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1. Introduction

1.1. Motivation

The concept of a walk on a graph is very natural—on arriving at a node, the walker 
may continue by traversing any edge pointing out of that node. If, at any stage, the edge 
along which the walker continues is the reverse of the edge on which they arrived, then 
the walk is said to be backtracking. Non-backtracking walks have been analyzed in a 
number of fields. They play a key role in the study of zeta functions on graphs [24], with 
applications in spectral graph theory [4,23], number theory [44], discrete mathematics 
[12,41], quantum chaos [39], random matrix theory [40], stochastic analysis [3], applied 
linear algebra [42] and computer science [38,45]. Within network science, constraining 
walks to be non-backtracking has been shown to offer benefits in community detection 
[26,28], centrality measurement [6,20,29,36], network comparison [30] and in the study 
of related issues concerning optimal percolation [31,32].

A natural task across all these fields is to count the number of distinct non-
backtracking walks of a given length between pairs of nodes, and to form a compact 
expression for the associated generating function. For network centrality, in the case of 
standard walk counts it has been argued that an exponential-style power series gives a 
useful alternative to the standard resolvent-style version [15]. For example, based on an 
analogy with a physical oscillator, it may be argued that moving from the resolvent to 
the exponential takes us from classical to quantum physics [16]. Further, there are effec-
tive and reliable tools for computing the action of the matrix exponential [2,21,22]. This 
provides the initial motivation for our article, where we study the exponential generating 
function associated with non-backtracking walks. We also note that more general matrix 
functions have been proposed in this walk-counting context [17]. Hence, we then extend 
the analysis to cover generating functions based on arbitrary power series.

1.2. Background

We let A = (aij) ∈ R
n×n denote the adjacency matrix for an unweighted graph with 

n nodes; that is, aij = 1 if there is an edge from node i to node j, and aij = 0 otherwise. 
We will assume the graph to be loopless, so that aii = 0 for all i, and to have no multiple 
edges. If we further assume the graph represented by A to be undirected, i.e., if A = AT , 
then the graph will be said to be simple. We use D to denote the diagonal matrix whose 
diagonal entries are Dii = (A2)ii. So Dii counts the number of reciprocal neighbours 
of node i, that is, the number of nodes j such that aij = aji = 1. If A = AT , so that 
all edges are reciprocated, then Dii reduces to the vector of degrees and any node i for 
which Dii = 1 will be called a leaf.

If A �= AT the network is said to be directed and we will denote by S = (sij) ∈
R

n×n the matrix associated with the graph obtained by removing all edges that are not 
reciprocated, so that sij = aijaji for all i, j = 1, 2, . . . , n.
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A walk of length r from node i to node j is characterized by a sequence of edges 
i = i1 �→ i2, i2 �→ i3, . . . , ir �→ ir+1 = j. Note that edges and nodes may be revisited in 
the course of a walk. It follows from the definition of matrix multiplication that Ar has 
(i, j)th element that counts the number of distinct walks of length r from i to j; see, for 
example, [13, Theorem 2.2.1]. Given a parameter t, the ordinary generating function [46]
associated with this sequence of walk counts may be represented by a resolvent function:

∞∑
r=0

trAr = (I − tA)−1
,

where I is the identity matrix. If t is interpreted as a formal algebraic variable, this 
expression holds within the algebra of formal power series. Analytically, if t is interpreted 
as a real (or complex) valued parameter, it is valid for |t| < 1/ρ(A), where ρ(·) denotes 
the spectral radius. Similarly, the associated exponential generating function [46] takes 
the form of a matrix exponential:

∞∑
r=0

trAr

r! = exp(tA),

analytically valid for all t ∈ R (or in C).
Power series expansions that combine walk counts of different lengths have become 

widely used in the field of network science [17]. Here, the idea is to assign a weight to 
each node that summarizes its “importance” in the network. If we interpret importance 
as the ability of a node to initiate messages along the edges in the graph, then we see that 
(I − tA)−11, for 0 < t < 1/ρ(A), and exp(tA)1, for t > 0, are candidates for measuring 
and comparing nodes, where 1 ∈ R

n is the vector of ones. Here, the ith component arises 
by summing the number of distinct walks from node i to all nodes in the graph, with 
walks of length r discounted by tr in the resolvent case and by tr/r! in the exponential 
case. The resolvent version dates back to the work of Katz [25] and the alternative based 
on the exponential function, called the total (node) communicability, was introduced 
and studied in [8]. We also note that both versions are related to eigenvector centrality 
[10,11], which uses the Perron–Frobenius eigenvector of A when the underlying graph is 
strongly connected [9].

In recent work [29], Martin et al. argued that traditional centrality measures may suffer 
from unwanted localization effects when the network under study has a scale-free degree 
distribution (see, e.g., [7,14]). In this type of network, there are a few nodes with a high 
number of neighbours, that are thus assigned most of the centrality, and many nodes with 
a very small number of connections, that hence share the remainder of the mass of the 
centrality vector. This unbalanced partitioning makes it difficult to distinguish between 
the importance of the nodes with few connections. The authors therefore proposed a 
variation of eigenvector centrality motivated by the concept of non-backtracking walks. 
This idea was pursued in [6,20] in the context of resolvent-based centrality. Our aim 
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here is to develop and study the analogous exponential version of non-backtracking walk 
centrality, and also to consider general matrix functions.

Formally, we say that a walk is backtracking if it contains at least one pair of successive 
edges of the form i �→ j, j �→ i; that is, having left some node i it immediately returns 
to that node. We say the walk is non-backtracking otherwise. We use the abbreviation 
NBTW to mean non-backtracking walk. We will denote by pr(A) ∈ R

n×n the matrix 
whose (i, j)th entry counts the number of NBTWs of length r from node i to node j
in the graph represented by the matrix A. Our first task is therefore to obtain useful 
expressions for the corresponding exponential generating function

F (t) :=
∞∑
r=0

trpr(A)
r! (1)

and centrality measure

b := F (t)1. (2)

We do this in Sections 2 and 3 for the case of undirected and directed graphs, respec-
tively. Although, of course, an undirected graph is a special case of a directed graph, we 
treat the two cases separately for two reasons. First, undirected graphs are common in 
network science, and hence it is useful to have results tailored to this case. Second, in 
our context it seems more straightforward to study undirected graphs directly than to 
simplify the more general expression for directed graphs. In Section 4, we briefly describe 
how to compute the proposed centrality measures and discuss computational costs. In 
Section 5, we interpret the new expressions from the viewpoint of traversals around mul-
tilayer networks with possibly negative interlayer weights. This block matrix framework 
also allows us to derive expressions for the case where the exponential is replaced by a 
general matrix function. In Section 6 we give a concrete example of the benefit of non-
backtracking, and further illustrations on realistic model networks appear in Section 7. 
We end with a short summary in Section 8.

The key analytical steps used here are to derive and solve an ODE—this is a widely 
used approach in the study of exponential generating functions [46]. To this end, we note 
from (1) that

F ′(t) =
∞∑
r=0

trpr+1(A)
r! and F ′′(t) =

∞∑
r=0

trpr+2(A)
r! . (3)

We also require a lemma on matrix-valued ODEs. The following result arises from 
columnwise application of a standard result on vector-valued linear systems; see, for 
example, [21, Section 2.1]. The statement of the result makes use of the shifted expo-
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nential function ψ1(z) = (ez − 1)/z, which may be defined formally via the power series 
expansion

ψ1(z) =
∞∑
r=0

zr

(r + 1)! . (4)

Lemma 1.1. Let C ∈ R
m×m and P, X0 ∈ R

m×�. Then

X(t) = tψ1(tC) (P + CX0) + X0 (5)

is the unique solution to the linear, constant coefficient, inhomogeneous, autonomous, 
initial value ODE system

X ′(t) = CX(t) + P, X(0) = X0.

Moreover, in the homogeneous case P = 0, the expression (5) simplifies to

X(t) = exp(tC)X0. (6)

Remark 1.2. We note that Lemma 1.1 does not require the Jacobian matrix C to be 
nonsingular.

2. Exponential generating function for undirected graphs

We assume throughout this section that the graph is undirected. We also assume for 
convenience that the graph is connected—in the disconnected case, each component may 
be studied separately. We note that each node is therefore assumed to have at least one 
neighbour.

As we mentioned in Section 1.2, the matrix Ar counts walks of length r. Hence the 
trivial relationship Ar+1 = AAr gives a recurrence between walk counts for length r and 
r + 1. In the case of NBTWs on undirected graphs, the following two term recurrence 
relates walk counts of successive lengths. We have p0(A) = I, p1(A) = A, p2(A) = A2−D, 
and

pr+2(A) = Apr+1(A) − (D − I)pr(A), for r ≥ 1. (7)

This recursion was proved in [12] for general directed graphs. For the undirected case 
considered here, the recurrence was re-derived independently in [41].

We now give the main statement of this section: an explicit formula for the generating 
function (1) and the corresponding centrality measure (2).

Theorem 2.1. For a simple graph with associated adjacency matrix A, the exponential 
generating function F (t) in (1) and total communicability vector b in (2) satisfy
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F (t) =
[
I 0

]
tψ1(tY )

[
A

A2 −D

]
+ I,

b =
[
I 0

]
tψ1(tY )

[
A1

(A2 −D)1

]
+ 1,

where

Y :=
[

0 I

I −D A

]
∈ R

2n×2n. (8)

In the case where the graph has no leaves, these expressions may be written as

F (t) =
[
I 0

]
exp (tY )

[
I + (D − I)−1

A

]
− (D − I)−1,

b =
[
I 0

]
exp (tY )

[
1 + (D − I)−11

A1

]
− (D − I)−11.

Proof. To obtain the exponential generating function F (t) in (1), we multiply by tr/r!
in (7) and then sum from r = 1 to ∞, to obtain

∞∑
r=1

trpr+2(A)
r! = A

∞∑
r=1

trpr+1(A)
r! − (D − I)

∞∑
r=1

trpr(A)
r! .

From (3), this shows

F ′′(t) − p2(A) = A(F ′(t) − p1(A)) − (D − I)(F (t) − p0(A)),

which simplifies to

F ′′(t) −AF ′(t) + (D − I)F (t) = −I. (9)

To convert to a first order system, we introduce

G(t) =
[
G1(t)
G2(t)

]
:=

[
F (t)
F ′(t)

]
∈ R

2n×n,

so that (9) becomes

G′(t) = Y G(t) +
[

0
−I

]
, where G(0) =

[
I

A

]
,

where Y is defined in (8). It then follows from Lemma 1.1 that
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G(t) = tψ1(tY )
([

0
−I

]
+ Y

[
I

A

])
+

[
I

A

]
. (10)

Finally, we note that the Jacobian matrix Y in (8) is invertible if and only if (D−I)−1

exists, that is, if the graph does not contain leaves, i.e., nodes of degree one. In this case

Y −1 =
[

(D − I)−1A −(D − I)−1

I 0

]

and (10) simplifies to

G(t) = exp (tY )
[
I + (D − I)−1

A

]
−

[
(D − I)−1

0

]
. (11)

Noting that F (t) =
[
I 0

]
G(t), we see that (10) and (11) yield the statement. �

We discuss these results further in Sections 4 and 5.

3. Exponential generating function for directed graphs

For directed graphs the matrices pr(A) that count NBTWs satisfy a three term re-
currence. This was shown in [12], with a more linear algebra oriented derivation given in 
[42]. With p0(A) = I, p1(A) = A, p2(A) = A2 −D, the recurrence takes the form

pr+3(A) = Apr+2(A) − (D − I)pr+1(A) − (A− S)pr(A), for r ≥ 0. (12)

Recall that S ∈ R
n×n is the adjacency matrix of the graph obtained by only considering 

reciprocated links in the original network; so sij = aijaji. We emphasize that unlike the 
undirected case (7), this recurrence is valid from r = 0.

Here is the analogue for directed graphs of Theorem 2.1.

Theorem 3.1. Let A be the adjacency matrix of an unweighted directed graph with no 
self-loops nor multiple edges. The exponential generating function F (t) in (1) and total 
communicability vector b in (2) satisfy

F (t) =
[
I 0 0

]
exp(tZ)

⎡⎢⎣ I

A

A2 −D

⎤⎥⎦ ,

b =
[
I 0 0

]
exp(tZ)

⎡⎢⎣ 1
A1

(A2 −D)1

⎤⎥⎦ ,
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where

Z :=

⎡⎢⎣ 0 I 0
0 0 I

−(A− S) −(D − I) A

⎤⎥⎦ ∈ R
3n×3n. (13)

Proof. Multiplying (12) by tr/r! and summing from r = 0 to ∞ we arrive at

F ′′′(t) = AF ′′(t) − (D − I)F ′(t) − (A− S)F (t). (14)

We note that, in contrast to (9), this ODE does not have an inhomogeneous term. To 
convert to a first order system, introduce

H(t) =

⎡⎢⎣H1(t)
H2(t)
H3(t)

⎤⎥⎦ =

⎡⎢⎣ F (t)
F ′(t)
F ′′(t)

⎤⎥⎦ ,

so that

H ′(t) = ZH(t), where H(0) =

⎡⎢⎣ I

A

A2 −D

⎤⎥⎦ ,

where Z is defined in (13).
Using (6) in Lemma 1.1 and noting that F (t) =

[
I 0 0

]
H(t), we arrive at the 

statement. �
It is of interest to note that the removal of backtracking walks may be interpreted as 

the introduction of damping terms −(D − I)F ′(t) and −(A − S)F (t) in (14). Further, 
Theorem 3.1 shows that, in general, as t increases the total communicability vector b
aligns with the first n components of the dominant eigenvector of Z.

4. Computing the centrality vectors

In this section we consider computational issues. First, we note that the standard 
expression for the total (node) communicability, etA1, requires the action of the expo-
nential of a sparse n by n matrix on a vector in Rn. It is reasonable to assume that 
a suitable approximation may be obtained iteratively, using a small number of sparse 
matrix-vector multiplications [2]. Assuming that A has O(n) nonzeros (edges), then each 
sparse matrix-vector multiplication will cost O(n). Hence, using k to denote the number 
of iterations, the overall cost will be O(nk). In practice, it is reasonable to regard k as 
finite and independent from n, so that this expression becomes O(n).
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In Theorem 2.1, we see that for an undirected graph with no leaves, the cost of 
computing the non-backtracking total communicability vector b is dominated by the 
action of etY on a vector in R2n, where the 2n by 2n sparse matrix Y is defined in (8). 
We note that Y has only 2n more nonzeros than the underlying adjacency matrix A, 
and hence, under the assumptions above, if the same number of iterations is required, 
then the same O(n) cost applies.

In the directed case, the expression for b in Theorem 3.1 requires the action of etZ
on a vector in R3n, where the 3n by 3n sparse matrix Z is defined in (13). Since Z also 
has O(n) nonzeros, we again recover the O(n) cost under our assumptions.

It remains to consider the case of an undirected graph with leaves. In Theorem 2.1, 
the expression for b involves the shifted exponential, ψ1, from (4). We may proceed by 
reducing the key computation to the approximation of the action of a matrix exponential 
in a slightly higher dimension. Let

Ŷ :=
[
tY v
0T 0

]
∈ R

(2n+1)×(2n+1),

where v ∈ R
2n and 0 ∈ R

2n is a vector of all zeros. It was shown in [37, Section 2.3] that

exp(Ŷ ) =
[
etY ψ1(tY )v
0T 1

]
.

So, if we let

v =
[

A1
(A2 −D)1

]

then b in Theorem 2.1 may be computed by first approximating the vector exp(Ŷ )e2n+1, 
where e2n+1 is the (2n + 1)th vector of the standard basis of R2n+1. We then extract 
the top n entries of the resulting vector, scale by t and shift by 1. This again will have 
an O(n) cost under our assumptions.

Remark 4.1. It is worth emphasizing that the final steps of scaling and shifting can be 
avoided if we are only interested, as is customary in network science, in the rankings of 
the nodes rather than their actual centrality scores.

5. Block matrix interpretations

Theorems 2.1 and 3.1 show that, loosely, for exponential-based centrality the operation 
of eliminating backtracking walks is equivalent to replacing the original adjacency matrix 
A with a suitable block matrix. In the undirected case, the 2 by 2 version Y in (8) is 
used, whereas the directed case has the 3 by 3 version Z in (13). These block matrices 
were constructed indirectly, as a consequence of the generating function approach, [46]. 
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In this section, we add insight by showing how these block matrices may be interpreted 
directly. We also show that they remain relevant when the exponential is replaced by a 
general matrix function.

We begin with an algebraic interpretation. The matrices Z and Y are the first com-
panion matrix linearization [18] of the matrix polynomials (A −S) +(D−I)λ −Aλ2+Iλ3

and, respectively, (D−I) −Aλ +Iλ2. These are in turn the reversals of, respectively, the 
directed and undirected version of the deformed graph Laplacian, a matrix polynomial 
that plays a crucial role in the theory of NBTW combinatorics, see [6,20]. Algebraically, 
the companion matrix is the multiplication-by-λI operator in the module obtained by 
forming quotients in the ring of matrix polynomials using the left ideal generated by the 
linearized matrix polynomial [34]. Linear-algebraic functions of the companion matrix 
also have an analogous interpretation; for example, exp(tZ) represents multiplication by 
exp(tλ)I modulo (A −S) +(D−I)λ −Aλ2 +Iλ3. For more details on this algebraic view 
of companion matrices see, e.g., [33, Sec. 2], [34, Sec. 5], [35, Sec. 9], and the references 
therein.

There is also a graph-theoretical interpretation that we now describe in detail. We 
focus first on the directed case, involving Z in (13). A useful connection is that Z
represents the adjacency matrix for a three layer weighted network. This network is 
node-aligned [27], so that the general ith nodes from each layer may be regarded as 
copies of the same node. Looking at the diagonal blocks of Z, we see that the within-layer 
connections correspond to the empty graph for layers one and two, and the original graph 
for layer three. Next, we consider the off-diagonal blocks. The identity matrix in the (1, 2)
block and zero matrix in the (1, 3) block show that the only edge out of a node in layer 
one points to the corresponding node in layer two. Similarly, we may only leave layer 
two by moving to the corresponding node in layer three. Within layer three, in addition 
to moving within the layer using edges from A, traversals are possible to layers two and 
one. The (3, 2) block shows that for Dii > 1 a traversal may move from node i in layer 
three to node i in layer two, with the negative weight 1 − Dii assigned to that edge. 
The (3, 1) block shows that a move from node i in layer three to node j in layer one is 
allowed if and only if the original graph has a nonreciprocal edge from node i to node j, 
in which case the inter-layer edge carries weight −1.

The expression for b in Theorem 3.1 shows that exponential NBTW centrality arises 
from a post-processed version of the “standard” exponential centrality on this multilayer 
network, where negative inter-layer weights have the effect of negating the contributions 
of backtracking walks in the underlying graph.

The two lemmas and the theorem below show that Z is also relevant for more general 
matrix functions.

Lemma 5.1. For all r ≥ 0 we have

ZrZ̃

[0
0
]

=
[

pr(A)
pr+1(A)

]
.

I pr+2(A)
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Proof. For r < 2, the identity may be verified directly. For r ≥ 2 the result follows by 
straightforward induction using the three term recurrence (12). �
Theorem 5.2 (Directed graph). Let {αr}∞r=0 be a sequence such that f0(Z) =

∑∞
r=0 αrZ

r

converges. Then 
∑∞

r=0 αrpr(A) converges, and

∞∑
r=0

αrpr(A) = [I 0 0]f0(Z)
[

I
A

A2 −D

]
.

Moreover, 
∑∞

r=0 αrpr(A) is equal to the (3, 3) block in f0(Z) − f2(Z), where

fk(Z) =
∞∑
r=0

αr+kZ
r.

Proof. By Lemma 5.1 it follows that

∞∑
r=0

αrpr(A) = [I 0 0]
∞∑
r=0

αrZ
rZ̃

[0
0
I

]

and, since

Z̃

[0
0
I

]
=

[
I
A

A2 −D

]

the first part of the statement follows.
For the second part, note first that 

∑∞
r=0 αr+2Z

r also converges under the assumptions 
in the statement. Then

∞∑
r=0

αrpr(A) = α0I + α1A +
∞∑
r=2

αrpr(A)

= α0I + α1A + [0 0 I]
∞∑
r=2

αrZ
r−2Z̃

[0
0
I

]

= α0I + α1A + [0 0 I]
∞∑
r=2

αrZ
r

[0
0
I

]
− [0 0 I]

∞∑
r=2

αrZ
r−2

[0
0
I

]

= [0 0 I]
∞∑
r=0

(αr − αr+2)Zr

[0
0
I

]
,

as required. �
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Theorem 5.2 shows that we can accumulate combinations of NBTW counts in the 
original network by looking at the (3, 3) block of an appropriate function of the matrix Z. 
From a multilayer perspective, the (3, 3) block of Z is associated with the layer containing 
the adjacency matrix A of the original network. Theorem 5.2 therefore concerns walks 
of any length that start and end at that layer. This includes not only walks that take 
place within layer three, but also those that make one or more intermediate visits to the 
other layers.

The contribution coming from f0(Z) counts walks in the multilayer network using the 
original weights. The correction term involving f2(Z) removes walks from the count by 
weighting walks of length r − 2 as if they were of length r.

In more detail, the term f2(Z) is used to correct the appearance of an identity matrix 
in Z2 that is then propagated at higher powers of Z. This identity matrix at level r = 2
originates from the one appearing in the (3, 2) block. This latter is used in the recursion 
(12) defining pr(A) when r > 2 to correct the penalization of walks of the type

i → · · · → k → j → k → j of length r

which are backtracking at length (r − 1)1 and thus need not be removed by the factor 
pr−2(A)D. Walks of this type take place entirely in the third layer and are balanced by 
the existence of walks of the form

node: i → · · · → k → j → j → j

layer: [3] → · · · → [3] → [3] → [2] → [3]

provided that r > 2. When r = 2, walks of the form

node: j
1−dj−−−→ j

1−→ j

layer: [3] → [2] → [3]

are improperly weighted, as the first hop contains a +1 that is used to balance the 
removal of walks that have never even existed. This introduces a “delay” that is then 
propagated when longer walks are counted. To counteract it, the matrix function f2(Z)
removes walks of length r − 2 that are however weighted as if they were of length r; 
this type of weighting precisely targets those walks obtained from the propagation of the 
identity matrix introduced at r = 2 in f0(Z).

Theorem 5.2 can be used to recover the known characterisation of the ordinary gen-
erating function. To see this, we let αr = tr for all r, with |t| < ρ(Z)−1. Then we 
have

1 The additional requirement of the edge k → j to be reciprocated is the one that adds the term 
pr−3(A)(S − A) to the count.
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∞∑
r=0

trpr(A) = [0 0 I]
[
(I − tZ)−1 − t2(I − tZ)−1] [0

0
I

]

= (1 − t2)[0 0 I](I − tZ)−1

[0
0
I

]
.

This is equivalent to the result in [6, Section 3].
Similarly, setting αr = tr/r! for some t > 0, Theorem 5.2 gives

∞∑
r=0

trpr(A)
r! = [0 0 I]

(
etZ − t2ψ2(tZ)

) [0
0
I

]
, (15)

where ψ2(x) =
∑∞

r=0 x
r/(r + 2)!. This description of F (t) from (1) is equivalent to that 

given in Theorem 3.1. However, (15) casts the result entirely in terms of the (3, 3) block, 
which, as we have argued above, has a natural multilayer interpretation.

We finish this section by briefly discussing the undirected case. Here, the block matrix 
Y in (8) may be associated with a two-layer network. In layer one, the only possible 
transition is to the equivalent node in layer two. We may move within layer two using 
any edge that exists in the original graph, or, for Dii > 1, we may move from node i
in layer two to node i in layer one along an edge with negative weight 1 − Dii. The 
analogues of Lemma 5.1 and Theorem 5.2 are given below, with proofs following in a 
similar manner.

Lemma 5.3. For all r ≥ 0 we have

Y rỸ

[
0
I

]
=

[
pr+1(A)
pr+2(A)

]
.

Theorem 5.4 (Undirected graph). Let {αr}∞r=0 be a sequence of nonnegative weights such 
that fk(Y ) :=

∑∞
r=0 αr+kY

r converges for k = 0. Then

∞∑
r=0

αrpr(A) = [0 I] (f0(Y ) − f2(Y ))
[
0
I

]
.

Theorem 5.4 quantifies in the undirected case how NBTWs on the original network 
may also be counted by considering walks on the associated multilayer network that 
start and end in the layer containing A.

6. Star graph analysis

In this section, we give further insights into the effect of restricting to NBTWs in a 
total communicability centrality measure. For eigenvector centrality, the authors in [29]
argued that non-backtracking is a means to avoid localization; that is, the concentration 
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of weight on a small number of nodes. Following [19], they characterized localization 
through an asymptotic limit. Given v = (vi) ∈ R

n the inverse participation ratio is 
defined as

S(v) = 1
‖v‖4

2

n∑
i=1

v4
i = ‖v‖4

4
‖v‖4

2
. (16)

This quantity is of order one in the case where a small number of elements in v are 
responsible for most of the weight. More formally, we say that the measure is localized
if S(v) = O(1) and nonlocalized if S(v) = o(1), in the asymptotic limit n → ∞.

We will analyze this property on the undirected star graph with n nodes. Here the 
adjacency matrix takes the form

A =
[

1T
n−1

1n−1

]
, (17)

where 1s ∈ R
s is the vector of all ones. Thus node 1 is a hub with n − 1 connections 

to nodes 2, 3, . . . , n, which are only connected to node 1. Intuitively, the effect of back-
tracking should be significant in this example. The hub node has n − 1 neighbours, and 
hence n − 1 walks of length 1, but cannot initiate walks of length two or more with-
out backtracking. Each peripheral node, in contrast, has a single neighbour, but n − 2
NBTWs of length two. Hence, in the non-backtracking regime, if t is taken sufficiently 
large that degree does not dominate, then having one high quality link (to a hub) may 
be comparable in importance to having many low quality links (to leaves).

It is straightforward to show for (17) that (see, for example, [5,21])

etA =

⎡⎣ cosh(t
√
n− 1) sinh(t

√
n− 1)(

√
n− 1)−11T

n−1

sinh(t
√
n− 1)(

√
n− 1)−11n−1 cosh(t

√
1n−11T

n−1)

⎤⎦ .

Hence, the standard, backtracking walk version of total communicability, x = etA1, 
satisfies

x =
[

cosh(t
√
n− 1) +

√
n− 1 sinh(t

√
n− 1)

cosh(t
√
n− 1)1n−1 + (

√
n− 1)−1 sinh(t

√
n− 1)1n−1

]
.

So the values x1 for the hub node and x2 for a typical leaf node satisfy

x1 = cosh(t
√
n− 1) +

√
n− 1 sinh(t

√
n− 1),

x2 = cosh(t
√
n− 1) + (

√
n− 1)−1 sinh(t

√
n− 1).

It follows immediately that for any t > 0 we have x1 > x2 when the graph has at least 
three nodes. Hence, the standard total communicability measure always ranks the hub 
node above the leaves. We also find that, for fixed t > 0,
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(x1)4 = n2

16 e
4t
√
n−1 + o

(
n2e4t

√
n−1

)
,

(xi)4 = n2

16(n− 1)2 e
4t
√
n−1 + o

(
e4t

√
n−1

)
, for all i = 2, . . . , n,

‖x‖4
2 = n2

4 e4t
√
n−1 + o

(
n2e4t

√
n−1

)
.

It follows that the inverse participation ratio (16) satisfies

lim
n→∞

S(x) = 1
4

and hence the measure is localized.
We may evaluate the non-backtracking version, b = F (t)1, from first principles. The 

hub node has n − 1 NBTWs of length one and no others, and each leaf node has one 
NBTW of length one, n − 2 NBTWs of length two and no others. So

b1 = 1 + t(n− 1) and b2 = 1 + t + t2

2 (n− 2).

Straightforward computation shows that b1 > b2 for 0 < t < 2 and b1 < b2 for t > 2. 
Therefore, we observe a transition that is not present with standard exponential central-
ity, albeit in a parameter regime where t is greater than unity.

More tellingly, for fixed t > 0

(b1)4 = t4n4 + o(n4),

(bi)4 = t8

16n
4 + o(n4), for all i = 2, . . . , n,

‖b‖4
2 = t8

16n
6 + o(n6).

Hence,

lim
n→∞

S(b) = 0;

so the measure is nonlocalized.

7. Numerical tests

In this section we study the localization effect in a realistic setting. We used a random 
graph model rather than a fixed data set so that we can control the dimension, n, and 
study the asymptotics. We used an implementation of the Barabási–Albert preferential 
attachment model for undirected networks in the MATLAB toolbox CONTEST [43]. In 
this model, nodes are added sequentially until the desired size is reached. Each node is 
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Fig. 1. Inverse participation ratio of vectors F (t)1 and etA1 as the number of nodes, n, varies.

given, upon arrival, d links to current nodes. These target nodes are chosen indepen-
dently with a probability proportional to their current degree. The resulting network 
will have a scale-free degree distribution, where a few nodes (hubs) have a high degree 
and many nodes have a very small degree. In this case, the vector of degrees is localized 
by construction. We have ρ(A) ≤ ‖A‖∞, and when this inequality is sharp the presence 
of a high degree node forces Katz to use a small parameter α, producing results close to 
degree centrality [9].

We used the default setting of the toolbox, giving each node d = 2 links upon arrival 
to the network, and we built networks of increasing size from n = 10 to n = 1000. 
For each network, we computed the inverse participation ratio (16) for the normalized 
total communicability vector etA1 and its nonbactracking analogue b = F (t)1 for t =
1 fixed. In order to compute both centrality vectors, we used the MATLAB toolbox
funm_kryl2 [1], which computes the action of a matrix function over a vector using a 
restarted Arnoldi algorithm. We repeated our tests 1000 times.

The results are displayed in Fig. 1, where the sample average of the inverse partic-
ipation ratio is plotted against n in a semilogarithmic scale. The error bar is used to 
display the standard error around the average values. The results are in line with the 
analytical results presented in Section 6—the inverse participation ratio decays towards 
zero for the non-backtracking version, but appears to be bounded away from zero when 
backtracking walks are included.

8. Summary

The main contributions of this work were

1. to derive analytical expressions for the non-backtracking walk exponential generating 
function for both undirected and directed graphs,

2 Downloaded from http://guettel .com.

http://guettel.com


F. Arrigo et al. / Linear Algebra and its Applications 556 (2018) 381–399 397
2. to show that it is feasible to compute the resulting network centrality measures: 
the key matrix involved in the computations has twice (three times) the dimension 
of the analogous backtracking version for undirected (directed) graphs, and has a 
comparable level of sparsity,

3. to interpret the new measures in the context of traditional centrality on a multilayer 
network,

4. to use insights from the multilayer/block matrix setting in order to derive expressions 
for general matrix function-based centrality measures,

5. to study how non-backtracking within exponential centrality reduces localization 
effects on a star graph,

6. to give further illustrative results on a controllable test network.

Our overall message is that it is both analytically and computationally attractive to 
study non-backtracking walk counts in a general matrix function setting that includes 
the matrix exponential. We therefore hope to have paved the way for future work that, 
for example, considers

• physical interpretations of the new measures,
• applications to specific fields of network science,
• further links with areas of discrete mathematics, stochastic processes and quantum 

physics,
• the development and analysis of customized numerical methods for approximating 

the action of a matrix function on the type of large, sparse unstructured matrix 
arising in network science.
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