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Summary. We consider a general class of structured matrices that includes (possi- 
bly confluent) Vandermonde and Vandermonde-like matrices. Here the entries 
in the matrix depend nonlinearly upon a vector of parameters. We define condi- 
tion numbers that measure the componentwise sensitivity of the associated pri- 
mal and dual solutions to small componentwise perturbations in the parameters 
and in the right-hand side. Convenient expressions are derived for the infinity 
norm based condition numbers, and order-of-magnitude estimates are given 
for condition numbers defined in terms of a general vector norm. We then 
discuss the computation of the corresponding backward errors. After linearising 
the constraints, we derive an exact expression for the infinity norm dual back- 
ward error and show that the corresponding primal backward error is given 
by the minimum infinity-norm solution of an underdetermined linear system. 
Exact componentwise condition numbers are also derived for matrix inversion 
and the least squares problem, and the linearised least squares backward error 
is characterised. 

Mathematics  Subject Classification (1991):  65F99 

1 Introduction 

Many applications generate linear systems of the form A x = b, A ~ R  N • N, beRN, 
where the matrix A has a special structure. In such cases the data for the problem 
involves a set of parameters that determines A. For  example, a symmetric Toe- 
plitz matrix is defined by the values {Co, c~, ..., CN-1} that appear along the 
constant diagonals. With such a structured problem, any errors in the data 
produce structured errors in A, and hence it is pertinent .to define a condition 
number with respect to a suitably restricted class of perturbations. Similarly, 
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given an approximate solution Y, it is reasonable to define the backward error 
as the smallest perturbation to the original data that causes ~ to become an 
exact solution. 

Structured condition numbers and backward errors that are relevant to the 
case where A depends linearly upon a set of parameters were examined in [9]. 
Such linear dependence arises, for example, with symmetric, Toeplitz, circulant, 
Hankel  and Hamiltonian matrices. In this work we consider the case where 
the matrix is generated by a set of real-valued functions {Pij}i",t=o. Given a 
set of real points ao < a i < ... < a, ,  we define the matrix V [a] by 

(1.1) (V [aJ)it = P,i [at]" 

We have in mind the case where V[a] is a (possibly confluent) Vandermonde 
or Vandermonde-like matrix [12]. Here p~j is a polynomial, and in the non- 
confluent case Pit is independent ofj .  However, our results concerning condition 
numbers hold whenever the Plj have continuous second derivatives in neighbour- 
hoods of the points a t, and the matrix V[a] is nonsingular. Associated with 
V[a] are the primal and dual problems 

(1.2) V[a] x =b, (PRIMAL) 

(1.3) V[a]Tx=b, (DUAL). 

The primal problem arises in statistics with b representing the moments  of 
a discrete random variable. The dual problem frequently occurs in approxima- 
tion theory in the context of interpolation. 

In examining the sensitivity of (1.2) and (1.3) we must decide how perturba- 
tions Aa, Ab and Ax to the data a, b and the solution x, respectively, are 
to be measured. We will adopt the following general componentwise measures. 
Choosing nonnegative tolerance vectors ~, fi, ~ " +  1, we form 

ilt~allv, tlAbtl~, llzXxttv, (1.4) 

where 

(1.5) 
A A A 

Aai=Aai/~i, Abi=Abi/fli, Axi=Axi/~i, 

and I[ �9 11 v represents any vector norm. Here, and throughout, we use the division- 
by-zero convention that 5/0 is zero if 5 = 0  and infinity otherwise. Note  that 
choosing ~ =  Irallv,/~i = Ilbllv and ~/= Ilxll,, corresponds to a traditional normwise 
relative measure of the perturbations, while the choice ~ =  laL/~i - - Ib l l  and ~i = Ixil 
gives a componentwise relative measure. 

In subsequent sections we use the measure (1.4) to define structured condition 
numbers and backward errors. Our  aim is then to find convenient characterisa- 
tions or bounds for these quantities, and to investigate their computability. 
The next section looks at structured condition numbers for the primal and 
dual linear systems. An exact expression for the ~ - n o r m  case is derived, and 
in other cases we obtain an upper bound that is within a factor two of equality. 
We also look at the case where the solution to the dual problem is regarded 
as the interpolating function, ~ x~ p~, and is measured with a corresponding 
functional norm. We show that the resulting condition number  can be approxi- 
mated very conveniently. Backward errors for (1.2) and (1.3) are considered 
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in Sect. 3. We find that in order to derive useful results it is necessary to linearise 
the constraints and settle for an approximate backward error. In Sect. 4 we 
compare the structured condition numbers and backward errors with their 
unstructured counterparts. Exact condition number expressions for inverting 
V[a] and V i a ]  T, with a certain choice of matrix norm, are furnished in Sect. 5. 
The least squares analogues of (1.2) and (1.3) are considered in Sect. 6. We 
obtain exact expressions for the primal and dual condition numbers when ll" Ilo 
= IL " I[~, and sharp bounds for general It " II,. We also show how to compute 
the linearised backward error in the case of the ~-norm.  

We conclude this section by mentioning some related work. The idea of 
measuring perturbations in a componentwise, rather than a normwise sense 
has been investigated by Oettli and Prager [16], Skeel [18] and more recently 
by Arioli et al. [1], Rohn [17], and, for the least squares problem, by Bj6rck 
[3] and N.J. Higham [14]. In these papers no special structure in the matrix 
A is assumed, other than sparsity. Symmetric normwise backward errors were 
investigated by Bunch et al. [5], and componentwise condition numbers and 
backward errors for the case of general linear dependence on a set of parameters 
were examined by Higham and Higham [9, 10, Sect. 5]. Gohberg and Koltracht 
[6] gave a formal definition of the condition number of a structured problem 
- in our case this corresponds to setting [] �9 IIv = II " ]J ~ and using ~ = ]al, fl = Ib[ 
and ~=lxl in (1.4). Bounds on the structured condition number for Cauchy 
matrix inversion were given in [6]. The structured componentwise sensitivity 
of primal and dual Vandermonde systems was characterised by N.J. Higham 
in Sect. 4 of [11]. Those results are special cases of our results in Sect. 2. When 
discussing the cost of evaluating the expressions that we derive in the forthcom- 
ing sections, we will assume that V[a] is a confluent Vandermonde-like matrix 
and we will make use of the fact that the corresponding primal and dual prob- 
lems (1.2) and (1.3) can be solved in O(n 2) operations by the algorithms of 
N.J. Higham [12], which include as special cases the fast Vandermonde system 
solvers of Bj6rck and Pereyra [4]. We will also make reference to the fact 
that for any matrix B, estimates of }IBII1 or ]lBl]~o can be obtained at the cost 
of forming a small number of matrix-vector products of the form Bz and BTz 
[2, 8, 13, 19]. 

2 Primal and dual condition numbers 

How sensitive is the solution x in (1.2) and (1.3) to small changes in the data 
a and b? The answer, at least in the limit as the perturbation size tends to 
zero, is given by the condition number. Considering first the dual problem, 
we define the componentwise structured condition number to be 

(2.1) cond~Ual(a, b),=lim sup 
e~O iIaallo=<e, flabllo<e 

"( ][~x[]v : 8  V[a+Aa]T(x+Ax)=b+Ab}" 

The term I[Ax[lJe inside the curly brackets gives the change in the solution 
x relative to the change in the data a, b, and the overall condition number 
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is found by taking the limit as e ~ 0 of the worst  case relative change in x 
caused by data  per turbat ions  of size e. 

Initially, we will assume that  the tolerances ~, fl and ~ have nonzero  elements. 
i i 

Zero tolerances will be discussed later. Using IIAallo<e and [IAbllo<e, and rep- 
lacing Pij [aj + A aj] by Pij [aj] + A aj p'ij [aj] + 0 (e2), we find 

(2.2) Via + Aa]  = Vial  + V' [a] diag(A a) + O(eZ), 

t /  
where (V'[a])iy=-~a..(V[a])ij=p~j[aj]. Hence the constraint  V[a+Aa]T(x 

+ A x ) =  b+Ab in (2.1) becomes 

(2.3) V [a]T A x = A b - diag (A a) V' [ a ] r  x + O (E:2). 

To  simplify the notat ion,  we will let z = V' [a]Vx. Note  that  in the case of polyno-  
mial interpolat ion,  zl denotes the derivative of the interpolat ing polynomial  at 
the point  a i. We may then write (2.3) as 

(2.4) A x = V [a]  - T (A b - diag (z) A a) + O (e2), 

where V[a]-T:=(V[a]-I) T. Writing D~,,Do and De for diag(a), diag(fl) and 

diag(r respectively, we may  write (2.4) in terms of the scaled per turbat ions  
Aa I ' ,  A'b and ~ x  in (1.5}: 

i 1 ~ i 
(2.5) Ax=D~ V[a]-T(Dp Ab-diag(z)  D~,Aa)+O(e2). 

A i 

Taking norms, with 11A a Jj v < e and It A b [[ ~ =< ~, it follows that  

II A"~'lt v < II D~- x V[a]  - T Da [I ~ e + II D~- x V[a]  - T diag (z) D, I] ~ e + 0 (e2), 

and hence 

(2.6) conddoual(a,b)<llD~ 1 V[a]-TDa[Iv+I[D~ 1 V[a]-Tdiag(z)O,~ll,, 

where the matr ix norm II" IIv is subordinate  to the corresponding vector norm. 

Note  that  Ab and Aa can be chosen in (2.5) so that  

IlO~- x V[a] -TDa A"bll ~ = IlO~ -x V[a] -WDall ~ e, 

J]D~ 1 V[a] -Tdiag(z) D, A"'dl[ v = IID~ 1 V[a] -Tdiag(z) D,I[. e, 

and so it follows that  

I[D~- x VEal -TDoIIv + [lOg 1 VKa] -Tdiag(z) D=llv ~ 2 cond~a"a~(a, b). 

W h e n  the infinity no rm is used, we can make  use of  the following lemma. 

Lemma 2.1. For any A, B e N  u• 

(2.7) sup {[[Ac+BdH~o}=tl[A[+lBl[[~oe. 
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Proof Let a~ x and b~ x denote  the ith rows of A and B, respectively, and  let 
e denote  the vector  of  ones. Then  

sup { l lac+Bdl l~}= sup {maxlaT c+b~ dl} 
Ilctl ~_-<~, Ildll ~_-<~ IIcll ~ < 1, Ildll~_-< 1 

= max(lailre + [bilTe) i 
: I[Ial+ IBIl[o~ ~. [ ]  

Using this l emma in (2.5) we obta in  an exact expression for the o r -norm condi-  
t ion number ,  

conddUa' (a, b ) =  lIDS- ' Vial  - Tdiag(fl + D~ ]z])l] ~, 

(2.8) = IID~- t ] V [ a ] - T  I(fl+D,Izl)l l~.  

We  now discuss the case where some tolerance values are zero. If  some 
cq=0  or ]~,=0 then, using the division-by-zero convention,  the definition (2.1) 

A 

is still valid. In  this case, in order  to keep [IAall~<e and IIAbll~<~, the data 
values a~ and b~ for which the tolerances are zero must  not  be per turbed,  that  
is 

~ i = O ~ A a i = O  and ~i=O=~Abi=O. 

It  is also clear that  (2.6) and (2.8) remain  valid in this case. Suppose now that  
one of the solut ion tolerances ~i is zero. It  is then possible for the condit ion 

n u m b e r  to be infinite: if, for all e > 0, there exist feasible per turba t ions  I IA a H v < 8 

and LIA'~Hv<~ such that  A x l . 0 ,  then cond~""l(a ,b)=oo.  It  is s t ra ightforward 
to confirm tha t  the r ight-hand sides of (2.6) and (2.8) become infinite under  
exactly the same circumstances,  and  hence the results are still meaningful.  In 
a similar manner ,  all the results in this paper  can be interpreted sensibly when 
one or  more  tolerance values are zero. 

We thus have the following theorem. 

Theorem 2.1. In the notation above and for any vector norm, the structured com- 
ponentwise condition number for the dual problem satisfies 

(2.9) cond~""l(a, b)=< ItD~ -1 V[a]-TD#[[~+ [ID~ 1 V[a]-Tdiag(z)D,[l~, 

and this upper bound is not more than twice cond~""l(a, b). For the infinity vector 
norm, 

(2.10) conddU"l(a, b ) =  lIDS- 1 V[a] - rd i ag ( f l  + D~ Izl)tl ~. 

The  corresponding s tructured componentwise  condi t ion n u m b e r  for the pri- 
mal  p rob lem is 

(2.11) cond~'im"l(a, b). '=lim A supA 
e~O iiAallv<~, liAbllv_<~ 

A 

{ HAxIIv: V~a-I-Aa'I (x-[-Ax)~b-[-Ab ! 
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Expanding the constraint V[a+ A a] (x + A x ) = b  + A b  in the same manner as 
in the dual case, we find 

V[a] Ax  = Ab - V' [a] diag (x) Aa + O(e2). 

Defining ~'[a, x] = V'[a] diag(x), and converting to the scaled perturbations, 
we have 

(2.12) A'~= D~ -1 V [ a ] - l ( D a ' ~ - V ~ [ a , x ] D ~ a ) + O ( e 2 ) .  

As for the dual case, we may take norms in (2.12) to get an upper bound 
on cond~rimal(a,b), and Lemma 2.1 can be used to give an exact expression 
for cond~imal(a, b). 

The results are collected in the following theorem. 

Theorem 2.2. In the notation above and for any vector norm, the structured com- 
ponentwise condition number for the primal problem satisfies 

(2.13) cond primal(a, b) < IID~- x V[a] - 1 D0 rlv + tl D~- 1 V [a] - '  V'[a, x] DEIIv, 

and this upper bound is not more than twice cond~rima~(a, b). For the infinity vector 
norm, 

(2.14) cond~im~(a, b) = II IDa- ~ V[a] - ~ Da[ + [D~ ~ V [ a ] - i  V'[a, x] D~lll ~o. 

As we mentioned in Sect. 1, these results can be thought of as extensions 
to those in Sect. 4 of [11]. N.J. Higham considered the standard Vandermonde 
matrix for which p,j(a~)-- a~i in (1.1), and looked at a componentwise relative 
perturbation using lq" II ~, with perturbations to the matrix and the right-hand 
side considered separately. In our notation this corresponds to a=0 ,  fl=Jbl, 
~j= Ilxll| and ~=lal, /3=0, ~ =  llxllo~. Our expressions for condP~imal(a, b) and 
cond~l (a ,  b) then reduce to those in [ i  1]. 

In order to evaluate the bounds (2.9) and (2.13), or the expressions (2.10) 
and (2.14), one must, in effect, invert V[a] or V[a]  T. Since the primal and 
dual problems (1.2) and (1.3) can be solved in O(n 2) operations, inversion via 
n+  1 linear systems is an O(n 3) process. Traub [20] has shown that a Vander- 
monde matrix can be inverted in O(n 2) operations, but this algorithm has ques- 
tionable stability properties; see Sect. 3 of [11]. A viable alternative for I1" I1~ 
= II " II ~ or II " IIv = I[ �9 Ilx is to use a matrix norm estimator, such as ACM TOMS 
Algorithm 674 [13]. For  any matrix B, this algorithm computes a lower bound 
on Ilnll~ or [IB]I~ that is almost always within a factor ten of the true norm, 
at a cost of no more than ten matrix-vector products of the form Bz and BTz. 
With this approach the condition numbers in Theorems 2.1 and 2.2 can be 
approximated in O(n 2) operations (ignoring the cost of forming V'[a]). For 
example, in (2.9) we have B=D~_ 1 V[a]-T D~ and B=D~ 1 V[a]-T diag(z)D~ 
and the cost of forming Bz or Brz is dominated by the cost of solving a dual 
or primal problem. For  the primal condition numbers in Theorem 2.2, the pres- 
ence of the ~'[a, x] factor increases the expense of Bz and BTz, but the overall 
cost remains O(n2). 

We consider now the special case of non-confluent Vandermonde-like matri- 
ces - here p~j is a polynomial which is independent of j, that is p,j-p~. Suppose 
that the solution to the dual problem (1.3) represents the interpolating polyno- 
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mial i x~ p~. It may then be appropriate to measure the solution using a func- 
i = 0  

tional norm, such as an Lp norm; 

"~!' " Pi(Y) p \lip (2.15) IIxlIL= ~=o x, dy) , 

Note that II " IlL, is a vector norm on ]1 n+t. 
An associated condition number is then 

(2.16) 

1 N p < ~ .  

cond~.~l (a, b) := lim supA 
* ~ 0  IiA'~llo<~, ilabl}~<_~ 

.{ {'AxHLp : Via+ Aa]T(x + Ax)= b +  A /} .  

dual For simplicity, we restrict our attention to the cond~,L~(a, b) case. From (2.4), 
we see that the key quantity is 

sup (i"i~=o(j~=o(V[a]-'r)ij(Abj-zjAaj)) Ip\a/p P~(Y) d o , 
IAal 6e~, [Abl =<ep ~kao 

which may be rearranged as 

a .  I " " Ip \ t / p  
SU ( I I E ( Z (g[a,]-T)ijpi(y)) (Abj--zj A a j )  dy) . (2.17) Ia-t=<~,,~bl<~- 

= O\ao [ j = O \ i = O  ] 

If we approximate the definite integral in (2.17) using a quadrature rule with 
support abscissae ao, al . . . .  , a,, then the expression simplifies dramatically. Sup- 
pose that the quadrature rule has the form 

?f(y)dy,~ ~ Wkf(ak). 
ao k=O 

Then the approximation to (2.17) is 

sup <~ ( ~ WR I ~ ( ~ (V[a]-T)'J p'(ak)) I'\t/P 
1Aa ----<'m, iAbt=e/Jkk=0 f j = O \ i = O  /(Abj-zjAaj) ) , 

and since pi(ak)=(V[a])ik, this reduces to 

n \l/p [ n p~l/p 

IAal < ea, Iabl _-< ~# ~ = 0 

< Hence Wk(flk + Izkl ~k) provides an extremely inexpensive approximation 

to cond~U~,(a, b). 
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There are two possible drawbacks with this approach. One is that the quadra- 
ture method is restricted to the grid {ai}7=o, which may be very coarse or 
irregular. The other is that the integrand in (2.17) is generally non-differentiable, 
and for both these reasons the integral approximations might not be very accu- 
rate. In order to avoid the non-differentiability, we suggest using the L 2 measure. 

3 Primal and dual backward errors 

Given an approximate solution 2 to (1.2) or (1.3), how close is the nearest 
system of the same structure for which ff is an exact solution? Considering 
the dual problem first, this question leads to the definition of the componentwise 
structured backward error 

(3.1) dual ~ "  ~ "  bey (a, b, 2).'=inf{e: V[a+Aa]T~=b+Ab,  IIAallv~, IIAbll,~e}. 

A 

Note that if there are no feasible perturbations Aa and Ab such that IlmaIIv 

and IIAbll~ are finite, then the backward error is regarded as infinite. 
The dual case is simpler than the corresponding primal case because each 

perturbation appears in only one constraint equation: 

(3.2) ~ Pji[ai+Aal] Ycj=bi+Abt, O<i<n. 
j=O 

If we use It" IIv = II" I1~ in (3.1), then we can decouple the problem into n + l  
independent subproblems of the form 

( 3 . 3 )  inf{max{lA_~.a,[ IAb~l}tj ~'PJt['a~+Aai]'~J=b'+Abt} 
' ~ i  : j=O 

Note that if a i = 0  in (3.3) then Aai is forced to be zero, and similarly fi t=0 
forces Ab/=0. In the case where Pji are polynomials, (3.3) has the following 

interpretation. Given the polynomial P/(y)= ~ xjPji(Y) and the point (ai, bi), 
j = 0  

find the smallest perturbation, measured as II [AaJ0q, A b.,/[3d r II | such that Pi(Y) 
interpolates (a~+Aai, bi+Abt). It will usually be the case that the optimum 
perturbation satisfies [Aa~[/~i= IAbil/fli, since if not, the larger of the two values 
can normally be decreased at the expense of (possibly) increasing the other. 
An exception can occur when [Aail/oq < [A bil/fli and at + A al is a local maximum 
or minimum of Pi(Y). Hence, the optimum point (at + A at, bi + A b~) is either 

(1) An intersection point of P~(y) and one of the lines A at fli = _ A bt at. 
(2) A local maximum or minimum of Pt(Y)- 

Hence be~U*l(a, b, ~) can be computed by finding, for i=0,  1 . . . . .  n, the roots 
of two polynomials of degree n +  1 and one polynomial of degree n. In the 
case of a non-confluent Vandermonde-like matrix, pj~(y) is independent of i, 
and so step (2) need only be done once. 
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Since polynomial root-finding is an expensive process, especially for large 
n, an attractive alternative is to linearize the constraint in (3.2). We will denote 

dual the corresponding linearised backward error approximation to b% (a, b, ~) by 
linbedual(a, b, ~). The linearised subproblem for the [1. II ~ backward error may 
be written 

(3.4) inf{max {{Aa,I Iab,[ -Abi=r ,}  ~i ' fli }: Aai ~,i 

where ~:= V'[a]V2 and the residual r..=b- V[a]V2. We may re-write the con- 
straint as 

Aal 
" 

The H61der inequality (see, for example, [15]) then says that for any H61der 
p- and q-norms with p, q > 1 and 1/p + 1/q = 1, 

(3.5) 
Aai, Iri[ A~b~] + >_-[I[~,~,,/~,]TII ' 

with equality being attainable for certain perturbations. Using p=  ~ ,  we find 
that 

(3.6) linbe~al(a,b,~)=max{(fl+lr---].2l)}. (3.6) 

The corresponding optimal perturbations are given by 

A a *  - s i g n  (z,i) ri ~i - r i  fli 
I~il ~+fli ' A b *  = Izil ~i +f l i" 

dual  Note that a genuine upper bound on beo~ (a, b,x') can be constructed from 
Aa* by making a further perturbation to the right-hand side. Letting 

Ab**= f pji[ai+Aa*] ~j-bl ,  
j=O 

{Aa*, Ab**} is clearly a feasible perturbation, and hence 

( 3 . 7 )  dual ~ .  / - - .  be~o (a,b,~)<max{ItAa*ll~o, IIAb**ll~}. 

We mention that in the worst case this bound can be arbitrarily poor. In particu- 
lar, if fli=O and Ab**~0,  then the right-hand side of (3.7) is infinite, even 
though the true backward error could be finite. 

For a general H61der p-norm, minimizing II[Aai/oti, AbJflfl~llp for each i, 
using (3.5), leads to an upper bound for linbe~Ual(a, b, 2), 

(3.8) l inbe~al(a 'b 'x)< ('l[&i~,~'flJT[iq)r" 
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As with the linbed"al(a, b, if) case above, this can be converted into an upper 
bound for d,al bey (a, b, 2) by re-perturbing the right-hand side. 

The analogous definition to (3.1) for the primal problem is 

(3.9) p r i m a l  ~ A bey (a,b,~),=inf{e: V[a+Aa] ,2=b+Ab,[IAaLl~<e, llAbll~<e}. 

We now have a nonlinear, non-convex optimization problem with 2n + 3 vari- 
ables. 

Moving directly to the linearised approximate backward error, the constraint 
becomes 

(3.10) V' [a] diag (~) A a -  A b = r, 

where r now denotes the primal residual, r:=b-V[a] ~. The constraint can 
be re-written 

(3.11) [V'[a] diag(~) D~, --D~] =r.  

This is an underdetermined system of n+  1 linear equations in the 2(n+ 1) un- 
knowns. The problem of finding the minimum-norm solution to (3.11) can be 
transformed into the problem of finding the minimum-norm residual to an over- 
determined system (see Sect. 2 of [10] for more details). Standard methods exist 
for such problems when the H61der p-norm for p = 1, 2, oo is used. In the II " !1 
case, this is equivalent to computing linbe~imal(a, b, ~). In the II �9 112 and II" II 1 
cases, the norm of the minimum-norm solution to (3.11) is clearly an upper 
bound for the corresponding linbePrimal(a, b, ~). As above, an upper bound for 
the actual structured backward error can be generated from the linearised back- 
ward error perturbations by altering A b. 

For  the dual problem, the expressions (3.6), (3.7) and (3.8) can be computed 
in O(n 2) operations. In the primal case, finding the minimum-norm solution 
to (3.11) is O(n 3) for p =2,  and requires an iterative algorithm for p =  1, ~ .  

4 Discussion 

How do the structured condition numbers and backward errors derived in the 
last two sections compare with their unstructured counterparts? Since the struc- 
tured definitions involve a restricted class of perturbations, intuitively, the condi- 
tion number should decrease and the backward error should increase under 
the imposition of structure. However, in order to make this argument precise, 
we must measure the perturbations consistently. 

An unstructured componentwise condition number for the problem A x = b 
can be defined as 

A 

(4.1) ucond(A, b):= lim sup {-IIAxll| 
~ 0 IAAI __< e/~, IAbl___ 8# 

A 

Here Axl..=xJ~ i (as usual) and E is a matrix of nonnegative tolerances. This 
condition number can be compared with the I[ �9 II ~ structured condition number 
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Table 1. Condition number ratios: unstructured/structured 

max min mean 

(1) 4.51 0.63 1.28 
(2) 2.96 0.68 1.20 
(3) 15 705.40 145.52 1862.76 
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- in both cases we are allowed to perturb each component of the data by 
an amount e, relative to the tolerance value. We can characterise (4.1) as 

(4.2) ucond (A, b) = ]IDr -1 IA- ~[ (/3 + E [x[)l[ o~. 

In the case where r = [Ixlf o~, this result is given in Eq. (3.5) of [9]. The extension 
to general ~g is straightforward. From the expansion (2.2) it follows that 

D~ IV' [a]TI < E ~ cond% ~al (a, b) < ucond (V [a] T, b), 

IV' [a][ D, < E ~ cond~ imal(a, b) < ucond (V [a], b) 

(assuming that the same /3 and r are used in the two cases). This result can 
also be deduced by comparing (2.10) and (2.14) with (4.2). The unstructured 
componentwise backward error for A x = b 

ube(A, b, 2):=inf{e:(A +AA) g=b + Ab, lAa[ <eE, lAb[ <eft}, 

has the characterisation [16] 

(4.3) ube(A, b, 2) = max ~ Iril "~, 
�9 [( /3+El~l) ,J  

where r ,=b-Ax .  It follows from (3.6) and (4.3) that 
_~ ~ " dua l  D~[V'[a]T[-E lmbe0o (a,b, Yc)>ube(V[a]T,b,~), 

IV'Ea]ID~< E=~ linbe~imal(a, b, ~)>= ube(VEa], b, ~2). 

Note, however, that with the "natural"  componentwise relative tolerances 
= lal and E = IV[a][ (primal) or E = I V[a]T[ (dual), it is not possible, in general, 

to predict whether the structured condition numbers or backward errors will 
be smaller or larger than the unstructured versions. For example, from (2.8) 
and (4.2) we see that the ratio of ucond(V [a] a', b) to cond~ ual (a, b) depends largely 
on the relative sizes of/3, D~ [z[ and E IxJ. As an illustration, we give some numeri- 
cal results for the dual problem with the standard Vandermonde matrix 
(V[a])ij=a~, and with tolerances ct=[a[, /3=[b[, ~=[x[ and E=IV[a]T]. Three 
sets of data points a ~ R  6 were chosen: 

(i) The Chebyshev polynomial zeros, al = cos((/+ 0.5)n/6), i= O, 1 ....  ,5. 
(2) Equally spaced points in [ -  1, 1]. 
(3) Equally spaced points in [1, 1.5]. 

For  each a we generated 1000 right-hand sides b with elements from the Normal 
(0, 1) distribution, and computed the ratios ucond(V[a] x, b)/cond~Ual(a, b). The 
maximum, minimum and mean values of the ratios are given in Table 1. For 
sets (1) and (2) the ratios are typically greater than one, but occasionally take 
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values less than one. For  set (3) the ratios are much larger - here [V[a ]T I  Ixl >> [b[ 
and cancellation in the product z=V'[a]Tx causes D, izb~lV[a]T[ Ixl. These 
results emphasise that the usual, unstructured condition numbers can be inap- 
propriate for predicting the effect of structured perturbations. 

The simple form of the standard Vandermonde matrix allows us to determine 
a lower bound on ucond(V[a] T, b)/cond%Ual(a, b) when ==lal and E=IV[a]TI. 
We have 

(D~ IV' [a]TI)~i:j(IV [a]TI)~j ~ n(I v [a]TI)~j, 

from which it follows that 

ucond(V[a]  T, b) > _  2 

cond~Ua'(a,b) = n+  1" 

A similar result holds in the primal case. 
It is worth emphasising that although structured condition numbers are 

clearly of importance in the case where the input data contains errors, they 
are not necessarily relevant for investigating the accuracy of computed solutions. 
Numerical algorithms for structured linear systems do not generally guarantee 
to solve a nearby system with the same structure. In particular, we know of 
no Vandermonde algorithm with this property. For  the same reason, whilst 
it may well be of interest to compute, or approximate, the structured backward 
error, this quantity will not necessarily be small. 

Condition numbers and backward errors can also be used to provide forward 
error bounds. It is clear that the forward error II~Z-xllv can be approximately 
bounded by the product of the condition number and backward error, assuming 
that they are defined consistently. However, we can see no reason why the 
structured product should be preferred to the unstructured product, and numeri- 
cal experiments in [2] revealed little difference between the two cases. 

5 Matrix inversion condition numbers 

Although it is rarely necessary to invert a matrix in practice, it is traditional 
to consider the sensitivity of this process, and to define an associated condition 
number. This quantity has the virtue of giving information about a matrix 
that does not depend on a particular right-hand side. 

Using a vector norm l[ " l[~ and a matrix norm 1[ " [I,, to measure componentw- 
ise perturbations to a and V[a] -1, we define the structured componentwise 
condition number with respect to inversion for the primal problem to be 

�9 A 

(5.1) invcond~;~ma'(a):=lim sup [.llAInvlJm: Alnv= V[a+aa] -1-  V [ a ] - ' } ,  
~0 {izXa {i ,.,_.< ~ I.  ,~ 

where (I~nv)i~ = (Alnv)ij?~, and the ?it are nonnegative tolerances. 
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Using (2�9 a s tandard  result (see, for example,  [7, L e m m a  2.3�9 shows 
that  

(5.2) V [ a + A a ]  - 1 -  V i a l  -1 = - Vra ]  -1 V'[a] diag(Aa) V[a ]  -1 +0(22).  

Now,  with IIAall ~o _-__e, 

(5.3) IV[a]  - 1 g '  [a ]  diag(A a) V i a l  - 11 = J V[a] - 1 V' [a]  D~ diag(A a'') V[a] - 11 

< l g [ a ]  -1 V' [a]l D~IVUa]-~I ~, 

giving a componentwise  bound  on the per turba t ion  to the inverse�9 We will 
define a matr ix  n o r m  rt" tim to be monotone if IZl < IBl=~ IPAII,~ < llnllm ~. It  then 
follows f rom (5�9 and (5�9 that  when a mono tone  matr ix  n o r m  is used 

invcond~i~"l(a) < II M [a]  II m, 

where M[a] := IV[a ]  -1 V'[a] l  D,[V[a]- l l .  
I t  is possible to get an exact expression when the no rm is 

I[ AII  max . '=m ax laijI. 
tJ 

We make  use of  the following lemma.  

L e m m a  5.1. For any A, Be lR  N• 

(5.4) max  IIA diag(Aa) BIIm,x= IIIAI D~lBIIImax ~, 
IIh~all ~_--<e 

where D~ = diag (e) > 0 and A a = D~ A a. 

Proof. We have 

(5�9 [(A diag(Aa) B)ij[ aik Aak bkj O~k Ibki[ = e(lal O~ IBI)~, 
k = l  

giving " < "  in (5.4)�9 If  the (r, s) element of  IA[ D~IBI has m a x i m u m  modulus  
then taking Aai = __+ 71 ~, it is possible to choose the signs so that  we have equali ty 
in (5.5) for i = r , j = s .  [] 

Applying  the l emma  to (5.2) shows that  

�9 p r imal  mvcond~.max (a) = Jl M [a]  Ilmax. 

The  analogous  condi t ion n u m b e r  for the dual  p rob lem 

(5.6) invcondd.~l(a).-=lim sup ~ l l ~ n v l l ' :  A l n v = V [ a + A a ] - T - - V [ a ] - T } ,  
' e 0 i i ~ a l l v < ~ [  

1 Monotone vector norms are defined, for example, in [15] and by analogy with Theorem 5.5.10 
of [15] it can be shown that a matrix norm is monotone if and only if it is absolute; that 
is, IMtJ =l[[alll. 
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can be analysed in the same manner, and the matrix M[a] x plays the role 
of M [a]. 

The results are collected in the next theorem. 

Theorem 5.1. In the notation above we have 

�9 p r i m a l  mvcond . . . . .  (a)= IlM[aqll . . . .  invc~ = IlM~d]a TII . . . .  

and for any monotone matrix norm I} " II~, 

invcond~i m"l(a) < II M [a] [I m, invconddual(a) < II M [aqTltm . 

6 Least squares 

In this section we look at condition numbers and backward errors for the 
least squares analogues of (1.2) and (1.3). Here the dual problem naturally arises 
when low degree polynomials are fitted to discrete data, and hence we examine 
the condition of the dual case first. We thus assume that functions {p~ }7'--"~ j -o 
and points ao <a,  < ... <a,~ are given, with m>n,  so that V[a-IeIR ('~4 ~)-~(;'~-~) 
in (1.1). We suppose that V[a] has full rank, and that each Pij has a continuous 
second derivative around aj. The associated dual least squares problem is 

(6.1) min {{V[a]T x--bl{2 . 
x ~ R n  + I 

The solution x satisfies the normal equations 

(6.2) Via l  V[a]T x =  V[a] b. 

The corresponding componentwise structured condition number may be 
defined as 

LScondduam(a, b)..= lim sup 

�9 { IlAx{lv : V [ a + A a ]  V [ a + A a ]  T (x+Ax)  

= V [ a + A a ]  (b+Ab)}. 

This quantity can be analysed in a similar way to the condition numbers in 
Sect. 2. Using the linearisation (2.2) in the constraint 

V[a+ Aa] V[a+  Aa]T (x + Ax )=  V[a +  Aa] (b+Ab) 

leads to the equation 

(6.3)V[a] V[a] TAx = V[a] Ab + V' [a] diag(Aa) rLs-- V[a] diag(Aa) z + O(e2). 
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Here z:=V'[a]Vx (as in Sect. 2) and rLS denotes the least squares residual, 
rLs:=b-- Vial  T x. We may re-write (6.3) as 

Vial  V[a] TAx = V[a] Ab + Via, b, x] Aa + O(e2), 

where Via, b, x] ..= V' [a] diag(rrs ) -  Vial diag(z), and so, in terms of the scaled 
perturbations, 

x = D~- (V [a] V [a] T)- 1 (V [a] D B A b + V[a, b, x] O~ ~a) + O (e2). 

This is a similar expression to (2.5), and by taking norms for a general {l" {Iv 
and using Lemma 2.1 for I[ " I] o~, we obtain the results in the next theorem. 

Theorem 6.1. In the notation above and for any vector norm, the structured com- 
ponentwise condition number for the least squares dual problem satisfies 

T + ( 6 . 4 )  LScondd"al(a,b)<]lD~ ~ Vial  DaNv 
+ IlO~ ~(V[a] V[a]W) - x PEa, b, x] O, llv, 

where V[a]X+,=(V[a] V[a]X)-l V[a] (the pseudo-inverse of Via]V), and this 
upper bound is not more than twice LScond~'aZ(a, b). For the infinity vector norm, 

(6.5) LScondd'"'(a, b)= I[ rD~-' Via] T+ DaI 

+ ID~,(V[a] V[a]T)- 1 P'[a, b, x] D,{ 1[ ~. 

In computing the expressions in (6.4) and (6.5), forming the relevant matrices 
in a straightforward manner costs O(n2m +ran 2) operations, since Vial Via] v 
must be computed and factorised, and O (m) linear systems must then be solved. 
However, for the one norm or the infinity norm a much cheaper estimate is 
available using the algorithm in [13]. For example, if the original least squares 
problem has already been solved by a factorisation method (such as QR) then 
each matrix-vector product required by [13] costs only O(mn) operations. 

Componentwise analysis for the unstructured least squares problem can be 
found in [3] and [14]. It is interesting to note that whilst there does not appear 
to exist an exact expression for the componentwise condition number of the 
unstructured problem for any norm, the II" II oo dual condition number does 
have a neat characterisation. 

For completeness, we also derive the corresponding result for the least 
squares primal condition number 

LScond~p~Jm"l(a, b).-= lim sup 

.{ [l~xx,l~: V[a+Aa]X V[a+Aa] 

( x + A x ) =  V[a+ Aa]X (b+ Ab)}, 

where V [a] in (1.1) is now assumed to be in R (" + ') • (" + '), with m > n. Linearising 
the constraint, and writing the result in terms of the scaled perturbations, gives 

Ax=D~ (Vial  T Vial) -1 (V[a] T D O ~A"b+ Via, b, x] D, ~ a ) +  O(eZ), 
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where 

~'[a, b, x] .-=diag(V' [a]  T ( b -  V[a] x ) ) -  V i a l  T V' [a] diag(x). 

Hence, we have 

Theorem 6.2. In the notation above and for any vector norm, the structured com- 
ponentwise condition number for the least squares primal problem satisfies 

(6.6) LScondprimal(a, b) ~ II O~- 1 V[a]  + D 0 II v 

+ IID~- I(VEa]T VEal)-  1 PEa, b, x] O~ilv, 

where V[a] + ,= (V[a]  T V [ a ] ) -  1 V[a]T (the pseudo-inverse of' V[a]), and this upper 
bound is not more than twice LScondprlm~l(a, b). For the infinity vector norm, 

(6.7) LScond~ima~(a, b) = qllO~- 1 V[a] + Oal 

+ I o f  1 (V ia]  ~ Via] ) - ,  ~'[a, b, x] O, lll | 

It is also possible to analyse the componentwise  structured backward  error  
in a least squares solution. Suppose )~ is an approximate  solution to (6.1). We 
seek per turbat ions  Aa and Ab such that  

V[a + Aa] V[a + Aa]T 2 = V[a + Aa] (b+Ab) .  

Linearising this constraint,  using (2.2), and re-writing in terms of the scaled 
perturbations,  gives 

I ~.~a I = V [a]  FLS, [ (V[a]  d iag(z ' ) -  V' [a]  diag(FLS)) D,, -- V[a] Dp] LAbJ 

where rLS ,=b--  V i a l  T ~, the residual in ~. This underdetermined system of  n + 1 
equat ions  in 2(m + 1) unknowns  has the same form as (3.11), and the comments  
there concerning the computa t ion  of  the exact II " J] o~ linearised backward error  
and upper  bounds  for the II �9 II 2 and II �9 ]11 linearised backward errors  also apply 
here. 

Similarly, if ~ is an approximate  solution to  the primal least squares problem 
then the linearised constraints for the backward  error  can be writ ten 

[ (V ia l  T V' [a]  diag(ff)-- diag(V' [a]  T rLS)) D,,  -- Vial T D0] r~[A~.,, ] = V[a]  T ~LS, 
tAbJ 

where FLS now denotes the primal residual, b-- V[a] ~. 
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