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Abstract

Many graph mining tasks can be viewed as classification problems on high
dimensional data. Within this class we consider the issue of discovering core-periphery
structure, which has wide applications in the economic and social sciences. In contrast
to many current approaches, we allow for weighted and directed edges and we do not
assume that the overall network is connected. Our approach extends recent work on a
relevant relaxed nonlinear optimization problem. In the directed, weighted setting, we
derive and analyze a globally convergent iterative algorithm. We also relate the
algorithm to a maximum likelihood reordering problem on an appropriate
core-periphery random graph model. We illustrate the effectiveness of the new
algorithm on a large scale directed email network.
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Introduction
Graph theory gives a common framework for formulating and tackling a range of prob-
lems arising in data science. Many such tasks can be viewed in terms of categorizing
nodes or discovering hidden substructures that relate them. Clustering, or community
detection, is perhaps the most widely studied problem, and it forms the basis of many
classification algorithms (Bertozzi et al. 2018). In this work we study the different, but
closely related, issue of identifying core–periphery structure; we seek a set of nodes that
are highly connected internally and with the rest of the network, forming the core, and
a set of peripheral nodes that are strongly connected to the core but have only sparse
internal connections.
This kind of structure is important for a number of reasons. For example, iden-

tifying core–periphery structures can help in identifying and categorizing hubs, i.e.,
well-connected nodes. As noted in (Rombach et al. 2014), such nodes often occur in real–
world networks. This is an issue for some community detection methods, as hubs tend
to be connected to many different communities and, thus, can be awkward to classify.
Moreover, the set of core nodes can be used to identify internally cohesive subgraphs of
highly central nodes. In fact, even though all core nodes typically have high centrality
score, not all nodes with high centrality measures belong to the core and it is possible to
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find sparsely connected subgraphs of central nodes not belonging to the core (Borgatti
and Everett 2000).
The concept of the network core–periphery is closely related to the idea of rich-

clubs, nested networks and onion network structures (Zhou and Mondragón 2004;
Bascompte et al. 2003; Schneider et al. 2011). In particular, a number of core–
defining algorithms have been proposed in recent years, e.g., (Cucuringu et al. 2016;
Rombach et al. 2017; Tudisco and Higham 2019), following the seminal work by
Borgatti and Everett (2000). Core–periphery structure has been detected and inter-
preted in many complex systems, including protein–protein interaction networks
(Kim et al. 2007), metabolic and gene regulatory networks (Sandhu et al. 2012),
social networks (Borgatti and Everett 2000; Baños et al. 2013), engineered net-
works (such as the Internet, power-grids or transportation networks) (Tudisco and
Higham 2019), and economic networks (Tomasello et al. 2017). See also the review
(Csermely et al. 2013).
From a computational perspective, several recent works provide algorithms that apply

to undirected networks. In particular, we have introduced in (Tudisco and Higham
2019) a scalable nonlinear optimization method with global quality guarantees for core–
periphery detection in binary, undirected and connected graphs. This method exploits
an intriguing connection between optimization and nonlinear eigenproblems and allows
for a fast and easily implementable iteration which guarantees to compute the global
maximum of a highly nonconvex core–score quality function.
In this work we consider the core-periphery concept in the more general setting of

directed, weighted and possibly disconnected networks and we extend the results of
(Tudisco and Higham 2019), both in terms of the algorithms and of the theoretical
analysis, to this more challenging case.
In our directed case, we use the concept that a set of nodes forms a core if there are

many core-to-core, core-to-periphery and periphery-to-core edges, with few periphery-
to-periphery edges.
Although the ideal core–periphery subdivision defines two well distinguished sets of

nodes, in practice one often looks for a core–score vector u ≥ 0 such that a smaller value
ui indicates that node i is more peripheral. Such an assignment may be viewed as a type
of node centrality measure (Newman 2011). Indeed the classic cases of degree centrality
and eigenvector centrality have been proposed and tested in this context (Borgatti and
Everett 2000; Rombach et al. 2017; Tudisco and Higham 2019; Mondragón 2016), and,
as we explain in the “Connection with degree and eigenvector centralities” section, the
approachwe propose heremay be viewed as a nonlinear generalization of both these cases.
The manuscript is organized as follows. The “Notation” section introduces some rel-

evant notation. In the “Core–periphery via functional kernel optimization” section we
express the core-periphery detection problem in terms of kernel-based optimization and
in the “Connection with degree and eigenvector centralities” section we connect this
idea with classical node centrality measures. The “Logistic core-periphery randommodel
for directed graphs” section shows that another viewpoint is also relevant; the approach
may be viewed as maximum likelhood reordering under a new random graph model
that generates directed core-periphery structure. In the “Core-periphery nonlinear oper-
ator” section we study the nonlinear optimization problem and show that it may be
solved via an inexpensive and globally convergent iteration. The “Enron dataset” section



Tudisco and Higham Applied Network Science            (2019) 4:75 Page 3 of 13

illustrates the performance of the algorithm on a large scale email dataset and the
“Conclusion” section gives some conclusions.

Notation
We consider directed and possibly weighted graphs G = (V ,E) with node set V =
{1, . . . , n} and adjacency matrix A = (Aij).
If node i does not point to node j then the entry aij is zero. Otherwise, aij takes a positive

value, accounting for the strength of the directional tie from i to j.
We let 1 denote the column vector in Rn with all values equal to one, and define the

in and out degree vectors as din = A1 and dout = AT1, respectively. Operations on and
between vectors are to be interpreted in a componentwise sense, so that, for example,
xp−1 has ith component given by xp−1

i and xp−1y has ith component given by xp−1
i yi.

Inequalities involving vectors and matrices are also to be interpreted componentwise, so
that, for example, A ≥ 0 means Aij ≥ 0 for all i and j.

Core–periphery via functional kernel optimization
To search for the presence of a core and periphery we define a core–score vector, that is, a
nonnegative vector u quantifying the coreness of the nodes, where ui > uj indicates that
node i is closer to the core than node j. We define our core–score vector as the solution to
the following nonconvex and constrained core–periphery quality function maximization
problem

max fα(x)
s. t. x ≥ 0 and ‖x‖ = 1

(1)

where, for some fixed real number α ∈ R to be chosen, fα is the core–quality function

fα(x) =
n∑

i,j=1
Aij κα(xi, xj), κα(x, y) =

( |x|α + |y|α
2

)1/α
. (2)

Note that, since only relative values are important, a constraint of the form ‖x‖ = 1 is
very natural. However, there is no reason at this stage to prefer a particular norm over
another. Therefore, we assume for now that ‖ · ‖ is any vector norm and consider the
problem (1) in this general setting.
For x, y ∈ R, the kernel κα(x, y) is the generalized (or Binomial) mean of the two nonneg-

ative numbers |x| and |y|. The case α → ∞ is particularly well-suited for core-periphery
purposes. If x is a nonnegative vector, we have

f∞(x) := lim
α→∞ fα(x) =

n∑

ij=1
Aij max{xi, xj},

and thus any nonnegative vector x for which f∞(x) is large assumes a necessarily large
value on the entries involving the nodes in the core and smaller values within the periph-
ery. In fact, when ‖ · ‖ denotes a p-norm, any vector x ≥ 0, ‖x‖ = 1 such that f∞(x)
is large assigns to each node a value xi between zero and one so that each connection
between two nodes i, j in the graph or, equivalently, each nonzero in the weight matrix
A, involves at least one node such that xi is large. We note that the relevance of f∞(x)
as a core–periphery quality function is highlighted for example in (Rombach et al. 2017),
and the relaxed version (1) involving α was considered in (Tudisco and Higham 2019) for
undirected graphs.
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Connection with degree and eigenvector centralities
In the undirected case, A = AT , it has been argued that both the degree vector and the
eigenvector (or Bonacich) centrality vector carry interesting core–periphery information
and are good candidates for core score vectors (Borgatti and Everett 2000; Rombach et al.
2017; Tudisco and Higham 2019; Mondragón 2016). In this section we show that when
α = 1 or α = 0 the problem (1) admits an explicit solution that, even when the graph is
directed, boils down to the degree and the eigenvector centrality, respectively.
When α = 1 the function fα(x) is linear, taking the form of the scalar product

f1(x) =
n∑

ij=1
Aij κ1(xi, xj) = 1

2
1T

(
A + AT

)
x .

As both the matrix A+AT and the vector x have nonnegative entries, using the Cauchy–
Schwarz inequality, we have

f1(x) = 1
2
|1T

(
A + AT

)
x| ≤ 1

2
‖1T

(
A + AT

)
‖2‖x‖2

and the inequality is always strict unless x is a multiple of
(
A + AT)

1 = din + dout.
Therefore, if we choose the norm constraint in (1) to be ‖x‖2 = 1, we have that

max
x≥0:‖x‖2=1

f1(x) = 1
2
‖din + dout‖2

with maximizer u given by u = (
A + AT)

1 = din+dout properly normalized. This shows
that the solution of (1) reduces to the degree vector when the graph is undirected and
coincides with the sum of the incoming and outgoing degree vectors in the general case.
It is well-known that when α → 0, κα(x, y) converges to the geometric mean of |x| and

|y|. Thus, when α = 0 and x ≥ 0, we have

f0(x) := lim
α→0

fα(x) =
n∑

ij=1
Aij

√
xixj .

As x �→ √
x is bijective on the set of vectors with nonnegative entries, we can change

variable y = √
x in (1) and recast the problem (1) as

max
y≥0

∑

ij
Aij yiyj = yTAy, subject to‖y2‖ = 1.

Again, if we consider the 1-norm, we can write the constraint ‖y2‖1 = 1 as ‖y2‖1 = yTy =
1 and problem (1) becomes

max
x≥0

f0(x) = max
y≥0

f0
(
y2

) = max
y≥0

yTAy
yTy

.

By the Perron–Frobenius theorem (Horn and Johnson 1990), the Rayleigh quotient
yTAy/yTy has a unique nonnegative maximizer c, which coincides with the Perron eigen-
vector of the nonnegative matrix A + AT . In other words, the core score that maximizes
f0 is the vector u = c2, where c is the eigenvector centrality of the symmetrized network
with weight matrix A + AT .
In the “Core-periphery nonlinear operator” section we show that both these two cases

are actually a special case of a more general setting. We prove that for any α ≥ 0 the solu-
tion of (1) is the Perron eigenvector of a nonlinear core–periphery operator. In particular,
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this implies that the solution u to (1) is unique for any α ≥ 0, with an appropriate nor-
malization. Moreover, using nonlinear Perron–Frobenius theory, this further allows us to
introduce an iterative algorithm that computes u, with global convergence guarantees.

Logistic core-periphery randommodel for directed graphs
We introduced in (Tudisco and Higham 2019) a random graph model for undirected and
unweighted graphs that can be used to artificially generate networks with a planted core–
periphery structure. This model, unlike more classical block-based versions, is based on
the logistic sigmoid function 1/(1+ e−x) rather than a Heaviside step function and allows
a smooth transition between the set of core nodes and the set of peripheral ones. We refer
to it as the logistic core–periphery random model. We notice that similar logistic function
based random models have been considered in (O’Connor et al. 2015; Hoff et al. 2002; Jia
and Benson 2018).
Here we extend the model to the case of directed graphs and we prove that the method

of maximum likelihood applied to this random model coincides with the core–periphery
quality function maximization problem (1), which provides the core–periphery analogue
of a known phenomenon for stochastic block models in the community detection case
(Newman 2016).
Consider a core–ranking assignment, that is, a nonnegative permutation vector π that

assigns a distinct integer πi between 1 and n to each vertex i. The closer πi is to 1, the
higher the rank of i as a member of the core. For convenience, we shift-and-scale the
core–ranking vectors via the affine transform u �→ 1 − π/n. Hence, we consider the set

CR(n) =
{
u ∈ Rn : ui = 1 − πi/n, π is a permutation of {1, . . . , n}

}
,

so that, similarly to a core–score assignment, u ∈ CR(n) has values in [ 0, 1] and larger
values of u correspond to higher positions in the core ranking.
Now, given u ∈ CR(n), the logistic core–periphery random model generates an edge

from node i to node j with independent probability given by

Pr(i → j) = 1
1 + e−κα(ui,uj)

= pij(u) . (3)

Note that for α2 ≥ α1 ≥ 0 we have
√|xy| = κ0(x, y) ≥ κα1(x, y) ≥ κα2(x, y) ≥ κ∞(x, y) = max{|x|, |y|} .

Thus, for any α ≥ 0, the probability pij(u) tends to be large if at least one of the nodes i
and j has a high core rank and this effect increases as α grows, as shown by Fig. 1.
Suppose we are given a network with the nodes in arbitrary order and wish to find the

best core ranking assignment based on the logistic random model (3). From a maximum
likelihood perspective, this corresponds to maximizing the log-likelihood

Lα(u) =
∑

ij∈E
log pij(u) +

∑

ij/∈E
log(1 − pij(u)) (4)

among all possible u ∈ CR(n). In other words, assuming that the given network is a
sample from the logistic core–periphery random model (3) with the node labels shuffled
arbitrarily, this is most likely to be the correct reordering.
A key observation here is that, for ranking vectors u ∈ CR(n), this maximum likelihood

approach is equivalent to assigning a core–score to the nodes which maximizes a logistic
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Fig. 1 Probability pij(u
¯
) for different values of the core scores uj , ui and of the parameter α. Upper panel:

pij(u
¯
) as a function of ui , for different values of uj and α. Lower panel: contour plots of pij(u

¯
) as a function of ui

and uj , for different fixed values of α

core quality function fα . In fact, the following extension of Theorem 3.1 in (Tudisco and
Higham 2019) holds.

Theorem 1 Let G be a directed unweighted graph. For any α ≥ 0, a vector u� ∈ CR(n)

is solution of

max
u∈CR(n)

Lα(u)

if and only if it is solution of

max
u∈CR(n)

fα(u).

This equivalence provides further justification for the kernel optimization approach. It
also suggests that the logistic core–periphery random model (3) is a useful resource for
testing core–periphery detection algorithms in this directed setting.
We also note that a closely related generative random graph model for core–periphery

networks was proposed in (Jia and Benson 2018). That work focused on the undirected
case and aimed to incorporate additionally available spatial information.

Core-periphery nonlinear operator
A study of the Hessian of fα reveals that fα is neither convex nor concave in general.
This makes the solution of (1) particularly challenging. However, here we show that this
optimization problem can be re-cast in terms of the Perron eigenvector of a nonlinear
operator. We then show how its solution is always achievable via a generalization of the
classical power method from numerical linear algebra.
Given α ≥ 1, consider the nonlinear core-periphery operator Φα : Rn → Rn, entrywise

defined as follows

x �→ Φα(x)i = |xi|α−2xi
n∑

j=1

Aij + Aji

κα(xi, xj)α−1 i = 1, . . . , n.
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Given p > 1, we consider the following nonlinear eigenvalue problem for Φα

Φα(x) = λ xp−1 . (5)

One easily realizes that Φα is linear if and only if α = 1 in which case that operator
degenerates into the map such that Φ1(x) = din +dout, for any nonnegative vector x ≥ 0.
In this setting it is easily seen that the only nonnegative solution of (5) is x = din + dout

with λ = 1 and p = 2. Combined with the discussion of the “Connection with degree
and eigenvector centralities” section, this shows that for the case α = 1 the unique
nonnegative solution of the eigenvalue problem (5) coincides with the maximizer of
(1). We can retrieve the same analogy for α → 0 and p = 1. In that case we have
limα→0 Φα(x)i = Φ0(x)i = 1√xi

∑n
j=1(Aij + Aji)

√xj whereas (5) becomes Φ0(x) = λ1.
Arguing as in the “Connection with degree and eigenvector centralities” section, again,
we deduce that for α = 0 and p = 1 a nonnegative solution of the eigenvalue problem (5)
coincides with a maximizer of (1).
When α 
= 0, 1 the question of existence and uniqueness of a solution to (5) is less

trivial. The following theorem gives a full answer and shows that the same one-to-one
correspondence between (5) and (1) holds.

Theorem 2 Let α ≥ 0 and p > max{1,α}. Then the eigenvalue problem (5) has a unique
nonnegative solution u ≥ 0 such that ‖u‖p := (|u1|p + · · · + |un|p)1/p = 1 which is also
the unique solution of (1), provided that ‖ · ‖ = ‖ · ‖p. Moreover u is positive if and only if
the network has no isolated nodes, i.e., all nodes have at least one outgoing or one incoming
edge.

Note that, as no assumption on the connectedness of the graph is made, the eigenvector
centrality, i.e., the nonnegative solution of (5) for α = 0 and p = 1, is not uniquely defined.
Instead, Theorem 2 shows that the core–score assignment is always unique when p >

max{1,α} and α ≥ 0. The relevance of Theorem 2 is not only theoretical. In fact, it comes
together with the following corollary which shows the global convergence to u of a simple
iterative scheme.

Corollary 1 Given an initial guess u0 > 0 and parameters α ≥ 0, p > max{1,α} and
q = p/(p − 1), consider the following iterative method

{
vk+1 = Φα(uk)
uk+1 = ‖vk+1‖1−q

q |vk+1|q−2vk+1
, k = 0, 1, 2, 3, . . .

Then uk ≥ 0 for all k ≥ 0 and ‖uk − u‖ = O
((

α−1
p−1

)k)
, i.e., uk converges to the unique

solution u ≥ 0 of (1) and (5).

Note that on sparse networks the method scales linearly with the number of nodes. In
fact, each iteration requires O(|E|) floating point operations, where |E| is the number of
edges in the graph. Moreover, the free parameter p allows us to tune the overall number
of iterations k� = O

(
ln ε/ ln α−1

p−1

)
required to achieve the precision ‖uk� − u‖ = O(ε).

We will refer to the iteration in Corollary 1 as the Nonlinear Spectral Method (NSM).
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From Corollary 1 the choice p � α appears to be attractive, since it leads an extremely
rapid (linear) convergence rate. However, in choosing values for p and α, we must take
account of two further issues.

1. As we argued in the “Core–periphery via functional kernel optimization” section, a
larger value of α gives a kernel that more closely matches the ideal of max{xi, xj}.

2. A larger value of p produces a relaxed problem that is less likely to distinguish
between the nodes. (Note that in the extreme case of p = ∞, the constraint
‖x‖∞ = 1 allows for the obvious solution x = 1, which assigns the same score to all
nodes).

Combining points 1 and 2 with Corollary 1, we must compromise between a large param-
eter α in the kernel and a not-too-large value p for the vector norm, while keeping p > α

to maintain convergence. In practice, we found that changing the value of p did not sig-
nificantly affect the core–periphery structure output of the algorithm, which was instead
governed by the value of α. In our experiments we chose p = 2α and α = 10, as this
produced good results with guaranteed fast convergence. Moreover, we observed that
larger values of α did not produce a noticeable change in the core–periphery structure
identified.

Enron dataset
The Enron email network consists of 1,148,072 emails sent between 87,273 employees
of Enron between 1999 and 2003. Nodes in the network are individual employees and
weighted directed edges, with weights ranging from 1 to 3,904, count the number of
emails sent from one employee to another. It is possible to send an email to oneself, and
thus this network contains self–loops. Note that this network is not strongly (or even
weakly) connected. The data has been collected from (Klimt and Yang 2004).
Three plots in Fig. 2 display the network by means of colored adjacency sparsity plots.

Here, each nonzero entry in the adjacency matrix is shown with an intensity that corre-
sponds to the edge weight (the darker the dot the larger the weight on the corresponding
edge). These plots correspond to three different node labelings: the first one (top–left
corner) is the original node labeling; the second plot (top–right corner) is the labeling,
somewhat corresponding to a rich–club paradigm, obtained by re-ordering the nodes
according to decreasing values of the overall degree din +dout; the third one (bottom–left
corner) is the labeling corresponding to decreasing values of the core–score computed
with the NSM using parameters α = 10 and p = 20. This latter figure clearly shows that
the Enron email dataset contains a strong core–periphery structure, which was less preva-
lent initially. This is further confirmed by the core–periphery profile in the bottom–right
plot, which shows the behavior of

γ (Sk) =
∑

i,j∈Sk Aij
∑

i∈Sk d
in
i + douti

against k, where Sk is the set of k most peripheral nodes corresponding to a core–score
assignment. As k varies from 1 to n = 87, 273, γ (Sk) varies from 0 to 1 and measures the
ratio of periphery–periphery links to periphery–all links, if Sk were to be chosen to be the
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Fig. 2 Adjacency sparsity plots and core–periphery profile of the Enron email dataset. The two panels in the
top and the panel in the bottom-left corner show the nonzero entries of the adjacency matrix of the network,
with different color intensities for different edge weights, when the nodes are re-labeled in three different
ways: the top-left panel corresponds to the original node labeling; the top-right panel is the labeling obtained
by re–ordering the nodes according to decreasing values of the overall degree d

¯
in + d

¯
out; the bottom-left is

the labeling corresponding to decreasing values of the core–score computed with the proposed NSM.
Finally, the bottom-right panel shows the persistence probability γ (Sk) as a function of k, when Sk is the set
of the kmost peripheral nodes according to the degree vector (orange line) or the NSM (blue line)

periphery set. Thus a network has a strong core–periphery structure revealed by a core–
score vector if the corresponding profile γ (Sk) takes small values as k increases from zero
and then grows dramatically as k crosses some threshold value.
For undirected networks, the profile γ (Sk) was proposed in (Della Rossa et al. 2013)

as a means to visualize core-periphery structure. In this case, γ (Sk) coincides with the
persistence probability of the set Sk , i.e., the probability that a random walker who is
currently in any of the nodes of Sk remains in Sk at the next time step. For directed
strongly connected networks, the persistence probability of Sk would instead be given
by

∑
ij∈Sk yiPij/

∑
j∈Sk yj, where y is the stationary distribution of the random walk with

transition matrix Pij = Aij/douti . However, as the Enron dataset we are considering is not
connected, y is not well defined, and we compute γ (Sk) in its place.
Finally, in order to show how the parameter α affects the core–periphery assignment

obtained with NSM on this dataset, we show in Fig. 3 the core–periphery structure and
core-periphery profile using three different values of α, namely α ∈ {1.5, 3, 10}. While
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Fig. 3 Adjacency matrix sparsity plots and core–periphery profiles corresponding to the relabeling obtained
with the NSM and different values of α

changing the value of p does not effect the core–periphery structure output of the algo-
rithm, small values of α show a weaker core–periphery structure, which is consistent with
the fact that our model ideally works best when α → ∞. However, in practice α = 10
performs well and have observed that larger values of α do not result in any significant
change.
Since the network is not strongly connected, we do not show plots corresponding to

the eigenvector centrality—this is not uniquely defined and, in our tests, different runs of
Julia’s Arpack.eigs gave rise to very different reorderings.
For this network the NSM with parameters α = 10 and p = 20 computed the solution

to 9 digits of precision in less than 5 s on a standard i7 single core laptop, using Julia 1.0.
Our code in both Matlab and Julia is available online at the address https://github.com/

ftudisco/nonlinear-core-periphery.

Conclusion
Our main aim in this work was to show that the attractive properties of the nonlinear
spectral method proposed in (Tudisco and Higham 2019) can almost completely be trans-
ferred to the directed, weighted and unconnected setting. In particular we show that for
the core–periphery kernel quality function (1), proposed for example in (Rombach et
al. 2017; Tudisco and Higham 2019), there is always a unique solution for α ≥ 0 and
p > max{1,α}, and this solution can be computed via a nonlinear spectral method when-
ever it is feasible to form matrix-vector products based on the network weight matrix.
The proposed method, which exploits an intriguing connection between optimization
and eigenproblems, generalizes the classical powermethod in order to compute the global
maximum of a highly nonconvex function; thus it may also be of interest in other machine
learning contexts.

Appendix: Theorem proofs
Proof First note that, by adding and removing

∑
ij∈E log(1 − pij(u)), the log likelihood

(4) can be equivalently written as

Lα(u) =
∑

ij∈E
log

( pij(u)

1 − pij(u)

)
+

n∑

i,j=1
log(1 − pij(u)) =: S1(u) + S2(u) .

Let us analyze the two terms S1 and S2 individually. If a = 1
1+e−b , we have

a
1 − a

=
(

1
1 + e−b

) (
e−b

1 + e−b

)−1

= eb

which, from (3), implies that

https://github.com/ftudisco/nonlinear-core-periphery
https://github.com/ftudisco/nonlinear-core-periphery
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S1(u) =
∑

ij∈E
log

( pij(u)

1 − pij(u)

)
=

∑

ij∈E
κα(ui,uj) =

n∑

i,j=1
Aijκα(ui,uj) ,

i.e., S1(u) = fα(u). Now note that, if u, v ∈ CR(n) then there exists a permutation σ of
{1, . . . , n} such that ui = vσ(i) for all i. Therefore,

S2(u) =
n∑

i,j=1
log

(
1

1 + e−κα(ui,uj)

)
=

n∑

i,j=1
log

(
1

1 + e−κα(vσ(i),vσ(j))

)
= S2(v),

which implies that S2 is constant on CR(n). Thus u maximizes Lα(u) if and only if it
maximizes S1(u) and the proof is complete.

Proof This proof is based on the proof of Theorem 4.5 in (Tudisco and Higham 2019)
and the lemmas therein proved. For convenience, let us denote by Rn+ the cone of vec-
tors with nonnegative entries. Since we are interested in a nonnegative maximizer of
fα(x) constrained on the sphere ‖x‖p = 1, we can equivalently look for a maximizer of
fα(x/‖x‖p) on the whole cone of nonnegative vectors Rn+. Now, notice that fα is positively
1-homogeneous, that is fα(ax) = afα(x) holds for any real number a ≥ 0. Therefore we
can further change our problem into the global maximum on Rn+ of g(x) = fα(x)/‖x‖p,
without losing any generality. The critical point condition for g implies the equivalence
with the eigenvalue problem (5), i.e., x is a stationary point for g if and only if it is such
that Φα(x) = λxp−1. As p > 1, we can equivalently write Φ̃(x) = μx, with μ = λ

1
p−1

and Φ̃(x) = Φα(x)
1

p−1 . We now show that there can only be one nonnegative x such that
‖x‖p = 1 and Φ̃(x) = μx.
To this end, note that Φ̃(x) ≥ 0 for any x ≥ 0. Thus if x ≥ 0 and ‖x‖p = 1, then μ > 0

and we have

μ = ‖μx‖p = ‖Φ̃(x)‖p = ‖Φα(x)‖q−1
q ,

where q is such that 1/p + 1/q = 1. Therefore any x ≥ 0, ‖x‖p = 1 solution of (5) is a
fixed point of the map

� : Rn+ → Rn+, �(x) = Φ̃(x)
‖Φ̃(x)‖p

= Φα(x)q−1

‖Φα(x)‖q−1
q

.

Let τ(x, y) = ‖ ln x − ln y‖∞. Lemma 4.4 of (Tudisco and Higham 2019) implies that

τ
(
�(x),�(y)

)

τ(x, y)
≤ |α − 1|

p − 1
,

for any x, y ∈ Rn+. As τ is a complete metric on the cone Rn+ (see, for example, (Lemmens
and Nussbaum 2012)), this shows that � is a contraction and thus it has a unique fixed
point.
We conclude that, when α > 0 and p > max{1,α}, the eigenvalue problem (5) has a

unique nonnegative solution u ≥ 0 such that ‖u‖p = 1, which is also the unique solution
of (1) when we choose ‖ · ‖ = ‖ · ‖p. Note moreover that if we start with a positive u0 > 0

and apply � iteratively to give uk+1 = �(uk) we obtain τ(uk+1,uk) ≤
( |α−1|

p−1

)k
τ(u1,u0).

This, together with the inequality τ(u1,u0) ≤ γ , proved for example in Corollary 4.6 of
(Tudisco and Higham 2019), completes the proof of Corollary 1.
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Next we prove that u has a zero component i if and only if i is an isolated node, i.e., it
has no incoming nor outgoing links. To this end, let +

A ⊆ Rn+ be the set of vectors

+
A = {x ≥ 0 : xi = 0 if and only if i is isolated} .

Note that, equivalently, xi = 0 for x ∈ +
A if and only if Aij + Aji = 0 for all j = 1, . . . , n.

Now note that if x ∈ +
A then Φα(x) ∈ +

A . In fact, from its definition

Φα(x)i = xα−1
i

n∑

j=1

Aij + Aji

κα(xi, xj)α−1

we see that, if i is isolated, xi = 0 and thus Φα(x)i = 0, whereas if xi > 0, then Φα(x)i > 0
as κα(xi, xj) ≥ xi > 0 and there exists at least one j∗ such that Ai,j∗ + Aj∗,i > 0, which
impliesΦα(x)i ≥ xα−1

i (Ai,j∗+Aj∗ ,i)κα(xi, xj∗)1−α > 0. Note that the same conclusion holds
for any initial positive vector; that is, x > 0 implies Φα(x) ∈ +

A . Therefore the iterative
method of Corollary 1 converges to a vector in +

A for any starting point, or, equivalently,
any nonnegative solution of (5) must be in +

A . Since there exists only one such solution,
the proof is complete.
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