MULTISCALE MODEL. SIMUL. (© 2018 Society for Industrial and Applied Mathematics
Vol. 16, No. 3, pp. 1206-1226

COMPUTATIONAL COMPLEXITY ANALYSIS FOR MONTE
CARLO APPROXIMATIONS OF CLASSICALLY SCALED
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Abstract. We analyze and compare the computational complexity of different simulation strate-
gies for Monte Carlo in the setting of classically scaled population processes. This allows a range
of widely used competing strategies to be judged systematically. Our setting includes stochastically
modeled biochemical systems. We consider the task of approximating the expected value of some
path functional of the state of the system at a fixed time point. We study the use of standard Monte
Carlo when samples are produced by exact simulation and by approximation with tau-leaping or an
Euler-Maruyama discretization of a diffusion approximation. Appropriate modifications of recently
proposed multilevel Monte Carlo algorithms are also studied for the tau-leaping and Euler—-Maruyama
approaches. In order to quantify computational complexity in a tractable yet meaningful manner,
we consider a parameterization that, in the mass action chemical kinetics setting, corresponds to the
classical system size scaling. We base the analysis on a novel asymptotic regime where the required
accuracy is a function of the model scaling parameter. Our new analysis shows that, under the
specific assumptions made in the manuscript, if the bias inherent in the diffusion approximation is
smaller than the required accuracy, then multilevel Monte Carlo for the diffusion approximation is
most efficient, besting multilevel Monte Carlo with tau-leaping by a factor of a logarithm of the
scaling parameter. However, if the bias of the diffusion model is greater than the error tolerance or
if the bias cannot be bounded analytically, multilevel versions of tau-leaping are often the optimal
choice.
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1. Introduction. For some large Ny > 0, we consider a continuous time Markov
chain satisfying the stochastic equation

(1) XNo(t)y = xNo(0) + ; NLOY’“ (No /Ot A (X No (s))ds) Ces

where X™o(t) € RY, K < oo, the Y} are independent unit Poisson processes, and, for
each k, ¢, € R? and )\, : RY — R>( satisfies mild regularity conditions. For a given
path functional f, we consider the task of numerically approximating E[f(X™o(-))],
in the sense of confidence intervals, to some fixed tolerance ¢y < 1. Specifically,
we consider the computational complexity, as quantified by the number of random
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variables utilized, required by different Monte Carlo schemes to achieve a root mean
squared error of 3. For concreteness, we will assume throughout that the path
functional f depends upon X™o(.) only on the compact time interval [0, 77.

The class of models of the form (1) has a long history in terms of modeling
[12, 13, 14, 31], analysis [9, 27, 28], and computation [18, 19]. The framework covers
many application areas, including population dynamics [32], queueing theory [33], and
several branches of physics [15]. In recent years, chemical and biochemical kinetics
models in systems biology [34] have been the driving force behind a resurgence of
activity in algorithmic developments, including tau-leaping [20] and its multilevel
extension [4, 5]. In this setting, the parameter Ny in (1) can represent Avogadro’s
number multiplied by the volume, and in this classical scaling, species are measured
in moles per liter. More generally, however, Ny can just be considered a large number,
often of the order 100s or 1000s.

In section 2, we discuss some of the issues involved in quantifying computational
complexity in the present setting, and introduce a novel scaling regime in which clear-
cut comparisons can be made. Further, the specific assumptions utilized throughout
the manuscript are presented, and a high-level summary of our main conclusions
is presented. In section 3, we summarize two widely used approximation methods
for the model (1): the tau-leap discretization method and the Langevin or diffusion
approximation. In section 4, we quantify the computational complexity of using exact
simulation, tau-leaping, and simulation of the diffusion equation with standard Monte
Carlo for approximating E[f(X™°(-))] to a desired tolerance under our assumptions.
Further, in subsection 4.2, we review the more recent multilevel methods and quantify
the benefits of their use in both the tau-leaping and the diffusion scenarios. In section
5, we provide numerical examples demonstrating our main conclusions. In section 6,
we close with some brief conclusions.

This paper makes use of results from two recent papers:

e In [5], an analysis was carried out to determine the variance of the difference
between coupled paths in the jump process setting under a more general
scaling than is considered here.

e In [6], an analysis was carried out to determine the variance of the difference
between coupled paths in the setting of stochastic differential equations with
small noise.

Our goals here are distinct from those of these two papers. First, the analysis in [5]
allowed such a general scaling that no modified versions of Euler-based tau-leaping,
such as midpoint or trapezoidal tau-leaping, could be considered. Here, we consider a
particular scaling (which is the most common in the literature) and present a unified
computational complexity analysis for a range of Monte Carlo—based methods. This
allows us to make what we believe are the first concrete conclusions pertaining to the
relative merits of current methods in a practically relevant asymptotic regime. More-
over, an open question in the literature involves the selection of the finest time step
in the unbiased version of multilevel Monte Carlo (since it is not constrained by the
accuracy requirement). By carrying out our analysis in this particular scaling regime,
we are able to determine the asymptotics for the optimal selection of this parameter.
Selecting the finest time step according to this procedure is shown to lower the com-
putational complexity of the method by a nontrivial factor. See the end of section
4.2.2 for this derivation and the end of section 5 for a numerical example. Second,
it has become part of the “folk wisdom” surrounding these models that in the par-
ticular scaling considered here, properly implemented numerical methods applied to
the diffusion approximation are the best choice. This idea was somewhat exacerbated
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by the analysis in [6], which applied to a key aspect of the algorithm. There it was
shown that the variance between the coupled paths of a diffusion approximation is
asymptotically smaller than the variance between the properly scaled jump processes.
However, here we show that the actual difference in overall complexity between prop-
erly implemented versions of multilevel Monte Carlo for the diffusion approximation
and for the jump process never differ by more than a logarithm term. If one combines
this conclusion with the fact that the bias of the diffusion approximation itself is often
unknown, whereas multilevel Monte Carlo applied to the jump process is naturally
unbiased, then the folk wisdom is overturned and unbiased multilevel Monte Carlo is
seen as a competitive choice.

2. Scaling, assumptions, and a summary of results. In order to motivate
our analysis and computations, we begin with a brief high-level overview. In partic-
ular, we discuss the entries in Table 1, which summarizes the key conclusions of this
work. Full details are given later in the manuscript; however, we point out here that
the terms in Table 1 include assumptions on the variances of the constituent processes
that will be detailed below.

A natural approach to approximate the desired expectation is to simulate paths
exactly, for example, with the stochastic simulation algorithm [18, 19] or the next
reaction method [1, 16], in order to obtain independent sample paths {X [IZ.\][O ™ | that
can be combined into a sample average:

@) fin = 2 Y SO

This becomes problematic if the cost of each sample path is high—to follow a path
exactly, we must take account of each individual transition in the process. This is a
serious issue when many jumps take place, which is the case when Ny is large.

The essence of the Euler tau-leaping approach is to fix the system intensities
over time intervals of length A and thereby only require the generation of K Poisson
random variables per time interval [20]. In order to analyze the benefit of tau-leaping
and related methods, Anderson, Ganguly, and Kurtz [3] considered a family of models,
parameterized by N > Ny (see (3) below), and considered the limit N — co and h — 0
with h = N~ for some 8 > 0. To see why such a limit is useful, we note two facts:

e If, instead, we allow N — oo with A fixed, then the stochastic fluctuations
become negligible [8, 27]. In this thermodynamic limit, the model reduces to
a deterministic ODE, so a simple deterministic numerical method could be
used.

o If instead, we allow h — 0 with Ny fixed, then tau-leaping becomes arbitrarily
inefficient. The “empty” waiting times between reactions, which have nonzero
expected values, are being needlessly refined by the discretization method.

The relation h = N—# brings together the large system size effect (where exact simu-
lation is expensive and tau-leaping offers a computational advantage) with the small
h effect (where the accuracy of tau-leaping can be analyzed). This gives a realistic
setting where the benefits of tau-leaping can be quantified. It may then be shown [3,
Theorem 4.1] that the bias arising from Euler tau-leaping is O(h) = O(N~?) in a wide
variety of cases. Higher-order alternatives to the original tau-leaping method [20] are
available. For example, a midpoint discretization [3, Theorem 4.2] or a trapezoidal
method [7] both achieve O(h2?) = O(N ~2#) bias for a wide variety of cases.

As an alternative to tau-leap discretizations, we could replace the continuous-time
Markov chain by a diffusion approximation and use a numerical stochastic differential
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equation (SDE) simulation method to generate approximate paths [9]. This approxi-
mation is detailed in section 3.2 below. While higher-order methods are available for
the simulation of diffusion processes, we restrict ourselves to Euler-Maruyama as the
perturbation in the underlying model has already created a difficult to quantify bias.
Thus, higher-order numerical schemes are hard to justify in this setting.

For our purposes, rather than the step size h of a particular approximate method,
it is more natural to work in terms of the system size, Ny, and accuracy parameter
€o. Let g9 = Ny * for some fixed o > 0. A larger value of o corresponds to a
more stringent accuracy requirement. Next, consider the following family of models
parameterized by N > Ny,

K 1 t
(3) XN = xN0) + ; Y (N/O /\k(XN(s))ds> Ce,

with initial conditions satisfying limy ..o XV (0) = z¢ € Rio. We will study the
asymptotic behavior, as N — oo, of the computational complexity required of various
schemes to approximate E[f(X?(-))] to a tolerance of

(4) EN:N_(X,

where f is a desired path functional. Specifically, we require that both the bias and
the standard deviation of the resulting estimator are less than ey.

We emphasize at this stage that we are no longer studying a fixed model. Instead
we look at the family of models (3) parameterized through the system size N and
consider the limit, as N — oo, of the computational complexity of the different
methods under the accuracy requirement (4). The computed results then tell us, to
leading order, the costs associated with solving our fixed problem (1) with accuracy
requirement N, *.

2.1. Specific assumptions and a brief summary of results. Instead of
giving specific assumptions on the intensity functions A and the functional f, we
give assumptions pertaining to the cost of different path simulation strategies, the
bias of those strategies, and the variance of different relevant terms. We then provide
citations for when the assumptions are valid. We expect the assumptions to be valid
for a wider class of models and functionals than has been proven in the literature,
and discovering such classes is an active area of research.

To quantify computational complexity, we define the “expected cost-per-path” to
be the expected value of the number of random variables generated in the simulation
of a single path. Standard © notation is used (providing an asymptotic upper and
lower bound in N or h). We emphasize that computations take place over a fixed
time interval [0, T7].

Assumption 2.1. We assume the following expected cost-per-path for different
methods.

Method FExpected cost-per-path
Exact simulation O(N)
Euler tau-leaping o=
Midpoint tau-leaping @(h’1/2)
Euler-Maruyama for diffusion o™

We make the following assumptions on the bias, |E[f(XN(:))] — E[f(ZV ()],
of the different approximation methods, where Z~ is a generic placeholder for the
different methods.
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Assumption 2.2. We assume the following biases.

Method Bias Reference
Exact simulation 0 N.A.
Euler tau-leaping O(h) 3
Midpoint tau-leaping O(h?) 3
Euler-Maruyama for diffusion | ©(h) [6, 26]

A bias of O(h) for Euler-Maruyama applied to a diffusion approximation is ex-
tremely generous, as it assumes that the bias of the underlying diffusion approximation
is negligible. However, analytical results pertaining to the bias of the diffusion ap-
proximation for general functionals f are sparse. A startling result of the present
analysis is that even with such generosity, the complexity of the unbiased version of
multilevel tau-leaping is still often within a factor of a logarithm of the complexity of
the multilevel version of Euler—-Maruyama applied to the diffusion approximation.

We provide our final assumption, pertaining to the variances of relevant terms.
Below, Z,JIV is a tau-leap process with step size h, Z,le is a midpoint tau-leap process
with step size h, and D,{LV is an Euler—-Maruyama approximation of the diffusion ap-
proximation with step size h. The coupling methods utilized are described later in
the paper. Finally, hy = M~ for some integer M > 1.

Assumption 2.3. We assume the following relevant variances per realization/path.

Method Variance Reference
Exact simulation Var(f(XN () =6(N1) [5]
Euler tau-leaping Var(f(ZY (- ))) O(N—1) [5]
Coupled exact/tau-leap Var(f(XN () = f(ZN () =O(h- _1) [5]
Coupled tau-leap Var(f(Z,IL\; ) — f(ZhZ 1( ) =06(h,- N1 [5]
Midpt. or trap. tau-leaping Var(f(Z)N () = e~ [5]
Euler-Maruyama for diffusion Var(f(D ) =6Nn"1 [6]
Coupled diffusion approx. Var(f(D}JLVZ () = f(Dy, 1( ) = ©(N~th2 + N~2hy) [6]

The results presented in Table 1 can now start coming into focus. For example,
we immediately see that in order to get both the bias and the standard deviation
under control, i.e., below €y, we have the following.

Monte Carlo plus exact simulation: We require O(N~1e 24 1) paths for the
standard deviation to be order €3 at a cost of O(N) per path. This totals a
computational complexity of ©(cy* + N) or O(N?* + N).

Monte Carlo plus tau-leaping: ©(N~'c,?+1) paths at a cost of ©(ey') per path
(required to achieve a bias of O(g)), totaling a computational complexity of
O(Nle® +exyt) or O(N3e—1 4 No),

This is summarlzed in the first two rows of Table 1. Note that the “+1” terms above

account for the requirement that we cannot generate less than one path. In this

regime, we see that tau-leaping is beneficial for o < 1. This makes sense intuitively.

If we ask for too much accuracy relative to the system size (« > 1 in (4)), then tau-

leaping’s built-in bias outweighs its cheapness, or, equivalently, the required step size

is so small that tau-leaping works harder than exact simulation. The remainder of

the table will be considered in section 4.

We also mention that a crude and inexpensive approximation to the required
expected value can be computed by simply simulating the deterministic mass action
ODE approximation to (1), which is often referred to as the reaction rate equation
[8, 9]. Depending upon the choice of functional f and the underlying model (3), the
bias from the ODE approximation can range from zero (in the case of a linear A, and
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TABLE 1
Computational cost for different Monte Carlo methods as N — oco. The final column indicates
when each method is most efficient, in terms of the parameter «, up to factors involving logarithms.

[ Monte Carlo method Computational complexity =~ Unbiased?  Most efficient ]
MC + exact simulation O(N2¥ + N) Yes Never
MC + tau-leaping O(N3a—1 L No) No Never
MC + midpt. or trap. tau-leap ~ ©(N2-5a—1 4 Na/2) No % <a< %
MC + Euler for diff. approx. O(N3a~1 4 No) No Never
MLMC + E-M for diff. approx. ©(N22~1 4 N@) No o> %
biased MLMC tau-leaping O(N22~1(log N)2 + N®) No a> %
unbiased MLMC tau-leaping O(N?*~1(log N)2 + N) Yes a>1

linear function f), to order N~/2 (for example, when f(X™N(:)) = sup,p | XN (t) —
c(t)|, where c is the ODE approximation itself). As we are interested in the fluctu-
ations inherent to the stochastic model, we view o = 1 as a natural cutoff in the
relationship (4).

In addition to the asymptotic complexity counts in Table 1, another important
feature of a method is the availability of computable a posteriori confidence interval
information. As indicated in the table, two of the methods considered here, exact sim-
ulation with Monte Carlo and an appropriately constructed multilevel tau-leaping, are
unbiased. The sample mean, accompanied by an estimate of the overall variance, can
then be delivered with a computable confidence interval. By contrast, the remaining
methods in the table are biased: Tau-leaping and Euler-Maruyama introduce dis-
cretization errors, and the diffusion approximation perturbs the underlying model.
Although the asymptotic leading order of these biases can be estimated, useful a pos-
teriori upper bounds cannot be computed straightforwardly in general, making these
approaches much less attractive for reliably achieving a target accuracy.

Based on the range of methods analysed here in an asymptotic regime that couples
system size and target accuracy, three key messages are the following:

e Simulating exact samples alone is never advantageous.

e Even assuming there is no bias to the underlying model, simulating at the
level of the the diffusion approximation is only marginally advantageous.

e Tau-leaping can offer advantages over exact simulation, and an appropriately
designed version of multilevel tau-leaping (which combines exact and tau-
leaped samples) offers an unbiased method that is efficient over a wide range
of accuracy requirements.

3. Approximation methods. In this section, we briefly review the two al-
ternatives to exact simulation of (3) we study in this paper: tau-leaping and an
Euler—-Maruyama discretization of a diffusion approximation.

3.1. Tau-leaping. Tau-leaping [20] is a computational method that generates
Euler-style approximate paths for the continuous-time Markov chain (3). The basic
idea is to hold the intensity functions fixed over a time interval [t,,t, + h] at the
values A\, (X% (t,)), where XN (t,) is the state of the system at time t,, and, under
this simplification, compute the number of times each reaction takes place over this
period. As the waiting times for the reactions are exponentially distributed, this leads
to the following algorithm, which simulates up to a time of 7' > 0. For x > 0, we will
write Poisson(z) to denote a sample from the Poisson distribution with parameter
x, with all such samples being independent of each other and of all other sources of
randomness used.



1212 DAVID F. ANDERSON, DESMOND J. HIGHAM, AND YU SUN

ALGorITHM 3.1 (Euler tau-leaping). Fiz h > 0. Set ZN(0) = zq, to =0, n =0,
and repeat the following until t,, = T':
(i) Settpy1 =tn+h. Iftyp1 >T, settpy1 =T and h =T —t,,.
(ii) For each k, let Ay, = Poisson(A\y(ZN (t,))h).
(if) Set 2 (tus1) = Z2) (tn) + 30 ArCr.
(iv) Setn <+ n+1.

Analogously to (3), a pathwise representation of Euler tau-leaping defined for all
t > 0 can be given through a random time change of Poisson processes:

6 200 =280+ 5% (¥ [ M oneys) G

where the Y}, are as before and 7(s) Lef | 2| h. Thus, Z (mu(s)) = Z () if t, <
§ < tpt1. As the values of Z}]LV can go negative, the functions \p must be defined
outside of Z<,. One option is to simply define Ay (x) = 0 for = ¢ Z<,, though other
options exist [2].

3.2. Diffusion approximation. The tau-leaping algorithm utilizes a time-
stepping method to directly approximate the underlying model (3). Alternatively,
a diffusion approximation arises by perturbing the underlying model into one which
can be discretized more efficiently.

Define the function F' via

By the functional central limit theorem,

1
6 — Y (Nu) — Nu] ~ Wi (u),
) = DV) = Nu ~ Wi
where W, is a standard Brownian motion. Applying (6) to (3) yields
t t
XN(t)%XN(O)—‘r/ dS-l—ZiWk </ )\k(XN(s))d8> Cks
0 0

where the W), are independent standard Brownian motions. This implies that X%
can be approximated by the process DV satisfying

O DYO=0"0+ [ FO¥Es o3 (| DY) ) G

where DV (0) = XV (0). An equivalent and more prevalent way to represent DY is
via the Itd representation

(8) DN(t)=DN(0)+ / F(DN<s>>ds+Z%ck / VAR(DY () dWi(s)
k

which is often written in the differential form

(9) dDN () = ))dt + Z Ak(DN () dW (),
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where the Wy, of (9) are not necessarily the same as those in (7).

The SDE system (9) is known as a Langevin approximation in the biology and
chemistry literature and as a diffusion approximation in probability [9, 34]. We note
the following points:

e The diffusion coefficient, often termed the “noise” in the system, is ®<Tlﬁ)
and hence, in our setting, is small relative to the drift.

e The diffusion coefficient involves square roots. Hence, it is critical that the
intensity functions Ay only take values in R>o on the domain of the solu-
tion. This is of particular importance in the population process setting where
the solutions of the underlying model (3) naturally satisfy a nonnegativity
constraint, whereas the SDE solution paths cannot be guaranteed to remain
nonnegative in general. In this case, one reasonable representation, of many,
would be

(10)  dDN(t) = dt+z gm/Ak DN (s))]+dWp (s

where [2]T = max{z,0}. Another reasonable option would be to use a process
with reflection [30].

e The coefficients of the SDE are not globally Lipschitz in general, and hence
standard convergence theory for numerical methods, such as that in [26], is
not applicable. Examples of nonlinear SDEs for which standard Monte Carlo
and multilevel Monte Carlo, when combined with an Euler-Maruyama dis-
cretization with a uniform time step, fail to produce a convergent algorithm
have been pointed out in the literature [22, 23]. The question of which classes
of reaction systems lead to well-defined SDEs and which discretizations con-
verge at the traditional rate therefore remains open.

In this work, to get a feel for the best possible computational complexity that can
arise from the Langevin approximation, we will study the case where the bias that
arises from switching models from X* to D" is zero. We will also assume that, even
though the diffusion coefficients involve square roots and are therefore not generally
globally Lipschitz, the Euler-Maruyama method has a bias of order ©(h). We will
find that even in this idealized light, the asymptotic computational complexity of
Euler-Maruyama on a diffusion approximation combined with either a standard or a
multilevel implementation is only marginally better than the corresponding compu-
tational complexity bounds for multilevel tau-leaping. In particular, they differ only
in a factor of a logarithm of the scaling parameter.

Finally, due to the fact that the diffusion approximation itself already has a diffi-
cult to quantify bias, we will not consider higher-order methods [10] or even unbiased
methods [21] for this process.

4. Complexity analysis. In this section, we establish the results given in Ta-
ble 1. In subsection 4.1, we derive the first four rows, whereas in subsection 4.2, we
discuss the multilevel framework and establish rows 5, 6, and 7.

4.1. Complexity analysis of standard Monte Carlo approaches.

4.1.1. Exact sampling and Monte Carlo. By Assumption 2.1, the expected
number of system updates required to generate a single exact sample path is O(N).
Letting

dn = Var(f(XN (),
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in order to get a standard deviation below €y, we require
n" oy < 5?\, == n > 5N5]_\,2 + 1.
Thus, the total computational complexity of making the desired approximation is
O(nN) = O(6ney®N + N) = O (SyN?**T1 + N).

By Assumption 2.3, §y = O(N 1), yielding an overall complexity of O(N?* + N), as
given in the first row of Table 1.

4.1.2. Tau-leaping and Monte Carlo. Suppose now that we use n paths of
the tau-leaping process (5) to construct the Monte Carlo estimator fi,, for E[f( XV (-))].
By Assumption 2.2, the bias is ©(h), so we constrain ourselves to h = ey. Letting

Sn.n = Var (f(Zy (4))

we again require n > § N7h5&2 +1 to control the statistical error. Since by Assumption
2.1 there are ©(h~1) expected operations per path generation, the total computational
complexity for making the desired approximation is

O(nh™) = O(5nnen” +en')-

By Assumption 2.3, Var(f(Z}IL\{i())) = O(N™Y), giving an overall complexity of
O(N32~1 + N?), as reported in the second row of Table 1.

Weakly second-order extensions to the tau-leaping method can lower the com-
putational complexity dramatically. For example, if we use the midpoint tau-leaping
process Z,]LV from [3], by Assumption 2.2, we can set h = /ex and still achieve a bias
of O(eyn). Since by Assumption 2.3 we need n > N_laxf + 1 paths to control the
standard deviation, the complexity is

@(Tl . h*l) _ @(N715&2'5 +€E1/2) — @(NZSafl 4 Na/Q)’

as stated in the third row of Table 1. The same conclusion can also be drawn for the
trapezoidal method in [7].

If methods are developed that are higher order in a weak sense, then further
improvements can be gained. In general, if a method is developed that is weakly
of order p, then we may set h = E%p to achieve a bias of O(ey). Still supposing
a per-path variance of ©(N~1), we again choose n > N_laj\,z + 1 paths and find a
complexity of

(2+2)

@(n . h—l) _ @(N_1€;[ + EX[l//’) — @(N(2+%)a71 + N()n/p).

For example, if a third-order method is developed, i.e., p = 3, then this method

becomes optimal for 2 < a < %. To the best of the authors’ knowledge, no such

2
methods have yet been designed.

4.1.3. Diffusion approximation and Monte Carlo. Given Assumptions 2.1,
2.2, and 2.3, the complexity analysis for the diffusion approximation with Euler—
Maruyama is exactly the same as for Euler tau-leaping. Hence, we can again give an
overall complexity of O(N3*~! + N®), as reported in the fourth row of Table 1.

4.2. Multilevel Monte Carlo and complexity analysis. In this section, we
study multilevel Monte Carlo approaches and derive the results summarized in rows
5, 6, and 7 of Table 1.
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4.2.1. Multilevel Monte Carlo and diffusion approximation. Here we
specify and analyze an Euler-based multilevel method for the diffusion approxima-
tion, following the original framework of Giles [17].

For some fixed M > 1, we let hy = T - M~ for £ € {0,...,L}, where T > 0 is
a fixed terminal time. Reasonable choices for M include M € {2,3,4,...,7}, and L
is determined below. Let DN denote the approximate process generated by Euler—
Maruyama applied to (9) Wrth a step size of hy. By Assumption 2.2, we may set
hy, = en, giving L = O(|logen]), so that the finest level achieves the required order
of magnitude for the bias.

Noting that

(1) EA(DN ()] =Elf (DY () +ZE[ (DN() = DR, ()]

we use ¢ as an index over sample paths and let

o if (Do) and deef;;(f (PX.a0) =1 (D))

for £ =1,..., L, where ng and the different n, have yet to be determined. Note that
the form of the estimator Qév above implies that the processes D,IL\Z and D,jl\i _, will
be coupled, or constructed on the same probability space. We consider here the case
when (D,]l\i , D,Jl\; 71) are coupled in the usual way by using the same Brownian path in
the generation of each of the marginal processes. Our (biased) estimator is then

L
QY = QY+ QY.
=1
Set
dne = Var(f(Dy, (1) = f(D,—1()))-

By Assumption 2.3, 6y, = O(N~'hi+N~2hy) and Var(f(Dy (-))) = ©(N ). In [6],
it is shown that under these circumstances, the computational complexity required is
O(en® N~ 4+ exh). In the regime (4), this translates to O(N2~1 + N®), as reported
in the fifth row of Table 1.

4.2.2. Multilevel Monte Carlo and tau-leaping. The use of multilevel Monte
Carlo with tau-leaping for continuous-time Markov chains of the form considered here
was proposed in [4], where effective algorithms were devised. Complexity results were
given in a nonasymptotic multiscale setting, with follow-up results in [5]. Our aim
here is to customize the approach in the scaling regime (4) and thereby develop easily
interpretable complexity bounds that allow straightforward comparison with other
methods. In this section, Z }ZL\; denotes a tau-leaping process generated with a step size
of hy =T -M~*for £ €{0,...,L}.

A major step in [4] was to show that a coupling technique used for analytical
purposes in [3, 29] can also form the basis of a practical simulation algorithm. Letting
Yii, @ € {1,2,3}, denote independent, unit rate Poisson processes, we couple the
exact and approximate tau-leaping processes in the following way:

XN(t) = xN(0) + Zk; %Yk,l <N/0 (XN () A (21, (nL(s)))ds) G

(12) ) '

#3 ¥ie (V[ OO 6) = Y 6) A2 )]s )
k 0



1216 DAVID F. ANDERSON, DESMOND J. HIGHAM, AND YU SUN

20 =70+ 3 Ym( / mXN(s))AAk<Zﬁ<nL<s>>>ds) G
(13)
+Y v (N / M2 () — M(X N (5)) A A (22 (nL(S)))]dS) G
k 0

where a A b denotes min{a, b} and nr(s) = |s/hr]hr. Sample paths of (12)—(13)
can be generated with a natural extension of the next reaction method or Gillespie’s
algorithm (see [4]), and for h, > N1, the complexity required for the generation of
a realization (XV, 7 ,JIVL ) remains at the ©(N) level. The coupling of two approximate
processes, Z,]l\; and Z,JL\Z _,» takes the similar form

(14)
250 = 200+ 5 7Y (¥ [ M2 o) ANZE (s ) G

+ZNYH( / O (D)~ MCZE (D) A2, (-1 (1)1 o

(15)
20 = 25,0+ X 3% (N [ W0 AN (e ()
k

+Y Vs (N [ O a5 = M2 o) A (2 (W—1(5)))]d5) G,
k

where 1,(s) e |5/h¢]he. The pair (14)-(15) can be sampled at the same ©(h, ') cost
as a single tau-leaping path (see [4]).
For L as yet to be determined and noting the identity

E[f (XY ()] = Ef(X™() = f(ZL ()]
L

(16) + Y EBIAZi () = (2, (D] +ELF(Zi ()],

=1

we define estimators for the three terms above via

nge

0¥ SO = FZY (),
=1
an QY d:efniéﬂf(zzx,[ﬂ(-))—f(Za_l,[i]c))) for £€{1,..., L},
=1

Ndcf 1
Zf o) (

L
(18) QVEQY +> QN+ QY

l=1



MONTE CARLO FOR CLASSICALLY SCALED PROCESSES 1217

is an unbiased estimator for E[f(X™(-))]. Here, QE uses the coupling (12)—(13)
between exact paths and tau-leaped paths of step size hp, Qe uses the coupling
(14)—(15) between tau-leaped paths of step sizes hy and hy—1, and QO involves single
tau-leaped paths of step size hg. Note that the algorithm implicit in (18) produces an
unbiased estimator, whereas the estimator is biased if @g is left off, as will sometimes
be desirable. Hence, we will refer to estimator @N in (18) as the unbiased estimator
and will refer to

(19) 08 SN + Y

{=1

as the biased estimator. For both the biased and the unbiased estimators, the number
of paths at each level, ng, ny, and ng, will be chosen to ensure an overall estimator
standard deviation of .

We consider the biased and unbiased versions of tau-leaping multilevel Monte
Carlo separately.

Biased multilevel Monte Carlo tau-leaping

Here we consider the estimator @g defined in (19). By Assumption 2.2, we have
[E[f(XN()] - E[f (Z{LVL( )]l = ©(hr). Hence, in order to control the bias, we begin
by choosing hy, = ey and so L = @(log(l/eN)) O(log N).

For £ € {1,..., L}, let Cy be the expected number of random variables required to
generate a single pair of coupled trajectories at level ¢, and let dx ¢ be the variance of
the relevant processes on level £. Let Cy be the expected number of random variables
required to generate a single trajectory at the coarsest level. To find ng, £ € {0,..., L},
we solve the following optimization problem, which ensures that the variance of @g
is no greater than £%;:

L
(20) mlnlmlze anC’g
=0
5N€ 2
(21) subject to Z =ey-

We use Lagrange multipliers. Since we have Cy = K - h[l, for some fixed constant K,
the optimization problem above is solved at solutions to

L L
5
Voo ns A (Z nekK -hyt 4 A <Z nlj - e%v>> —0.

£=0 £=0

Taking derivatives with respect to ny and setting each derivative to zero yields

(22) ne = \/ %0n,che for £ € {0,1,2,...,L}

for some A > 0. Plugging (22) into (21) gives us

L
)
(23) S =R
£=0
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and hence, by Assumption 2.3,
L
(24) 2=\ %E < CLepNTV2,
=0

where C is a constant. Noting that L = ©(log(ey")), we have
2=0 (5;,4 (logen)? N*I) .

Plugging this back into (22) and recognizing that at least one path must be generated
to achieve the desired accuracy, we find

ng = @(6&2]\[71th +1).

Hence, the overall computational complexity is

L L L
> mKh ' =6 <Z e’ N heLhyt 4> h[1> =0 (i’ N '(logen)? +e3)
=0 =0 =0

=0 (N?**"1(logN)? + N?),

recovering row 6 of Table 1.

Note that the computational complexity reported for this biased version of mul-
tilevel Monte Carlo tau-leaping is, up to logarithms, the same as that for multilevel
Monte Carlo on the diffusion approximation. However, none of the generous assump-
tions we made for the diffusion approximation were required.

Unbiased multilevel Monte Carlo tau-leaping

The first observation to make is that the telescoping sum (16) implies that the
method which utilizes E[f (XN (-)) — f(Z] (-))] at the finest level is unbiased for any
choice of hy. That is, we are no longer constrained to choose L = ©(|logen]|).

Assume that hy, > N~!. Let Cg be the expected number of random variables re-
quired to generate a single pair of the coupled exact and tau-leaped processes when the
tau-leap discretization is hy,. To determine ny, and ng, we still solve an optimization
problem,

L
(25) minimize Y neCy +n C
e
£=0
) 5
26 bject t MLy THE 2
(26) SUJeCO[Z_;nZ'FnE N

where Cy and éy ¢ are as before and 6,5 = Var(f(XN () — f(Z] ().
Using Lagrange multipliers again, we obtain

(27) ne = ,/MCW for £ € {0,1,2,...,L}
V4

and

>\5N,E

Cg
Plugging back into (26) and noting that by, Assumption 2.1, C; = ©(h; ') and Cp =
O(N) yields

(28) ng =
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L
(29) VA = 5;\,2 (Z VOnCo + \/5N,ECE> < C’(Ls&zN_l/2 + EE2 hr).

Therefore, plugging (29) back into (27) an (28) and noting ny, > 1 and ng > 1, we get

ng = M :O<<L 2N_1+€N2\/E>he+1> for £€{0,1,2,..., L}

and

(30) ng = ,/A‘SCW +1=0(Ley?N320Y? 4+ e®N~'hy +1).
4

As a result, the total complexity is

[h [h
g(hr) =0 <5N2N1L2+5R,2 WLLJthlJre&z Z\l[/L+€E2hL+N>
—277—172 o |he -2
<O |ey NTL 4 2y WL+5NhL+2N

=0 (2e)°N"'L? 4+ 2e°hy, +2N)

where the inequality follows since hzl < N and we used that 2ab < a2 + b? in the
final equality. It is relatively easy to show that the last line above is minimized at

2 N “_ 2 N
(log 2)°N 2/<log2>2> ~ (log2)2N <2/(10g2)2>)-

Hence, taking hy, = O(Ntlog N), we have (loghz)? = O((log N)?), and this
method achieves a total computational complexity of leading order

(31)  hr=

LambertW (

O(en® N log N)2 + e3> Ntlog N + N) = O(e,° N (log N)? + N)
= O(N?**1(log N)? + N),

as reported in the last row of Table 1.
Note here that if we choose hy, = %, we get the same order of magnitude for the

computational complexity. However, the hy, in (31) is the optimized solution, meaning

that the leading order constant should be better, and we will see this in Figures 3 and

4 in the next section.

5. Computational results. In this section, we provide numerical evidence for
the sharpness of the computational complexity analyses provided in Table 1. We will
measure complexity by total number of random variables utilized. We emphasize that
these experiments use extreme parameter choices solely for the purpose of testing the
sharpness of the delicate asymptotic bounds.

Example 5.1. We consider the classically scaled stochastic model for the following
reaction network (see [9]):
]Cl /N k
S1+Sy = 53452—&-54.

ko

Letting X; () give the number of molecules of species S; at time ¢ and letting XV (¢) =
X (t)/N, the stochastic equations are
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[ —1
XNt = xN0) + %Yl (Nkl /0 XN(s)xy (s)ds> _1
0

t
—|—iY2 (Nk‘g/ X?{V(S)CLS)
N 0

t
+iY3 <N]€3/ X3N(S)d8>
N 0

=, OoO O

where we assume XV (0) — (0.2,0.2,0.2,0.2)7 as N — oco. Note that the intensity
function Aj(z) = kjx1x9 is globally Lipschitz on the domain of interest, as that
domain is bounded (mass is conserved in this model).

We implemented different Monte Carlo simulation methods for the estimation of
E[X{](T)] to an accuracy of ey = N~ for both @ = 1 and a = 5/4. Specifically,
for each of the order one methods we chose a step size of h = ey and required the
variance of the estimator to be £%;. For midpoint tau-leaping, which has a weak order
of two, we chose h = ,/ey. For the unbiased multilevel Monte Carlo method, we
chose the finest time step according to (31). We do not provide estimates for Monte
Carlo combined with exact simulation, as those computations were too intensive to
complete to the target accuracy.

For our numerical example, we chose 7' = 1 and X(0) = [N - [0.2,0.2,0.2,0.2]7]
with XV (0) = X(0)/N. Finally, we chose k; = ko = k3 = 1 as our rate constants. In
Figure 1, we provide log-log plots of the computational complexity required to solve
this problem for the different Monte Carlo methods to an accuracy of ey = N~! for
each of

N € {213 214 915 916 917}

In Figure 2, we provide log-log plots for the computational complexity required to
solve this problem for the different methods to an accuracy of ey = N~ 1 for each of

N e {297 210’ 2117 2127 213}.

Tables 2 and 3 provide the estimator standard deviations for the different Monte
Carlo methods with ey = N~ ! and ey = N ’%, respectively. The top line provides
the target standard deviations.

The specifics of the implementations and results for the different Monte Carlo
methods are detailed below.

Diffusion approximation plus Monte Carlo. We took a time step of size h = e
to generate our independent samples. See Figure 1, where the best fit line is y =
1.942 — 0.88, and Figure 2, where the best fit line is y = 2.73z — 1.37, which are
consistent with the exponent « in Table 1.

Monte Carlo tau-leaping. We took a time step of size h = ey to generate our
independent samples. See Figure 1, where the best fit line is y = 1.96z — 1.02, and
Figure 2, where the best fit line is y = 2.76x — 1.63, which are consistent with the
exponent « in Table 1.
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F1G. 2. Log-log plots of the computational complezity for the different Monte Carlo methods
with varying N € {22,210 211 212 913} gnd ey = N3,

TABLE 2
Actual estimator standard deviations when e = N1,

Method

Estimator standard deviations

2—13, 2—14’ 2—15’ 2—16’ 2—17

MC and diff. approx

—13.1 —14.02 9—15.02 9—16.01 o—17.
2—13 072 0,2 50’2 6072 7.00

MC and tau-leaping

—13.09 9—14.01 —15.01 —16.01 —17.00
2 2 .2 2 .2

MC and midpoint tau-leaping

—13.09 9—14.04 9—15.03 9—16.00 9—17.01
2 .2 .2 .2 .2

Multilevel diff. approx

—13.20 —14.15 —15.11 —16.09 —17.07
2 .2 .2 2 .2

Biased multilevel tau-leaping

—13.44 9—14.39 9—15.39 9—16.38 9—17.32
2 2 2 .2 .2

Unbiased multilevel tau-leaping

—13.29 9—14.28 9—15.26 9—16.21 —17.18
2 .2 .2 .2 .2




1222 DAVID F. ANDERSON, DESMOND J. HIGHAM, AND YU SUN

TABLE 3
Actual estimator standard deviations when en = N—5/4,

Method Estimator standard deviations
EN —N—% 9—11.25 9—12.50 9—13.75 9—15.00 9—16.25
) ) 3 9
MC and diff. approx 91127 9-12.51 9—13.75 9-15.00 9~16.25

MC and tau-leaping 2711.267 2712.527 2713.76, 27154007 2716.25

MC and midpoint tau-leaping 2~ 11.26 9—12.52 9—13.76 9—15.00 9—16.25

—11.46 —12.63 —13.85 —15.06 —16.29
2 .2 .2 .2 .2

—11.62 9—12.81 —13.99 9—15.19 —16.41
2 2 .2 1271519 9

Multilevel diff. approx

Biased multilevel tau-leaping

Unbiased multilevel tau-leaping | 2—11:34 9—12.57 9-13.79 9-15.03 9—16.26

Monte Carlo midpoint tau-leaping. We took a time step of size h = \/en. See
Figure 1, where the best fit line is y = 1.44 — 0.86, and Figure 2, where the best fit
line is y = 2.10x — 3.53, which are consistent with the exponent « in Table 1.

Our implementation of the multilevel methods proceeded as follows. We chose
he =27*, and for ey > 0, we fixed hy, = e and L = [log(hr)/log(2)] for the biased
methods. For each level, we generated Ny independent sample trajectories in order
to estimate dn ¢, as defined in section 3. Then we selected

L
ng = ’VENQ\/ 5N75h4 Z
=0

5;:’7' +1 for ¢ € {0,1,2,...,L}

J

to ensure that the overall variance is below the target £%;.

Multilevel Monte Carlo diffusion approximation We used Ny = 400 for our
precalculation of the variances. See Figure 1, where the best fit line is y = 0.992+42.75,
and Figure 2, where the best fit line is y = 1.45x 4+ 2.61, which are consistent with
the exponent « in Table 1.

Multilevel Monte Carlo tau-leaping. We used Ny = 100 for our precalculation
of the variances. See Figure 1, where the best fit line is y = 1.12z + 3.70, and Figure
2, where the best fit line is y = 1.56x + 4.64, which are, up to a log factor, consistent
with the exponent « in Table 1.

Unbiased tau-leaping multilevel Monte Carlo. For our implementation of unbi-
ased multilevel tau-leaping, we set hy, = ZLambertW (£') and L = [log(hy)/log(2)].
For each level, we utilized Ny = 100 independent sample trajectories in order to esti-
mate dn,¢, C¢,0n g, and Cg, as defined in section 3. We then selected

5 L
Ny = ’75&2\/?;2(2 \/5N7gCg+ \/6N,ECE>-‘ +1 for ¢ € {0,1,2,...,L}
£=0

and

s L
ng = ’761_\3 g]’EE (Z \/5N7gCg+\/§N7ECE>-‘ +1
£=0

to ensure that the overall estimator variance is below our target £3,. See Figure 1,
where the best fit line is y = 1.08z + 3.71, and Figure 2, where the best fit line is
y = 1.68z + 2.65, which are, up to a log factor, consistent with the exponent « in
Table 1.
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Fic. 3. Complexity comparison of unbiased multilevel Monte Carlo tau-leaping when hy = %

and hy, = mLambertW(m) with ey = N71.
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Fia. 4. Complezity comparison of unbiased multilevel Monte Carlo tau-leaping when hy = %

and hy, =

mLambertW(W) witheny = N™ 4.

We also used the unbiased tau-leaping multilevel Monte Carlo method with hy =
N~ to estimate E[X;(1)] to accuracy ey = N~ for both @ = 1 and a = 5/4. See
Figures 3 and 4 for log-log plots of the required complexity when h;, = N~! and
h = oz 2)2NLambertW(W). As predicted in section 4.2.2, the complexity

required when hy = WLambertW(m) is lower by some constant factor.

6. Conclusions. Many researchers have observed in practice that approxima-
tion methods can lead to computational efficiency relative to exact path simulation.
However, meaningful, rigorous justification for whether and under what circumstances
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approximation methods offer computational benefit has proved elusive. Focusing on

the classical scaling, we note that a useful analysis must resolve two issues:

(1) Computational complexity is most relevant for “large” problems, where many
events take place. However, as the system size grows, the problem converges
to a simpler, deterministic limit that is cheap to solve.

(2) On a fixed problem, in the traditional numerical analysis setting where mesh size
tends to zero, discretization methods become arbitrarily more expensive than
exact simulation because the exact solution is piecewise constant.

In this work, we offer what we believe to be the first rigorous complexity analysis
that allows for systematic comparison of simulation methods. The results, summa-
rized in Table 1, apply under the classical scaling for a family of problems parametrized
by the system size, IV, with accuracy requirement N~%. In this regime, we can study
performance on “large” problems when fluctuations are still relevant.

A simple conclusion from our analysis is that standard tau-leaping does offer a
concrete advantage over exact simulation when the accuracy requirement is not too
high (a < 1); see the first two rows of Table 1. Also, “second-order” midpoint or
trapezoidal tau-leaping improves on exact simulation for a < 2; see row 3 of Table 1.
Furthermore, in this framework, we were able to analyze the use of a diffusion, or
Langevin, approximation and the multilevel Monte Carlo versions of tau-leaping and
diffusion simulation. Our overall conclusion is that in this scaling regime, using exact
samples alone is never worthwhile. For low accuracy (a < 2/3), second-order tau-
leaping with standard Monte Carlo is the most efficient of the methods considered.
At higher accuracy requirements (« > 2/3), multilevel Monte Carlo with a diffusion
approximation is best so long as the bias inherent in perturbing the model is prov-
ably lower than the desired error tolerance. When no such analytic bounds can be
achieved, multilevel versions of tau-leaping are the methods of choice. Moreover, for
high accuracy («a > 1), the unbiased version is the most efficient, as it does not need
to take a time step smaller than ey as the biased version must.

Possibilities for further research along the lines opened up by this work include
the following;:

e Analyzing other methods within this framework, for example, (a) multilevel
Monte Carlo for the diffusion approximation using discretization methods
customized for small noise systems or (b) methods that tackle the Chemical
Master Equation directly using large-scale deterministic ODE technology [24,
25].

e Development of tau-leaping methods with weak order greater than two.

e Coupling the required accuracy to the system size in other scaling regimes,
for example, to study specific problem classes with multiscale structure [11].

e Determining conditions on the system for when the diffusion approximation
and Euler—-Maruyama scheme achieve the ©(h) bias given in Assumption 2.2.

e Determining wider classes of models and functionals f for which Assumptions
2.1, 2.2, and 2.3 hold. In particular, most of the results in the literature
require A\ to be Lipschitz and for f to be a scalar valued function with
domain Z¢ and bounded second derivatives.
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