce and study windmill networks; the case with m = 3 triangles was defined
in Section 2 and illustrated in Fig. 1. Our aim is to give a rigorous analysis of a large-scale directed
network example where Katz and NBTW centrality can be shown to behave differently. In both cases,
the generating function has a finite radius of convergence. However, the restriction required for Katz
centrality produces a localization effect that can be avoided with the NBTW version.

To quantify localization, we use the approach of [31]. Suppose we have a family of unit Euclidean
norm vectors X € R”, defined for all large n. Then the inverse participation ratio is defined to be
S (x) = Y . x!. The family of vectors is said to be localized if .¥ = O(1) and non-localized if
< = o(1), as n — oo. Intuitively, localization implies that the majority of the mass in the vector is
confined to a finite subset of components (in our case a single component).

Figure 1 illustrates a directed windmill network with m = 3 triangles. In the general case, we have a
hub that is involved in m triangles. The network has n = 2m + 1 nodes. Labelling the hub as node n for
convenience, we have the following edges

¢ undirected edges from node # to all other nodes in the network,

e adirected edge from node 2i — 1 to node 2i forall 1 <i < m.
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By symmetry, when we study an eigenvector of A or C, or a vector of walk-based centrality measures,
on this class of network, there will be at most three distinct components; these will correspond to the
odd-numbered nodes from 1 to 2m — 1, the even-numbered nodes, and the hub node n. Hence, we will
use nodes 1, 2 and n as representatives.

Before giving a full asymptotic analysis, we will make some general remarks. For small « or ¢, the
Katz and NBTW centralities correspond to out-degree centrality. Since node n has out-degree 2m whereas
the remaining nodes have out-degrees of either one or two, it follows that, with out-degree centrality,
node n is assigned almost all the measure: d°"/||d*" ||, = 1 + O(m™"), and d™/||d°"||, = O(m™") for
all other i. Hence, the inverse participation ratio is . (d°/||d°"|,) = 1 + O(m~"') and the measure is
localized. We show below that Katz centrality does not allow « to become sufficiently large to overcome
this effect, whereas NBTW centrality does. Referring to Fig. 1 we see that if we count standard walks
starting from node n, we may backtrack to node n on every second step, e.g., after using the edge 7 — 1,
we may return to 7 via 1 — 7, whence we have a further 2m choices for the next edge. Hence, the overall
walk count can grow by a factor 2m every two steps. If we do not allow backtracking, then a full, one-way,
triangle must be completed before we can return to the hub; so the overall walk count can only grow by
a factor of roughly m every three steps. This relates to the terms (2m)% and m3 that arise in the analysis
below.

7.1 Katz centrality

To study Katz centrality on this example, we first consider the spectrum of the adjacency matrix A. An
eigenpair satisfies AXx = Ax, which reduces to

mx, + mx; = AX,, X+ X, = AXy, X, = AXp.
Requiring x # 0 leads to the condition
2B —2mr—m=0. (7.1

Straightforward analysis shows that, for large m, this cubic has three real roots. The largest root in
modulus, A, is positive and bounded below by ~/2m. Moreover, given any € > 0 there exists m, € N
such thatm > my = V2m < A< /2m+ €. Therefore, taking0 < o < 1/ /2m is a sufficient condition
for the Katz parameter to be within the allowed range, and it is a good approximation of the exact allowed
interval for large values of m.

Now, the Katz system (2.1a) reduces to

kn—ot(mk1+mk2)=1, kl —Ol(kz-’-k,l):l, kz—Otknz 1.
This solves to give

1 4+ 2ma + ma? 1+« 1+ 20+ a?
2 1

k, =

= = 7.2
1 —2ma? — ma? (7.2)

1 —2ma? — ma®’ 1 — 2me? — mo3

We note that as « increases away from zero, the denominator in these expressions vanishes precisely at
the reciprocal of the largest root of the cubic appearing in (7.1).
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To choose a large « that is consistent with the upper bound, we set « = ¢/+/2m, for some 0 < ¢ < 1.
We are interested in the behaviour of the inverse participation ratio in the limit m — oco. Using standard
asymptotic expansions, we find that the normalized Katz vector, k := k/| Kk ||, satisfies

ky = ﬁ (1+00/vm),  To=00/Vm), &k =001/Jm).

The inverse participation ratio for Katz centrality is then found to be

Z(K) = Zk“ 2)2+0<1/f m).

(1+

We see that this quantity is O(1), and hence the centrality measure is localized.

7.2 NBTW centrality

To investigate NBTW centrality on a windmill network, we begin by characterizing the spectral radius of
the matrix C in (3.5). Write Cv = Av, where A 7 0, and partition v into three vectors of equal dimension:
vl = [x7,y7,z"]. Then, after eliminating y and z, we arrive at

(PI=WA+AD-D+A-9))x=
The relevant equations for x,, x; and x,, are then, respectively,

Ax, — A (mx; +mxy) + A2m — Dx, =0,
x — kz(xz +x,) +x, =0,
)\.3X2 — )szn =0.

Eliminating x; and x,, and using A # 0 and x,, # 0, we arrive at
=2 —mit+m=0.

The roots are +1 and the cube roots of m. So p(C) = m!/3.

The directed NBTW linear system (3.3) solves to give

14+ 2mt + (m — D> = 2me> — 2mt* + mt®
"= 1 —12—mt® +mt ’
14+t+Cm—2 -1 —Q2m— Dt
1 — 12 —mt® +mp
142t 4+ Qm— D+ Qm— 4B — 2m+ Dt* — mm—3W+4ﬁ+Qm—1w
1 -2 —me® +mp

by

b}

b =

We note that in each case the denominator has roots &1 and the cube roots of 1/m. Hence, as ¢ increases
from zero the denominators first vanish at t = m~!/3, which is the reciprocal of p(C). This is consistent
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with Tlleorem 5.1. Setting ¢ = cm’%, for some 0 < ¢ < 1, we find that the normalized NBTW centrality
vector b := b/|| b ||, has components

1

~ m 6 1 ~ m
b, = 1+0(m™3)), b=
V2¢ ( ( )) ’ V2

and the inverse participation ratio has the expansion

m

Nl

2

(1+0m™H), Bi="=(1+0m™),

S

n _2

~ ~ 3
b)) =Y b= ";7 +0(m™).
i=1

We see that with this choice of ¢, the NBTW centrality measure is non-localized.

8. Experiments

In this section, we describe the results of some numerical tests performed on real-world networks. All
digraphs used here can be found in the SuiteSparse Matrix Collection, formerly known as the University
of Florida Sparse Matrix Collection, [32]. The network PAJEK/GLOSSGT represents connections between
words from the graph/digraph glossary. PAJEK/CALIFORNIA was constructed by expanding a 200-page
response set to a search engine query ‘California’, as used for the HITS algorithm [33]. The network
GLEICH/WB-CS-STANFORD reflects the Stanford CS web, where a link in the graph represents an actual link
in the web. This network has 1299 non-zeros on the main diagonal which we removed before performing
our computations. The last three networks all belong to the SNAP group. SNAP/EPINIONS is a who-
trusts-whom online social network of a general consumer review site: Epinions.com. The network
SNAP/WIKI-TALK summarizes users and discussions from the inception of Wikipedia until January 2008.
Nodes in the network represent Wikipedia users and a directed edge from node i to node j indicates that
user 7 at least once edited a talk page of user j. Finally, SNAP/CIT-PATENTS is a citation network among
US Patents. The data set includes all the utility patents granted between 1975 and 1999 and all citations
made by them.

8.1 NBTW centrality vs. Katz

We first show with a small example how NBTW broadcast centrality may differ from Katz centrality
when identifying the most important broadcasters in a network. We performed our test on the small
network PAJEK/GLOSSGT. This network contains 72 nodes, but we restrict ourselves to its largest weakly
connected component, which has 60 nodes. For this digraph it holds that p(A) = p(C) = 1 and thus the
parameters used in the computation of the two centrality indices can be selected to be the same. In our
test @ =t = 0.9. Figure 5 scatter plots the NBTW and Katz centrality vectors. It can be seen that the
two centrality measures do not identify the same top broadcasters. Moreover, looking at the correlation
coefficients between the rankings, we have that the Pearson’s correlation coefficient between the Katz
and NBTW centralities is 0.49, so there is not a strong correlation.

In Figs 6 and 7, we display two network visualisations, where node size is proportional to centrality;
with Katz in Fig. 6 and NBTW in Fig. 7. Two nodes share the top Katz centrality. These are connected
through a reciprocal edge and are pointed to by the third Katz-ranked node, which is a source node with
out-degree equal to 2. It can thus be argued that these nodes are identified as the most influential because
they point to or are involved in a closed cycle of small length. Indeed, when computing the Katz centrality,
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FIG. 5. Scatter plot of the Katz (horizontal axis) and NBTW (vertical axis) centrality vectors. Note that the top Katz centrality score
is shared by two nodes, which also have identical NBTW centrality; in this case the two symbols occupy the same place in the
scatter plot.

Katz

FIG. 6. Representation of the network PAJEK/GLOSSGT where node size is proportional to Katz centrality.
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FiG. 7. Representation of the network PAJEK/GLOSSGT where node size is proportional to NBTW centrality.

short, BTWs, are given as much importance as NBTWs of the same length. In this example, the NBTW
measure gives top ranking to a node with out-degree 2 and, as is also clear from Fig. 5, generally provides
a more even (less localized) spread of values across the nodes.

8.2 Nodal pruning

We saw in Subsections 5.1 and 5.2 that both the cost of computing o (C) in order to establish a suitable
range for the parameter ¢ and the cost of solving the overall linear system (3.3) may be reduced by
iteratively removing source/dangling nodes and reciprocal leaves until none remain. The benefits will,
of course, depend on the level of dimension reduction achieved. To investigate this issue, in this set of
numerical tests we worked on larger networks to understand the extent to which the size of the problem
reduces when we remove these types of nodes from real world directed graphs. In Table 1, we display
the name of the network, the number of nodes and edges in the original data, and the percentage of
nodes and edges that are retained in the network when sources, dangling nodes and reciprocal leaves are
successively eliminated from each network. We will denote these quantities by nq, and mg,, respectively.
Moreover, we display the number of iterations required to complete the pruning process.

Generally, we see that significant reductions were achieved in all cases, with the linear system dimen-
sion, n, reduced to at least 57% of its original value. The network SNAP/CIT-PATENTS, which is the one
requiring the highest number of iterative steps, retained no nodes. All dangled or became source nodes.
This can be seen from Fig. 8, where we display on a semi-logarithmic scale the number of each of the
three types of nodes that are removed at each iteration for all the networks in our dataset. We conclude
that SNAP/CIT-PATENTS does not contain nodes connected through a reciprocal edge to any other node
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TABLE 1 Description of the dataset: name of the digraph, number of nodes n and number of edges m,

percentage of nodes n% and edges m% retained after pruning, and number of iterations required

NAME n m n% m% iter
PAJEK/CALIFORNIA 9,664 16,150 2% 3% 7
GLEICH/WB-CS-STANFORD 9,914 35,555 57% 80% 15
SNAP/soc-EPINIONS 75,888 508,837 36% 85% 5
SNAP/WIKI-TALK 2,394,385 5,021,410 4% 29% 4
SNAP/CIT-PATENTS 3,774,768 16,518,947 0% 0% 16
4 Pajek/California 4 Gleich/wb-cs-stanford s SNAP/Epinions
10 10 10
4
108 10 \‘\
AR
10° ‘\ \
102 ‘\‘\
CNRN
102 \ S
10" NS
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1 2 3
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=
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FiG. 8. Number of nodes removed at each step for each of the three types of nodes.

and, since it prunes to zero, we also conclude that, as one would expect from the nature of the dataset,
none of its nodes is involved in a directed cycle of any length. (We also note that the symmetrized version
of this network, where all edges are regarded as being undirected, is not a tree, so the original network is
not a directed tree.)

From this set of tests, we conclude that the approach of iteratively removing sources, dangling nodes,
and reciprocal leaves can be of computational benefit, especially for computing or estimating the spectral
radius of the matrix C. For the networks tested here, in the worst case the order of the matrix whose
spectral radius we need to estimate is reduced from 3n to 0.57 x 3n = 1.7n.
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FIG. 9. Left: scatter plot of the normalized NBTW centrality computed on the original (vertical axis) and symmetrized (horizontal
axis) network. Right: corresponding picture for non-bactraking eigenvector centrality.

8.3 Symmetrized network

We note that a spectral community detection algorithm for undirected networks based on NBTWs was
introduced and studied in [12]. In their numerical tests, the authors included results on a symmetrized
version of a network from [34] that is based on directed links. Now that we have a means to deal with
NBTWs on directed networks it is of interest to study the effect of such a symmetrization step. We
obtained the data from the NEWMAN/POLBLOGS directory of the SuiteSparse Matrix Collection. After
removal of nodes with neither outgoing nor incoming links, the network contained n = 1,224 nodes
and m = 19,022 edges. Three iterations of pruning gave ng, = 53% and mq, = 83%. The symmetrized
version contained 16, 715 undirected edges, that is 33, 430 non-zeros in the associated adjacency matrix.
In Fig. 9, we scatter plot the non-backtracking centralities for the original (vertical axis) and symmetrized
(horizontal axis) networks. The left-hand picture shows the normalized NBTW centralities for = 0.01,
and the right-hand picture shows the corresponding non-backtracking eigenvector centralities. We see
that symmetrizing the digraph has significantly altered the results. Indeed, in both cases the top five
nodes do not overlap and the overall correlation is weak. Overall, this test justifies the development of an
algorithm that respects directed edges.

9. Summary

The concept of a walk around a network has proved to be extremely useful in the derivation of network
centrality algorithms. In this work, we argued that some types of walk are less relevant than others.
Focusing on the general case of directed networks, we showed that BTWs can be eliminated effectively,
leading to new network centrality measures with attractive properties and, perhaps surprisingly, reduced
computational cost. This approach allowed us to extend the original non-backtracking Katz-like measure
from [15], which dealt with the undirected case. We showed that the underlying generating function, and
its radius of convergence, were intimately connected to a three-by-three block matrix defined in terms of
the original adjacency matrix. In the undirected case, this block matrix collapses down to a two-by-two
form that has appeared in previous non-backtracking studies. From a computational perspective, a useful
result is that the radius of convergence of the generating function does not change when the problem
dimension is reduced by the iterative removal of certain types of nodes. Moreover, the resulting linear
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system for centrality may also be couched in terms of the remaining, lower dimensional, system. We
showed in practice that these pruning operations can lead to significant reductions in problem size.

The treatment of NBTW combinatorics given here has focused on network centrality issues and
used the tools of matrix analysis.In future work, we plan to study further spectral properties of the
generating function from a matrix polynomial viewpoint and to consider more general edge breaking and
divide-and-conquer style approaches to reducing the network dimension.
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