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Abstract

Walks around a graph are studied in a wide range of fields, from graph theory and stochastic
analysis to theoretical computer science and physics. In many cases it is of interest to focus on
non-backtracking walks; those that do not immediately revisit their previous location. In the
network science context, imposing a non-backtracking constraint on traditional walk-based
node centrality measures is known to offer tangible benefits. Here, we use the Hashimoto
matrix construction to characterize, generalize and study such non-backtracking centrality
measures. We then devise a recursive extension that systematically removes triangles, squares
and, generally, all cycles up to a given length. By characterizing the spectral radius of
appropriate matrix power series, we explore how the universality results on the limiting
behaviour of classical walk-based centrality measures extend to these non-cycling cases. We
also demonstrate that the new recursive construction gives rise to practical centrality measures
that can be applied to large-scale networks.

1. Introduction

Our work is motivated by the wide range of areas in mathematics, computer science and
physics where the concept of non-backtracking has proved useful, including spectral graph
theory [1-3], number theory [4], discrete mathematics [5,6], quantum chaos [7], random matrix
theory [8], stochastic analysis [9], applied linear algebra [10] and computer science [11,12]. In
particular, non-backtracking has recently been introduced in the field of network science,
where it has been shown to form the basis of effective algorithms for finding communities
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[13,14], optimizing percolation, [15,16], comparing networks [17,18] and assigning centrality
values to nodes [13,14,19-25].

A key novelty in our work is to extend the concept of non-backtracking to the case of non-
triangulating, non-squaring and generally the avoidance of all cycles. To make the idea
practical, we develop an appropriate recursive extension to the Hashimoto matrix construction
which allows the required quantities to be computed via matrix powering and projection. We
study theoretical properties of the resulting network centrality measures and show that they
can be applied to large-scale datasets. Because the basic Hashimoto matrix construction is not
standard in graph theory, and has been derived from different viewpoints in other fields, we
give in §1a a simple motivating illustration. This allows us to explain the notation and set up the
main combinatoric task.

(a) lllustration

Figure 1 shows an undirected, unweighted graph with five nodes. It is convenient to regard
each undirected edge as a reciprocal pair of directed edges. We write /= jto denote the
directed edge from node /to node j, so, for example, the connection between nodes 1and 2 in
figure 1 gives rise to 1— 2 and 2 — 1. The adjacency matrix for this graph has the form

01 0 0 O
1 0 1 1 1
A=[0 1 0 1 0|eR>™,
0 1 1 0 1
0 1 0 1 0]
PO 1 0 0 Omn
1 0 1 1 1
4=10 1 0 1 0] eR>*5.
O 1 1 0 1
_0 1 0 1 O_

Figure 1. An undirected graph with five nodes.

Download figure Open in new tab Download PowerPoint

Here, for example, a;,=1because there is an edge 1— 2 and a;3=0 because there is no edge
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1—3.

A walk around a graph is any route from node to node that makes use of the available edges.
The adjacency matrix provides a convenient way to count walks. For example the fourth power
of Ahasits 1, 5 entry equal to 6 because there are six distinct walks of length four (that is, using
four edges) starting at node 1 and finishing at node 5: theseare1 2221222512233
2251922232493 5 192224232235 122235-22-35and1=22—25—24-5,
Generally (A'); counts the number of distinct walks of length r starting at node /and finishing at
node j;, see, for example, [26, theorem 2.2.1].

An operation which is central to our work is the construction of the line graph [27]. Here, edges
in the original graph are regarded as nodes in the corresponding line graph. Nodes i— jand k
— /in this new line graph are connected if j=k, that is, if, together, they represent a walk of
length two in the original graph.

For illustration, we show in table 1 the entries in the adjacency matrix for the line graph of the
graph in figure 1. Here we have chosen a specific ordering of the edges in the original graph.
Zero entries have been left blank. We will denote this 12 x 12 matrix by W. Note that Wis not
symmetric; for example, wyj-> 2-3=1but wh3 152=0. Essentially, Wis encoding the presence
of walks of length two in the original graph. Its second power, W2, then counts walks of length
three. For example, by definition,

2 _
(W )1—>2,3—>4 - Z W1-2,a-b Wa—p, 34,

a—b

2 _
(W)1—>2, 3—4 Z W1—>2, a—b Wa—>b, 34

a—b

which reduces to 1 because the only nonzero product in the sum arises from wj-; 253 Woo3,
344, corresponding to the walk 1= 2 —= 3 = 4 in the original graph. Similarly, W2 counts walks of
length four in the original graph. For example,

3 —
(W )1—>2,4—>2 - Z Z w1—>2,a—>b wa—>b,c—>d wc—>d,4—>29

a—bc—d

3 _
(W)1—>2, 4—2 Z z W1—>2, a—b Wa—>b, c—d Wc—>d, 4—2>

a—bc—d

which equals 2 because of the existence of the twowalks 17223 —24—->2and1—22—25—4
— 2 in the original graph.



Table 1.

g Adjacency matrix for the line graph of the graph in figure 1. Entries that represent backtracking are
starred.

View inline  View popup

Generally, the rth power of W counts walks of length r+1in the original graph. Because of our
choice of labelling, the second, third, fifth and seventh rows of W' record walks starting with an
edge of the form 2 — x2 —  , and the first, fourth, sixth and eighth columns record walks that
end with an edge of the form x — 2 * — 2. It follows that by taking linear combinations of the
appropriate rows and columns we can recover the node-based counts for walks starting at
node 2 and finishing at node 2. Similar remarks apply for all nodes, and hence an appropriate
linear projection of W' recovers all the walk count information in A™'. This fact is formalized in
part (i) of proposition 2.4.

From the perspective of this work, a major benefit of the line graph setting is that we may
modify the adjacency matrix Win a way that allows us to count only non-backtracking walks;
that is, walks which never leave a node and then immediately return to it. In table 1 the starred
entries represent reciprocated pairs of edges, such as 1— 2 and 2 = 1. Replacing all such
entries by zero, thereby creating the Hashimoto matrix or non-backtracking matrix [28] and
calling this new matrix B, it follows that powers of B will automatically count non-backtracking
walks, and the same projection method gives node-based results; see part (ii) of proposition
2.4,

The remainder of the manuscript is organized as follows. In §2 we set up the full notation,
discuss relevant network centrality measures and describe the benefits that have been found
to arise when non-backtracking is introduced. Section 3 then exploits the Hashimoto matrix
approach in order to characterize non-backtracking centrality measures based on general
Taylor Series expansions. For such measures, it is of interest to characterize universality
behaviour arising at the radius of convergence, and in §4 we study this issue. In §5 we then
develop and analyse a recursive strategy that promotes non-backtracking into non-
triangulating, non-squaring, and, generally, the removal of all cycles. Having derived the new
construction, we consider computational complexity issues and then analyse the universality
behaviour. Section 6 gives the results of computational experiments that illustrate the feasibility
of non-cycling centrality measures on real networks.

2. Preliminary material

Our fundamental object of study is an undirected graph. However, as illustrated in §1a, the
operations that we apply will typically generate new directed graphs. Hence, we give
definitions for the general case of a directed graph @ = (77, €)G = (V, E), with unweighted
edges, and no self-loops or multiple edges. We denote by nthe number of nodes and by mthe
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number of edges.

Remark 241.

For undirected graphs, we interpret each undirected edge /—j as a pair of directed edges i =
and j— i, and we denote by m the total number of such directed edges.

The graph £G can be represented by means of its adjacency matrixA = (a;;) € R™"

A= (aj) € R "', whose nonzero entries are a;=1if and only ifi - j € & — j € E. The matrix

A thus contains m nonzeros, one for each edge in the graph. We use /, 1 and O to denote the
identity matrix, the vector of ones and the vector of zeros, respectively, and a subscript will
indicate the dimension where this is not obvious. For every edgei — j € &i — j € E we will
call ithe source node of the edge and jthe target node of the edge. The edge j— i will be

referred to as the reciprocal of edge i— j. The number d?“tdeUt of edges originating from node j

will be referred to as the out-degree of node j, while the number a’}“d}n of edges targeting node

iwill be referred to as the in-degree of node i. For undirected graphs, d{"* = d}“ =: d,;
d?m = d}n =: d, for all nodes i € 7'i € V and this common value is usually referred to as the

degree of node /. A bold font denotes a vector, so d,is the th component of d. A walk of length
ris a sequence of r+1nodes i, iy, ..., ingsuch thati, — iy € &ip — ipy 1 € Eforall £=1, ...,
r. A walk is said to be backtracking if it uses a consecutive pair of reciprocal edges and non-
backtracking otherwise. We will use the acronyms NBT and NBTW for non-backtracking and
non-backtracking walk. A path is a walk with no repeated nodes, with the only possible
exception of the first and last nodes. If these coincide the path is then called a cycle. We
mentioned in §1a that the entries of the rth power of A record the number of walks of length r;
that is, (A'); is the number of distinct walks of length rfrom node /to node j, for all r=0, 1, ....
Following [24], we denote by p{A) the non-backtracking analogue of A’, so the (i, )th entry of
pAA) contains the number of NBTWs of length rfrom node jito node j. We use the convention
that po(A) =/ It is readily seen that p(A)=A and p,(A)= A% — D, where D is the diagonal matrix
such that D;=(42);. It has been proved [5,10] that for all r=0 the matrices p,.3(4) satisfy a four-
term recurrence when A’ £ A:

Pr+3(A) = prya(A)A + prii(A)I — D) — p,(A)(A — Ao A),
Pre3(A) = prsn(DA +p, (AT = D) = p(A)(A — 4 o AD),
where ° denotes the Schur (entrywise) product.

In the undirected setting, where A= A’, this reduces to a three-term recurrence [6]: for all r=1,

pr+2(A) = pri1(A)A + p.(A)U — D).

pr+2(A) :pr—l-l(A)A +pr(A)(]_D)' 2.1
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As in the example of §1a, we denote by W e R™" jy € R * " the adjacency matrix whose
entries are W, p-p,= Ojp, Where Oy is the Kronecker delta. So Wrepresents a network with m
nodes, each corresponding to an edge in €@, and a connection exists between two nodes if
the corresponding edges in £G are such that the target node of the first coincides with the
source node of the second, and the two edges thus form a walk of length two in £G. We refer
to W as the edge-matrix. If €G is undirected, then Wis the adjacency matrix of the /ine graph

corresponding to €G. Finally, we denote by B € R™" B € R “M the non-backtracking version
of W that is, the adjacency matrix of the network obtained by connecting two of the m nodes,
each corresponding to an edge in €G, if and only if the corresponding two edges form a NBTW
of length two in £G. We note that B= W—- W° W’. We may aso write

Bi—>j,f—>h = 5jf(1 - 5ih)°

2.2
Bi ,i—n=0;/1=0y).

The matrix Bis often referred to as the Hashimoto matrix [28] or the non-backtracking edge-
matrix.

(a) Equivalent centrality vectors

A central issue in network science is to determine the most important players within the graph.
This activity has applications in a wide range of areas, ranging from social science, marketing
and politics to epidemiology and well-being [27,29]. The problem may be tackled using
centrality measures. These functions, which are invariant under relabelling of the nodes in the
graph, assign to each node a non-negative number that quantifies its importance—the higher
the value, the more important the node. We take the standard viewpoint that the value
assigned to each node is not interesting per se; we are concerned with the ranking that arises.
It thus follows that two centrality vectors that assign different values to the nodes but induce
the same ranking are equivalent. In this sense, it is worth pointing out that neither shifting a
centrality measure with a uniform vector nor multiplying a centrality measure with a positive
scalar changes the ranking of the nodes. We may, indeed, define an equivalence class among

centrality vectors as follows. Letu,v € R"u, v € R be two non-negative, non-zero vectors.
Then

u~ve da>0,f2>(—min(v);) suchthat:u=a(v+pl).

u~v & Ja>0,f>(— min (v);) suchthat: u= a(v+pl). 23

1
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Two different representatives of the same equivalence class yield the same node ranking. We
note in passing that one could consider a smaller collection of equivalence classes, e.g.two
measures are equivalent if they induce the same ranking. However, for the purposes of this
work, restricting our study to (2.3) suffices to compare the rankings induced by parametric
matrix functions and those induced by their limits.

Many centrality measures have been introduced over the years. In this work we focus on the
very broad class of walk based centrality measures induced by functions [30—-32]

f@)=) ¢ €2,
r=0
fe)= D ez €P, 2.4
r=0

where PP is the set of functions analytic in a neighbourhood of zero that can be expressed
with a Maclaurin series with non-negative coefficients ¢, for all r=0,1, ...

Clearly, 2)=e? and i2)=(1- 27" belong to ZP. We will denote by prthe radius of convergence
of the series f(z), which can be finite or infinite.

For a function f € &f € P defined on the spectrum of a matrix A, we will refer to ({tA)); as the F
subgraph centrality of node /, and to ({tA)1); as the Ftotal communicability of node /. Here, t>0
is a parameter that we are free to choose, with the constraint that the power series must
converge. From the power series expansion of fand from the fact that powers of A count walks
of given lengths, it follows that the £~subgraph centrality of a node measures how strongly each
node is involved in closed walks of any length; similarly, its Ftotal node communicability
measures how well this node communicates with all the nodes in the network. We note that in
the classic Katz case, where f{2)=(1- 27", the parameter t represents an attenuation factor that
downweights walks of length k by a factor t<[33], and hence, in a message-passing setting, t
may be viewed as the probability of successfully traversing an edge.

These concepts can be extended to the framework of NBTWs, by defining the NBT f-subgraph
centrality and NBT f-total (node) communicability of node jas

x() = | D e 1" p(A) ) and y@); = ( D e " (AL ),
r=0 i r=0

i

and y(t),=| D ¢, " p 1],
r=0

i

x(t); = Zcr t" p(A)
r=0

12

2.5



respectively, for non-negative coefficients c,.

It is intuitively reasonable that eliminating backtracking walks, and hence focusing on traversals
that explore the network more widely, should lead to an improved centrality measure in
applications where a message-passing or disease-spreading analogy is relevant. In the case of
random walks, it is known that NBTWs mix faster [9]. For NBT generalizations of Katz centrality,
three concrete benefits have been identified:

Localization: Suppose we have a family of non-negative unit Euclidean norm
vectors x € R"x € R”, defined for all large n. Then, from [34], the inverse
participation ratio is defined to be S(x) := X, x}S(x) := " lx:"' The family of
vectors is said to be localized if & = O(1)S = O(1) and nonlocalized if § = o(1)

S = o(1), as n = o Intuitively, localization implies that the majority of the mass in
the vector is confined to a finite subset of components. When x is a centrality
measure, localization corresponds to the undesirable circumstance where the
algorithm has focused almost exclusively on a subset of the network, and does
not give useful information about the relative importance of the majority of nodes.
In this context, the effect was first highlighted in [25]. Numerical tests in [19,24]
showed that a NBT version of the standard Katz algorithm [33] avoids localization
effects observed for Katz on a range of real networks. Furthermore, rigorous
asymptotic analysis on specific network classes backed up these results; for
example, in [19] for a directed windmill network with an arbitrary number of

blades.

Range of parameter values: The classic Katz centrality measure [27,29,33] assigns
the value ((/ = t A)™),to node /. To produce a well-defined non-negative measure,
the downweighting parameter t must lie in the range 0 < t < 1/p(A), where p( * )
denotes the spectral radius. For the NBT version y({) in (2.5) with ¢, = 1, it was
shown in [24] that t must be chosen in the range 0 < t < 1/p(C), where

A (I-D) (A.A" — A)
C=|1 0 0 e R3m3n,
0 1 0

A (I-D) (A-AT-4)
c= 1|1 0 0 ER3n><3n.

0 1 0 26



By construction, since the NBT count cannot exceed the standard walk count, this
radius of convergence must be larger than the upper limit 1/p(A) for Katz. In
practice, the difference can be significant, and hence NBT Katz can support a
much greater choice of downweighting parameters, allowing global features of
the network to have a stronger influence on the measure.

Pruning: From a practical viewpoint, it appears that p(C) in (2.6) must be
computed, or approximated, in order to determine an appropriate range of t
values. However, it was shown in [19] that p(C) does not change when /eaves,
source nodes and dangling nodes are removed. (The equivalent statement is not
true for standard Katz, where p(A) is not invariant to such deletions.) Moreover,
these operations can be performed recursively until no such nodes exist. On
realistic networks, these low cost pruning steps were found to reduce the typical
network size by around 30%, making NBT Katz more efficient than standard Katz.

It is also of interest to characterize the form of these centrality measures at their radius of
convergence; for example, it was also shown in [19] that the NBT eigenvector approach
proposed in [25] arises as the limiting case t— 1/0(C)” in NBT Katz.

Our aim here is to show how NBTW-based measures can be studied, and generalized, by
working in the edge space and then projecting. We will show that this approach allows us to (1)
unify and extend the current theory, yielding results that hold for any analytic function, (2)
describe limiting behaviour at the radius of convergence, and (3) extend to the case where
walks avoid triangles, squares and, generally, all cycles up to any fixed length.

(b) Source and target matrices

We now collect together some results that allow us to perform projections from the edge space
onto the node space. Many of these results can be found in disparate areas of the literature,
especially for the case of undirected graphs, [35,36]. We present and justify them here because
they form the core of our analysis.

Definition 2.2.

Let € G be an unweighted, possibly directed, graph with n nodes and m edges. Its source and

target (or terminal) matrices L, R € R™" [ R € R™ ™" are entrywise defined as:



_ J 1 ifedge e has the form i — * _ J 1 ifedge e has the fo1
Lei = . and Rej = .
0 otherwise 0 otherwise
_ (1 ifedge e hasthe form i — * d R.- 1 ifedge e hasthe form * —
¢ 10 otherwise an ¢ )10 otherwise

respectively, for all e=1, 2, ..., mand for all /, j=1, 2, ..., n.

Note that both L and R have precisely one nonzero element equal to 1in every row. This
identifies the source/target node of the corresponding edge; hence, L1,=R1,=1,,. We also note
in passing that, for directed graphs, the matrix L — R is an incidence matrix.

Proposition 2.3 recalls some basic properties of the source and target matrices [35,36].

Proposition 2.3.

Let& Gbe an unweighted, directed, graph with no self-loops nor multiple edges. Then, in the
above notation, LTR=A, R L"=W, LL is diagonal with the out degrees on the diagonal, and R'R
is diagonal with the in degrees on the diagonal. If the network is undirected, then RTR=LTL=D.

Proof.

The results can be proved entrywise from the definition of the source and target matrices.

For example, to confirm the first equality we note that for all i, j € 7i,j € V it holds that

(L"R); = Y, LR, = l(LTR)l-J- =3ym L 1 if and only if there is an edge from node i

eillej =

The following proposition summarizes useful properties of the source and target matrices and,
in particular, shows that they can be used to move from the edge space to the node space.

Proposition 2.4.

Let& Gbe an unweighted, possibly directed, graph with no self-loops nor multiple edges. Then

(i)
L™'WR=A™ forallr=0,1, ...:

(ii)
L"B'R = p,(A), for allr=0,1, ...;

(iii)
LT (W™ W) R= RT(W™ W)L = D, where D is diagonal with D;; = (A%);;



(iv)

(v)

Proof.

(ii)

(iii)

(iv)

(v)

R'W L is a diagonal matrix whose "diagonal element isd}"d;"' ding9ut (= a7,

_ dIZ, if€ Gis undirected);

R'B L is a diagonal matrix whose "diagonal element is equal to the number of
NBTWs of length two of the formx — i — x. * —i— =,

We proceed by induction. The result has been proved for r= 0 in proposition 2.3.
Suppose that LTW=1R= A" up to a certain r =1, then from proposition 2.3 LTW'R
=L"W-RL'R=AA= A™,

Let us first note that Bngzfis the number of NBTWs of length r+ 1in G starting
with edge e and ending with edge f. Then (L' B'R);; = >\"| X7 LB Ry
(LTBVR)ij = Z’e"=12?’= lLel-B’e’ i is the number of NBTWs of length r + 1 starting

from node i and ending at node j, which is p,(A).

Exploiting the fact that p,(4) = A% - Dit follows that LT (W™ W) R=LT(W-B) R
= A% = p,(A) = D. Moreover, RT(W° W) L= (LT (W™ W) BT = D.

The result follows directly from proposition 2.3.

Foralli,j € 7i,j € Vwe have that (R" BL);; = »."| >7_| R.;B.sLy;
(RTBL)ij = Zi= 12?; 1ReiBefoj counts the number of NBTWs of length two

formed by edges e and f, and such that e targets node i and foriginates from
node j. Clearly, this sum is always zero, unless i =j, and in this case the sum
equals the number of NBTWs of length two through node /. =



In the next section, we describe how to exploit the matrices L and Rto compute the NBTW
generating function induced by any analytic function. We emphasize that our basic object of
study in the remainder of this work is an undirected network, so that A=A’ and the matrices
pAA) satisfy the recurrence (2.1), but directed networks will arise when we use the Hashimoto
construction and its extensions.

3. Projection techniques for non-backtracking centralities

Consider a function f(z) € Pf(z) € P in (2.4), which we recall is analytic in a neighbourhood of
zero, with ¢,>0 for all rand radius of convergence p; Define the linear operator d acting on fas
follows:

0 fO-fO) .
. r fz ?5 0;
0f(z):= ) ¢ = z ! ’
f(2) 2:,) " {f,(o) S,
o f(2)-f(0) .
~2 iz £ 0
Mz):=D e, ={ =
=0 £ (0) ifz=0,

so that df(z) € Pof(z) € P.

Before stating our first results on projection techniques for computing non-backtracking walk
based centrality measures, let us remark that, since A is symmetric, its spectrum is real.
Moreover, the spectrum of W will be real also, even though Wis not symmetric in general.
Indeed, from proposition 2.3 we know that A=LR" and W=R’L, and Flanders Theorem [37,
theorem 2] implies that the spectrum of W coincides with that of A, up to the multiplicity of O.

Let us also recall that the spectrum of B coincides with the reversal (e.g. [38]) of that of the
symmetric matrix polynomial [39] M()=/— tA+ t?(D- ), i.e. that of the deformed graph Laplacian;
e.g. [6,24] and references therein. We note that the reversal of the deformed graph Laplacian
has been called Bethe-Hessian by some authors [40,41]. In [24] it was also shown that for every
Ain the spectrum of M(#), we have |Al=1/p(A). (Below, in proposition 5.9, we will improve this
result and show that the inequality is always strict for a non-empty graph.)

In the remainder of this paper, we will often implicitly make use of the following classical result;
see, for example, [42, theorem 4.7].

Theorem 3.1.

Suppose f has a Taylor series expansion



f(z) = Zcr(z —zp) (Cr - fr:!z())>

r=0

_ fr(Zo)

r!

fz) = Z clz—z9)" |c,
r=0

with radius of convergence pr. IfA € C™"4 € C"*"_then fA) is well defined and is given by

(0]

FA) = ) e(A—zody

r=0

i) =D e (A —zyl)
r=0

if and only if each of the distinct eigenvaluesh,, ..., A;of A satisfies one of the conditions:

(i)

lA; = zol < Py

(ii)
IA; = 2| = psand the series forf ™D (1) f("i=1) (2), where njis the index of A;, is
convergent at A = Aifori=1, ..., s.

Finally, let us state here the following simple consequence of the Cauchy—Hadamard theorem
[43, theorem 3.39], which relates the radii of convergence of fand df.

Lemma 3.2.

Letf(z) = 2oy ¢ 2" flz) = el Ocrzr and let 0f(z) = Yooy Cry12.0f(z) = Z;O:OCI,JF 12". Then, f2)
converges for |zl < p#f and only if df(z) converges for |z < pr.

Using these remarks and the results from the previous section, we may prove the following.

Theorem 3.3.

Let€ Gbe an unweighted, possibly directed, graph with no self-loops nor multiple edges. In the
above notation, for 0<t< p4p(A) it holds that



(©¢]

Y ¢t"A" = oI +tLT[9f(tW)IR
r=0

D A" = eyl + (Lo tW)R
r=0

and
Y ¢t"pi(A) = ¢oI +tLT[9f(tB)IR.
r=0
> ¢i"p (A) = ¢yl + (LT[0f(B)]R. 31
r=0
Proof.

From the definition of dfit follows that

Of(tW) = Y ¢t W' and  0f(tB) = ) ct'B',
r=0 r=0

oWy =Y ¢, .\ 'W' and OftB)= ) c,. I'B",
r=0 r=0
implying by (/) and (/) in proposition 2.4 that

(LT[OfGW)IR = ) et A and  (LT[0fGB)IR = ) criit™ pri(A),

r=0 r=0
Q0 Q0
LW R = Y ¢, " a7 and  WWTOfuB)IR = ) i lp, o 1 (4)
r+1 r+1 Pr+1 >
r=0 r=0

and thus the conclusion. =

Theorem 3.3 has several implications. For example, in the framework of undirected networks,
setting f2)=(1- 27" and observing that d2) = {2), we obtain for 0 < t<1/p(A)

I, +tLT[(I —=tW) 'IR = (I —tA)™!



[+ T — o) R = (1 - t4) ! =<4

and

L+ tLT[(I = 1B IR = ) 'p(A) = (1 - M),
r=0

o0

I+ LTI =) IR = X ¢'p (4) = (1 - A M), 3.2b
r=0

where M(f)=I-tA— t2(I- D) is the deformed graph Laplacian of the network. We note that the
second equality in (3.2b) was proved in [24]. These results give an equivalence in the sense of
(2.3) between Katz centrality on W projected through L7 and Katz centrality on A (3.2a), and
between NBT resolvent based centrality on A and Katz centrality on B projected via L (3.2b);
indeed, since ”1,=1,,, we have

1, +tLT(—tWw) 11, = (I —tA) 1,

Trr_ 14 _ /7_ -1 3.3a
1+t —tw) lm—(l tA) 1

and
1, +tLT(I-=tB 11, =0 -HM®®)™'1,,.

Trr_ 14 _(1_2 -1 3.3b
1 +e"(I—B) "1 =0-)M@ '1,.

More generally, theorem 3.3 implies that we can compute the NBTW generating function
associated with (2.4) via (3.1), and thus rewrite (2.5), for appropriate values of ¢, as

x(t), = co +1(Le))Tof(tB)(Re;) and y(t); = ¢y +t(Le;) af(tB)1,,

x(t); = ¢+ t(Le) OftB)(Re;) and y(1), = c,+ t(Le) OftBI1 .

This approach induces a duality operation on graphs as described in table 2, which, however, is
not invertible; indeed, the dual of the dual graph is not the primal graph.



g Table 2.
Relationships between walks and matrices in the primal and dual spaces.

View inline  View popup

It was shown in [19,20,24] that there are more direct ways to compute NBTW centrality
measures that do not rely on this projection technique. However, as we show below, this
approach has the advantages of (1) being simpler to describe for a general f2), (2) unifying the
theory, so that universality results may be studied, and (3) extending to walks that do not allow
for cycles up to any fixed length.

4. Limiting behaviour and universality

It is well known that the classic Katz centrality measure becomes equivalent in the sense of
(2.3) to the so-called eigenvector centrality measure [44] as the downweighting parameter
approaches its upper limit, and becomes equivalent to degree centrality as the downweighting
parameter approaches zero [27]. In [45] the authors derived a general set of such results for
walk-based centrality measures. Here, we show how to obtain non-backtracking versions of
these results via the Hashimoto matrix construction.

We begin by relating the (left and right) Perron eigenvectors of B and the NBT eigenvector; that
is, the eigenvector of M(f) associated with the smallest eigenvalue. (Note that M(f) is symmetric,

and hence its left and right eigenvectors are the same.) Throughout this work, t — t*¢ — ¢t * for

anyt* > 0t* > 0 is taken to be the limit from below, and t— O is taken to be the limit from
above.

Theorem 4A1.

Let A be the adjacency matrix of a simple, connected network with at least two cycles. Let B be
its Hashimoto matrix and M(1) be its deformed graph Laplacian. Moreover, letw € R"w € R"and
z,w € R"z, w € R"be non-negative vectors with||w||, = ||z|l; = ||®|l; = 1

Wl |;=1lz||=||le]|]|,= 1such that M()w=0, uBw=w, and pz'B=z", where i is the
smallest eigenvalue of M(f). Then,

w=L"w=R"z

w=L'w=R1%.

Proof.

Observe first that by [24, proposition 7.5] uis a simple eigenvalue of M(f) and /- tB (both seen



as matrix polynomials), and that it is their smallest. Let us decompose both M(§=M{#" and /-tB
via the respective analytic SVDs:

M(1) = U (OU )", I —1tB=Ug®OZp®)V®)'.
M(t) = Uy (02, (0U, (0T,  1—1B = Ug()Zz0)V 50"
Denote now by, respectively, uy (8, Ve m(t), Ugm(l), Opm (D), O (1) the last columns of Upf1), V1),

Ug(1) and the last diagonal elements of 2,(f) and Z5(#). Then, arguing similarly to the proofs of
[19, theorem 6.1] and [24, theorem 10.1] we have the expansions

1= up, (D' 1,
(1=AM©O™, = 2y, )+ O - 1),

uB m (t)T 1

(I =B, = "0y (1) + Ot — p)°)
and (1 —1B") "1, = 2200wy () + O — )

(1=)uy, ()",

(1-AM@n "1, = uy (0 + O — "),

O'M’n(l‘)
up m(l‘)Tlm
-1 _ 0
(I=wB) 1, =— D Vg (DT Ot —1)°)
B,m
T~ VB,m(t)Tlm 0
and (/—1tB") ug (0 + Ot —u)").
GB,m(t) ’
Moreover, it holds that
. . w
limuy, ,(7) = ,  limug,(1) = , limvg,(®) =
1= p @], t—=p |zl [, 1= alp
limw,, (7) = limug  (7) = limvg (1) =
t—u ! ||(0||2 t—u M HZHZ t—u 1 ||W||2

Multiplying (3.3b) by oy 4(f) and taking the limit = u we see that there exists a« € Ra € R, az0,
such that w=aL’w. Moreover, since L, w, w are all non-negative, we have a>0. Similarly,
multiplying the transpose of (3.3b) by gy, 4(f) and taking the limit t = u we see that there exists 8

>0 such that w=BR’z. To conclude the proof, note that since w, z=0 and ||w||; = ||z||,; = 1
lw||;=11]z||;=1,the factthat L, R have precisely one element equal to 1in each row yields
I|LTw|l, = ||R"z|l, = 1||LTw| |, = | |R"z| |, = 1, and thus a=B=1. =

We note that we are correcting here a typo in the proof of theorem 6.1in [19].



We now consider the case where there is a single cycle present within the graph.
Lemma 4.2.

Let B be the Hashimoto matrix of a simple, connected graph that contains precisely one cycle.
Then:

0 The Perron eigenvalue of B is 1 and it has geometric and algebraic multiplicity two.
Moreover, suppose that we label the edges within four sets as follows: first all the
edges going through the cycle in one direction, which, without loss of generality,
we call counterclockwise; then all the edges going through the cycle clockwise;
then all the edges not on the cycle (if any) going towards the cycle; finally all the
edges not on the cycle (if any) going away from the cycle. Then, partitioning
according to these four sets, a basis forker(B — I)ker(B — I)is given by

1 0
F=|Y Merme
1 1
L0 0
rl] 0
0

F = € R™*2,
1 1

(ii)

We have

L'"F=[1 1] eR™,

LTF=]1 1] eR""2

Proof.

(i)

That 1is the Perron eigenvalue of B, and that its algebraic multiplicity is two, is a



consequence of [2, equation (2.3) and corollary 1] and [24, lemma 6.2]. Note that
(BF) ¢ is equal to the number of NBTWs of length two over edge e and either an
edge that goes through the cycle counterclockwise or an edge that goes towards
the cycle. This number is 1 if edge e either goes counterclockwise through the
cycle or goes towards the cycle, and it is O otherwise. Similarly (BF)¢; counts
NBTWs of length two that consist of edge e and an edge that either goes
clockwise through the cycle or goes towards the cycle. This is 1if edge e either
goes clockwise through the cycle or points towards the cycle, and O otherwise.
We conclude that BF = F. Moreover, manifestly F has rank two. Hence the
geometric multiplicity of the eigenvalue 1 is exactly two, as this cannot exceed the
algebraic multiplicity.

(ii)
By definition of L and F, the (i, 1)th element of L7F counts how many edges, among
those either in the cycle and going counterclockwise or not on the cycle and
going towards it, start from node i. There is precisely one such edge for all i.

Replacing ‘counterclockwise’ with ‘clockwise’, the same argument shows that
(L'TAp=1.m

We now prove a universality result for NBTW-based centralities that generalizes the Katz
version in [24, theorem 10.1] and echoes the result presented in [45] for classical centralities.
Recall that the equivalence relation is defined in (2.3).

Theorem 4.3.

Letf(z) = ), ¢. 2 fiz) = >c,z"with ¢,>0 for all r and with radius of convergence py and suppose
r

that flpy) diverges. Let A be the adjacency matrix of a simple and connected graph, B its

Hashimoto matrix andt € (0,1),t € (0, t), witht = p rlp(B).t = pf/ p(B). Then the NBT f-subgraph
centrality vectorx(t) in (2.5) and the NBTf-total communicability vectory(f) in (2.5) are such that

1 if the graph is a tree

~ d t 0) ~d,
x(t = 0) {d('“ﬂ) otherwise an yi =0

1 if the graph is a tree

x(t — 0) ~ {d(g) and y(t — 0) ~d,

otherwise

where £>2 is the length of the shortest cycle in the graph (if any), d@js the vector whose ith
entry is the number of cycles of length £ involving node i, anddis the vector of degrees.
Moreover,



(i) if the graph contains at least two cycles, then

Xt > t)~woew and Yy — 1) ~ o,

X —>t)~wew and y(— 1)~ o,

where w is as in theorem 4.

(ii) _
if the graph contains exactly one cycle, thenx(t — 1), x(t — t) ;depends only on
the distance of node i from the cycle and

y(t = 1) ~ 1;

yt — t) ~ 1;

(iii) _

if the graph is a tree, thent = oot = wand

x(t > 1)~1 and y( — 1) ~ p (A1,

X(t— ) ~1 and y(t — 1) ~ p, (A1,

where K is the length of the longest non-backtracking walk in the graph.

Proof.

We may obtain t— O limits directly from the series expansions. We begin by considering x(1). If
the graph is a tree, there are no closed walks and thus x(t— 0)= cp1~1. Suppose now that there
is at least one cycle in the graph and that the length of the shortest cycle is £>2. Then working

entrywise, for all i=1, 2, ..., nwe have

x(t); = ¢o +citA; + o t*(A* - D);; + C3t3p3(A)ii +r=c+ Cftfpf(A)ii + 2 et
>t



x(0); = co+ c1td; + eyt (A2 = D)y + c383p3(A)y + - = co + ct'p )y + D e, d'p (A

r>¢

Letting p”) be the vector whose ith entry is the element p/{A); for all r=3, we have

x(1) —
X(f) ~ f p® + Z tr ‘o S p®,
cet r>f
X(t)_COl
X() ~ ——— = p(O + Z—ﬂ” () - pO)
Cgt r>f f

Finally, we note that since there are no cycles of length <2, then p¥)=d®. The result y(t— 0)~d
follows similarly.

We now prove the statements about the upper limit.

(i)
If the graph contains at least two cycles, then p(B) > 1[24]. From theorem 3.3 it

follows that
(6 9)
x(t); ~ e LT[ ) ¢..1t"B" | Re; = el LT0f(tB)Re;
r=0
o0
x(@); ~ eTLT| Y c., B" |Re; = e "LTOf(tB)Re,
! =0 ! 41a
and similarly, using the fact that R1,=1,,
y() ~ L"0f(tB)1,,.
41b

y@® ~ LTofeB)1 .

By lemma 3.2 and standard results in matrix theory, the matrix function 9f{(t B) has
the same radius of convergence of f{t B), that is, f = prlp(B)t = pf/p(B). To study

the limitt — t¢ — ¢, we can use the definition of a matrix function based on the
Jordan decomposition of a matrix [42, Definition 1.2]. This leads to an argument
along the lines of [45, theorem 5.2]. (Note that B can be taken, with no loss of



(ii)

generality, to be irreducible, see [24, proof of proposition 7.5]; note also the
subtleties discussed in [45, remark 1] necessary to deal with the case when Biis
imprimitive.) Since this is a standard approach, we skip the details and describe
the result: given the left and right Perron eigenvectors of the Hashimoto matrix w,

z € R"z € R, normalized so that ||w||, = ||z||, = I||w]||{=||z]||; =1, we

have

0f(tB) = yof(pstitywz’ + O(1)

ftB) = yé’f(pft/t)sz +0(1)

for some y > 0. Using the latter equality, equation (4.1a), and theorem 4.1 it follows
thatforalli=1, 2, ..., n

x(t — t); ~ (el L"w)(z' Re;) = w?,
x(t — 1); ~ (eiTLTW)(zTRel-) = wf,

where M(1/p(B))w = 0, and thus x(r — 1) ~ ® > ®X(t — t) ~ o o w. Similarly, since
l|z|l, = 1||z| | { = 1 and z = 0, we have

yit - 1) ~ L"w = ».

y(t — 1) ~ LTw = o.

If the graph contains precisely one cycle, then p(B) = Thas geometric multiplicity
2 and, up to relabelling of the nodes, F defined as in lemma 4.2 is a basis for

ker(B — Iker(B — I). Hence, for some Z € R™2 7 € R"*2 when t = 1 we have
Of(tB) = af()FTZT + O(1),
ftB) = FOFTZT + 0(1),

where Zz0andT € R*T € R2*2. Using L' F = [1, 1,]ILTF = [1,, 1] from
lemma 4.2, we see from (4.1b) that

y(t — 1) ~ [ln ln]FZTlna

ye— 1) ~[1, 1,1z,



so y(t = 1) ~ 1,. For the fsubgraph centrality, note that

(0]

x(t = 1) ~ D c(p(A).

r=3

x(t = D~ 2 e p, (),

r=3

Suppose that the unique cycle has length € and that node i has a distance of k
edges from the cycle (k= O if node i belongs to the cycle): then, for r=1,

_ 2 ifr=2k+ h? for some h > 1
(pr(A))ii = {0 otherwise.
Hence,
x(t = 1 ~ Y (A =2 ) onene
r=3 h=1

(i If the graph is a tree, i.e. it does not contain any cycle, then p(B) = O and thus
t = 0. Moreover, pAA);i= 0 for all r=1and for all i, so that x(f) = co1 and hence x(t
— ) - 1. Since the graph is a tree, it also follows that the matrix power series is a
polynomial in f; let kK be the length of the longest non-backtracking walk in the

graph, i.e. the diameter of the graph. Then p/{A) = O for all r> kK and thus

y(t = ) ~ p(A)l,.

Theorem 4.3 highlights very different behaviour of the two types of centrality. It is intuitively
clear that the NBT constraint in ~total communicability should become irrelevant as t— O; here
walks of length one dominate, and these never backtrack. However, for Fsubgraph centrality,
the shortest closed walks under the NBT constraint are cycles of length £>2. Theorem 4.3
shows that in the generic case where the graph contains at least two cycles, ast — t both
centrality measures converge to an equivalent of the projection of the Perron eigenvector of
M(1 obtained via L. In the specific cases when the graph either contains exactly one cycle or
none, we again have a mismatch between the limiting behaviour of the two NBT £centrality



measures. The qualitatively different behaviour when there are two or more cycles is intuitively
explained by the fact that the presence of at least two cycles allows us to “change direction”
when walking around the network. If the graph contains only one cycle, then in the edge-space
we have two connected components, one corresponding to the cycle being visited clockwise
and one corresponding to the cycle being visited counterclockwise. On the other hand, if we
have two cycles, then in the edge-space we have one strongly connected component instead
of two.

5. Beyond non-backtracking: non-k-cycling

The projection approach described in §2b is based on a duality relation on graphs that builds
on the source and target matrices associated with the adjacency matrix A. We now show how
this approach can be iterated to compute weighted sums of walks that do not backtrack and do
not contain any cycle of length up to a given k.

We therefore define the matrices p..x(4) € R™", whose (i, j) elements count walks of length r
from node ito node jwhich do not backtrack and do not allow for cycles of length up to k. Our
aim is to study generalizations of (2.5) to the case of the non-backtracking and up to non-k-
cycling fFsubgraph centrality measure x,(f) and £total communicability measure y (1), defined
entry-wise for i=1, ..., nas

(S9] (6]

@) = D et pea(A) | and v, 0); = D] et pra(A1 | 51

r=0 ii r=0 i

Remark 5.1.

Because a closed walk of length r must contain a cycle of length no more than r, it follows that
the sum defining (x.(?);in (5.1) may be taken from r=k+1; the terms from r=0 to r=k are zero.
So, although the subgraph centrality concept is based on counting closed walks, the non-
cycling constraint rules out all such walks that are deemed to be too short.

Throughout this section, we will adopt the notation (i, i, ..., i) to denote the walk 4= iL, = ---
— j.of length r—1in the original graph and we will denote by i the corresponding multi-index.
We remark that open walks of length £ that do not backtrack and do not include any cycle are
open paths of length £.

The following matrix allows us to perform the iterative computations.
Definition 5.2 (Non-k-cycling matrix).

For k=1, the non-k-cycling matrix, P,, corresponds to the adjacency matrix A. For k=2 the
matrix P, corresponds to the Hashimoto matrix Bin (2.2). More generally, for k> 2 the matrix Py
has as many rows and columns as the number of open paths of length k—1in the original


javascript:popRef('s2')

graph. The entry (Px); takes the value 1if the original graph admits an open path starting at
node j; and finishing at node j, which superposes with i on its last k—1 steps and superposes
with j on its first k—1 steps. Hence, for any two open paths i = (iy,...,ix) and j = (Ji, ..., Jk) Of
length k—=1=1we have

(P = { 1 ifi,=j,_ forr=2,...,kand i; # ji
iT 10 otherwise.

The next result shows how P, may be constructed. We emphasize that k=2 corresponds to the
NBTW setting; see also [35,36]

Theorem 5.3.

Let Wi=A be the adjacency matrix of a simple graph. Then, for k=2 the non-k-cycling matrix
Pcan be recursively computed as

Py = Wi = Ay,

whereW, = R L] _ Ay = W o (I/VkT)k_1 and L,_,and R,_jare the source and target matrix of

the graph whose adjacency matrix is Pj._.

Remark 5.4.

We note that the matrices W, in the statement of theorem 5.3 correspond to the adjacency
matrices of the kth order De Bruijn graphs of paths in the network; see [46].

Proof.

We first argue that the dimension of W, matches that of P,. By construction W, corresponds to
the edge-matrix, W, which contains as many rows and columns as the number of edges in the
(directed) graph represented by W;i=A. For k>2, the matrix W, has as many rows and columns
as the number of open paths of length k—1in the original graph. Moreover, each row in the
matrix L,_1 (resp., R,_q) corresponds to a walk of length k-1, say (i, ..., /i), that neither
backtracks nor contains cycles of length up to k-1. Furthermore, such a row will contain a 1in
the entry corresponding to the column associated with the non-backtracking and up to non-(k—
2)-cycling path (i, ..., ix_1) (resp, (i, ..., iy). The entries of W = Rk_lL:lf_l will then equal one if
and only if the two paths of length k—1 corresponding to the row and column indices under
consideration are such that the last k—2 edges of the first path coincide with the first k—2 of
the second path, and thus they form a path of length k. In summary: for any two paths

I = (iy,...,ig)and j = (Ji,...,Jr) of length k—=1=1it holds that

_J b ti,=jyforr=2,...,k
Wiy = { 0 otherwise.



By construction the matrix W) will contain a one where two paths of length (k—1) form a cycle of
length k. It is therefore clear that the matrix P, will be obtained from W, by removing such

entries. Hence, to complete the proof we must show that A, = Wy o (I/VkT)k_1 identifies cycles
of length kin the original graph. To do so, note that

((VVkT)k_l ) = Z (Wijpo Widpope =+ (Wi pe-;.

hD K@, h*2

Considering each term in the product on the right-hand side individually, we see from the

definition of W, that the first term will equal 1if and only if j, = hfl_)l forr=2, ..., k. The second
term will equal 1if and only if B = hgz_)l for r=2, ..., k, and this also implies the product of the
first two terms will equal 1if and only if j, = hfz_)z for r=3, ..., k. Proceeding in this way, the (k—

1)th term will be non zero if and only if A = hi’i‘lz) for r=2, ..., k, so that the product of the

_ p(k=2)
- hr—k+2

last term to equal one, and this happens when =i, forr=2, ..., k Therefore, the
product of all terms will equal one if and only if j,=i._,4 for r=k, i.e. when j,=i,. Moreover note
that, for two given paths i and j there will be at most one non-zero product in the summation,
since we only need to check that the final node in the first walk coincides with the first node in
the second walk. Therefore,

first (k—1) terms will equal 1 when j, for r= k-1, k. Finally, the last condition is for the

hg.k—Z)

k=1, _ [ 1 if i =iy
(W5 )iJ' - {O otherwise.

Exploiting the definition of W) and (VVkT)k_1 it follows that A, will have a 1in position (i, j) if and
only if

i1 =Jk — 02 =J1 — ... —> i = jk=1 — I1 = Jk,

i.e. if the two paths form a (directed) cycle of length kin the original graph. This concludes the
proof. =

It follows from the definition of P, that taking a step in its associated graph corresponds to
taking a NBT and up to non-k-cycling walk of length kin the original network; more generally,
taking r consecutive steps within the graph associated to P, corresponds to taking k+r—1 steps
in the original graph, while avoiding backtracking and cycles of up to length k.

Using the left and right projectors

L1 = L1 - Ly, Ri—1 = Ry—1 - Ry, 5.2



it is immediately clear that the following theorem holds.

Theorem 5.5.

For all r=0,1, ... and for any given k=2, we have
Lt (PDR-1 = Prak—1.4(A).

Remark 5.6.

When k=2, then p.(A)=pAA) and theorem 5.5 reduces to proposition 2.4 (ii).

In order to obtain useful expressions for x,(f) and y(f) in (5.1), we first study the generating
function

(0]

D(t) = ) et pri(A. 3
r=0

Note that, given a certain k, for walks of length r<sk—1it holds that p.{(A) = p.{A), since no
cycles of length k can be formed using less than k edges. Therefore, our problem reduces to
that of computing

(©0]

D)= ) ot pr(A), -
r=k—1

which implicitly yields all the p.,(A) for the interesting case r=k.

Our procedure for computing 5k(t) is the following. From theorem 5.5 it follows that

L0 fAPOI Ry = Zcr+k—1trpr+k—1;k(A) = Z et prr(A)
r=0 r=k—1

and thus

LT 0 f(E PO Ry = D (D).

Hence, having obtained P, from the construction in theorem 5.3, we may obtain 5k(t) as



follows: (i) Compute 35~ 'tPy); (ii) Project: Z1_,[0°7! f(tP)] R —1; (iii) Multiply by <.

Here, in the general case where ¥ 'f{tP,) takes the form of a power series, it may be
approximated by ignoring powers (t P)°"' and higher, for some choice of s. This truncation
corresponds to ignoring non-k-cycling walks of length greater than s in the original network. We
emphasize, however, that in practice, for a specific choice of £, 87"t P,) is nothing but a matrix
function [42] of P,; more efficient techniques than truncating a Taylor series are typically
available to compute a matrix function, or its action on a vector. As they depend on the specific
function, a full discussion is beyond the scope of this paper, and we refer the reader to the
monograph [42] and the references therein.

Note that with this projection approach it is also possible to compute non-k-cycling Ftotal
communicabilities as follows: (i) Compute "9~ 'tP)1; (i) Project from the left by Zi_;; (i) Add
l‘k_zck_zpk_z;k(A)l + -+ tzczpz(A)l + tc; Al.

Let us briefly comment on the last step of the approach described above. First, we note that
there is no need to add the term c¢p1, as this addition would just produce a different
representative of the same equivalence class under the relation in (5.1). The terms t¢A1 and

2 copo(AN1= 2 co(A% — D)1 can be easily built from the data. As for the remaining terms £ cypg.i(A)1
= tQCng;g(AM for £=3, ..., k—2, these can be computed during the process of building the
matrix Py Indeed, it follows from theorem 5.5 and (5.2) that ps.,(A)1 = ff?_] P.1.

We observe that, although not necessarily tractable for large networks (see §5a), the procedure
described above is mathematically well defined for any k=2.

We finally describe how to compute the non-backtracking and up to non-k-cycling f~subgraph
centrality measure x,(f) in (5.1). It is readily seen from (5.4) that for all i=1, 2, ..., n:

xi(1); = o + ¥ el L[0! f(1 PRy —1e;
~ el LT[0 f(t PO R 1€

As observed in theorem 4.3, the behaviour of the £~subgraph communicability is very different
from that of the £total communicability, in the sense that the former lacks ‘memory’; indeed, as
mentioned in remark 5.1, the vector x,(f) only considers closed walks in assigning importance to
the nodes in the network, and completely ignores closed walks whose length is less than k
since they have already been removed at previous steps.

(a) Remarks on complexity

This method can go on indefinitely, until we have removed cycles of length n (which is the
length of the longest possible cycle). At that point, we have a method to count paths that can
be used to define a path centrality.

Counting paths is #P-complete [47]. Therefore, if we had an algorithm for computing the p,,..(A)
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matrices in polynomial (in n) complexity even for k= n, this would imply that P=NP.
Unfortunately for the authors, we do not have such an algorithm.

Observe that the size of the matrix P, is equal to the number of k-plets of nodes in the input
graph such that there is a path of length k—1through them. The worst case scenario is given by
the complete graph with n nodes, for which there are O(n*) such k-plets. Therefore, even if all
the subsequent steps are implemented in a complexity which is linear in the size, for k=nthe
method would yield an exponential complexity algorithm.

It should be noted, though, that it is entirely conceivable that for real-life networks, which are
typically extremely sparse, this worst-case growth might not be relevant. This issue is followed
up in §6.

(b) Convergence

In this subsection we study the radius of convergence of the power series (5.4). This analysis
will be used in §5, where we study universality properties of the centrality measures defined via
the generating functions.

We begin by showing that the node space and generalized edge space series behave similarly.

Lemma 5./.

For all k, the series¥(t) = ZZO c.t" Pl and @1 in (5.3) have the same radius of convergence.

Proof.

Denote by py and pe the radii of convergence of W (f) and @(1), respectively. Lett < py.
Therefore, by theorem 5.5

k—2
() = D) + LT PRt Pr() = ) et prs(A).
r=0

Hence, the (/, ) entry of the sum @(f) is equal to a finite sum plus an infinite sum. The latter is a
linear combination of the entries of the absolutely convergent sum W (7). It follows that @,(1)
converges, and hence, pep > py.

Suppose now t > py and let (rg, o) be such that (¥« (?)),,s, diverges. Moreover let (i, jo) be
such that (Zx-1),,;, = (Zi-1)g,,, = 1; note that (io, jo) is uniquely determined because Z;_; and
R -1 in (5.2) have precisely one nonzero element in each row. Observe that

D (1) — D
< k<f>tk_1 km),.j = Y (Lhe Dy PO Ri-1)y;, = PO,

r,s
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and @(1) diverges. Hence, pp < py and we conclude that py = pg. =

The next theorem characterizes the radius of convergence of (5.4) (via lemma 5.7) in terms of
the number of cycles of length greater than k.

Theorem 5.8.

For k=2 the spectral radius of the non-k-cycling matrix P,of a simple and connected graph
G satisfies the following properties.

(i)
P(Pi) = p(Pje-1).

(ii)
If inG there are no cycles of length k thenp(P,) = p(Pj-1)-

(iii)
If in@ there are no cycles of length greater than k then p(P,) = 0.

(iv)
If inG there is precisely one cycle of length greater than k then p(P,) = 1.

(v)

If inG there are at least two cycles of length greater than k then p(Py) > 1.

Before proving this result, let us point out that any undirected cycle of length kin the original
graph can be regarded as two directed cycles: one where the nodes are visited clockwise and
one where the nodes are visited counterclockwise. It is readily seen that each of these two
walks will also appear in the graphs associated to the matrices Py for all £<k.

Proof.

(i)
Elementwise it holds p,.(A) = p,«1(A) for all r, k and thus the statement follows
from lemma 5.7.

(ii)

This is a corollary of Flanders Theorem [37]. Since the graph contains no cycles of



(iii)

(iv)

(v)

length k, then A, = 0 and thus the matrices P;_; = L{_le_l and
P =W, = Rk_lLf_l have the same spectrum, up to the multiplicity of O.

If there are no cycles of length greater than k, then the maximal length of non-k-
cycling walks is finite. It follows that @,(f) in lemma 5.7 has only a finite number of
nonzero addends, and hence it converges for all t. Thus, W (1) also converges for
all t (and for all allowed choices of #) implying p(P,) = O.

By the Gelfand formula, for any matrix norm || - ||,

p(Py) = lim || P7||";

r—00

e.g. [48, corollary 5.6.14]. Note first that max;; |(Pkr)ij| > 1, as there are two cycles

in the graph of P, and hence there exist walks of arbitrary length. We claim that,
for rlarge enough, there exists a constant ¢ =1, independent of r, such that
maxi |(Pk’)ij| < c. Since the latter is a matrix norm (not depending on 1) of P/, it

follows that p(Py) = 1.

It remains to prove the claim. Take r> n —= k, where nis the number of nodes in
the original graph. Then, any walk counted in P contains at least one cycle. Only
two cycles of length >k exist in the graph associated with Py, one corresponding
to the cycle in the original graph being visited clockwise, and one corresponding
to it being visited counterclockwise; clearly it is not possible for a walk to go from
one to the other, since this would imply the existence of either (1) another cycle,
longer than the one of length >k existing in the original graph, or (2) a cycle of
length =k in the graph associated with P,. Case (1) leads to a contradiction, while
(2) cannot happen because those walks have been removed at previous steps.
This means that the walks we are considering must contain a number of
consecutive circuits round one of the two cycles. Fix now i and j, two paths of
length k -1, and consider (P;);. This quantity is bounded above by a number ¢;

that can be constructed as the number of ways to enter one of the two cycles in
the graph associated to P, from i, times the number of ways to go from such
cycle to j. These two numbers are finite, and do not depend on rbut only on i and
J. Taking ¢ = max;; ¢; completes the argument.

We first consider the case where two of the cycles of length greater than kin the
original graph share at least one vertex, and denote their lengths by 2, = 05 > k.



Fix some integer k = £4 + £, and let s be the integer satisfying
S(fl +Lﬂ2) < k< (S+ 1)(f1 +Lﬂ2).

We will show that there is at least one entry of P/ that is bounded below by 2%, so
that then

p(Pk) > lim (2S)1/K — 21/(f1+z,”2) > 1
K— 00
and hence the conclusion in this case. Let us thus consider two non-(k = 1)-cycling
walks in the original graph that belong to the first cycle. It is easily seen that there
are at least

<2$> _ @29)! S 98

s/ (1)

non-k-cycling walks of length k starting from one of these two paths and ending
at the other. Indeed, there are at least that many non-k-cycling walks that go
precisely s times around the first cycle and s times around the second cycle.
Hence, for K large enough, at least one entry of P is bounded below by 2°.
Hence the conclusion. Suppose now that no pair of cycles share a vertex, then
take any two cycles of length €4 = £, > k. These cycles are connected by (at least)
one walk, whose length we denote by d. Fix now some k=22 (£4+ €5+ d)and let s
be the unique integer such that

2s(C1+ 62 +d) < k< 2s+ 1D)(&; +76, +4d).

Let us count non-k-cycling walks that (1) start within the first cycle, (2) go precisely
2s times around the first cycles, 2s times around the second cycle, and s times
back and forth on the bridge, and (3) end somewhere in the first cycle. There are
at least

H2s-1 (25_:‘11> (25 - 1> > D25+l
s s

such walks, and this gives a lower bound for at least one element of P}. It follows
that

p(Py) > lim (22s+1)1/'< _ylO+o+d) 5

K— o0



After some further analysis, we will go on to prove theorem 5.14, which shows that the converse
of item (ii) in theorem 5.8 also holds. As the case k=2 (note that ‘cycles of length exactly two’
are reciprocal edges, which are always present in a non-empty undirected graph) admits an
easier proof, we treat it separately here.

Proposition 5.9.

For any non-empty (i.e. there is at least one edge) simple graph with adjacency matrix A and
Hashimoto matrix B, it holds that p(B) < p(A.).

Proof.

If the graph is a forest then p(B)=0 < p(A). Assume that the graph is not a forest. Then, in view of
the results in [24], we may assume that the graph is connected, and p(B) is equal to the largest
finite eigenvalue of the matrix polynomial /  — A t+ D— . Moreover, by [24, theorems 4.7 and
6.1], the latter is invariant by iteratively removing all the leaves from the graph. On the other
hand, the spectral radius of A can decrease by removing the leaves, but it cannot increase:
hence, there is no loss of generality in assuming the graph has no leaves. We now argue
similarly to [24, proof of theorem 4.8] and observe that

p(B? —ap(B)+f =0, a=v Av, pf=v Dv-I,

where v=0 is such that viv=1and (lo(B)?> - Ap(B)+ D— jv=0. (Moreover, it is a consequence of
the analysis in [24, section 9] that p(B) is the largest of the two roots of the above quadratic
equation.) Note that B=1[24, proof of theorem 4.8] and O <a<p(A). It follows that

2p(B) = a+ 1/a* —4p < 2p(A).

It is an immediate consequence of theorem 5.8 that for different values of kthe ranges of the
parameters tfor which the generalized Katz centralities based on non-k-cycling walks, obtained
via the procedure described in §5, consist of a sequence of nested intervals of the form

0, p(P)™") C (0, p(P)™") C (0, p(P3)™") C ++- C (0, p(P)™") C --.

Moreover, these intervals are strictly included in (O, 1) for all the values of k for which the
(connected) graph contains at least two cycles of length greater than k; they are equal to (O, 1)
for the values of k for which there is precisely one such cycle; and they are equal to (O, o) for all
values of k such that there are no such cycles.

(c) Generalized pruning

In this subsection, we show how the spectrum of Py is invariant under certain pruning
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operations. These results are of direct interest, since they quantify the range of allowable
values for the parameter t. They will also be used in the next subsection, where we study
limiting behaviour.

Let € = (7, &) be a simple and connected graph, and let k=3 be a fixed path length. For the
goals of this subsection, we partition the set of nodes for such fixed kinto two subsets:

7 = B UE. Here A is the minimal subset of nodes such that (1) given a fixed cycle-length k=3,
all the cycles of length >k only visit nodes belonging to % and (2) each connected component
in the subgraph spanned by € (if any) is connected to just one node in &% (multiple connections
to the same node in & are however allowed). We omit the trivial proof that, given k, such a
partition exists and is unique, although in some cases one may have 8 = @ or ¢ = 0.

Let us point out that paths that originate in % and end in € cannot be prolonged without
introducing cycles of length <k to return to &%, as this would imply the existence of a cycle of
length >k outside &% that we can use to cycle back.

Below, we will for simplicity use the verb ‘prolong’ to mean ‘prolong without introducing cycles
of length <k’, as above. Consider now the following labelling of the open paths of length (k—1)
in @, i.e., of the row and column indices of the non-k-cycling matrix Py:

(i)
paths in the original graph that start and end in % (and thus never leave %) and
that can be prolonged into arbitrarily long walks;

(ii)
paths in the original graph that start and end in % (and thus never leave %) and
that cannot be prolonged into arbitrarily long walks;

(iii)
all those paths that do not entirely take place within & and cannot be prolonged
into arbitrarily long walks, thus cannot ‘return to %’; and finally

(iv)

all the other paths: these do not entirely take place within % but can be
prolonged into arbitrarily long walks, and hence will return to &% in the limit.

With the described labelling, the matrix P, can be written as a 4 x4 block matrix; more
specifically



0 0O N, O
* * * N3 |

5.5

where N;for j=1, 2, 3 are nilpotent matrices of appropriate size. Indeed, the entries of the (1, 1)
block, i.e. the entries of the matrix Q (%) in (5.5), are non-zeros if and only if there are two
walks within the subgraph spanned by the nodes in &% that can be concatenated and
indefinitely prolonged. The (2, 2) and (3, 3) blocks correspond to paths that are not indefinitely
prolongable. Since it is possible to concatenate two such paths, the matrices in these blocks
are not the zero matrix, in general. However, given the type of walks we are considering,
powers of these matrices are going to be zero for large enough powers, since the walks are
not indefinitely prolongable. Thus the matrices in blocks (2, 2) and (3, 3), denoted by N, and N5,
are nilpotent. A similar reasoning applies to the matrix N5 in the (4, 4) block. Indeed, there are
only that many walks that do not entirely take place within % and that are prolongable to return
to this set. For large enough values of r, all walks will have returned to &% and thus Nj = 0, and
the matrix is nilpotent.

We now consider the off-diagonal blocks. The (2, 1) block is the zero matrix, since its entries
record whether it is possible to concatenate walks that cannot be indefinitely prolonged with
walks that can be indefinitely prolonged. The (1, 4) and (2, 4) blocks cannot have non-zero
entries, as they would correspond to paths that take place in % entirely and are prolonged via
paths that are not entirely on &% but can return to this set. However this would imply the
existence of a cycle outside .

Blocks (3, 1), (3, 2) and (3, 4) correspond to walks that are not indefinitely prolongable and
therefore cannot be connected, in the graph corresponding to P, to any of the paths that are
either taking place entirely within & or that can be prolonged to return to it.

Remark 5.10.

The non-k-cycling matrix associated with the subgraph of & spanned by 9%, which we denote
by Pi.(A), is then

Ox(AB) *

5.6
0 Ny

P (%) = [

The following theorem is an immediate consequence of the structure of the matrix Py.

Theorem 5.11.



Letg = (7, &) be a simple connected graph and let k be a given cycle length. Let?7” = 98 U € be
partitioned as described at the beginning of this section and suppose that the edges are
labelled as described above. Then, the spectrum of Py, the non-k-cycling matrix corresponding to
&, coincides with that ofQ,(9%)in (5.6) up to the multiplicity of O.

Theorem 5.11 shows that, similarly to the NBT case k=2 considered in [19,24], for k=3 the
network dimension may be lowered by pruning in order to reduce the computational cost of
finding the spectral radius of P,. The reciprocal of this spectral radius is a strict upper bound for
the range of suitable tvalues in the non-k-cycling centrality measures.

Remark 5.12.

According to whether there are more than one, precisely one, or no cycles of length >k, the
matrix O, (%) above is, respectively, irreducible, permutation similar to a block diagonal matrix
with two identical irreducible blocks, or empty. Therefore, the study of the spectral radius of Py
can be without loss of generality reduced to the case where the latter matrix is irreducible.

Lemma 5.13.

Let P,be partitioned as in (5.5). Then, for its right Perron eigenvectorw = p(Py)~'Pw, we have the
coherent partition, withu, v>0,

< o o <

That is, w; = 0if and only ifiis a path of length (k—1) that cannot be indefinitely prolonged.

Proof.

We partition the nodes of the graph of the nonnegative matrix P into four categories, as
described before theorem 5.11. Then, by remark 512, we can take w; > 0 if i is an indefinitely
prolongable path that takes place entirely on %, i.e. if i belongs to category (i). From the fact
that for large enough r(in particular, for r= R where R is the maximum of nilpotency indices of
Ny, N> and N3 in (5.5)), we have that

- OW(BY

* | O
P,:= 0 0|10 O |
0 0|10 O
- * * [ % 0 5.7



it is clear that w; = 0 if i cannot be indefinitely prolonged (categories (ii) and (iii)). Finally, let i be
a path of category (iv). Then, by remark 5.12, there exists a threshold R such that for r=R and by
the eigenequation defining w, we have

wi = p(P)™" Y (P, -
J

where the summation is taken over all paths j of length (k—1) within &. By (5.7), if j is a path of
type (iv), then (Pk’)ij = 0. Moreover, if j is a path of either type (ii) or (iii), then w; = 0. Hence, the
summation in (5.8) can be taken over all paths j of category (i) that can be connected to i in the
graph associated with P, via a path of length r. Suppose w; = 0: then, there is no such path j of
category (i), for no value of r=R. This contradicts the fact that i can be indefinitely prolonged,
and hence, w; > 0. =

We are now in a position to prove the converse of item (ii) in theorem 5.8.

Theorem 5.14.

If p(Pr—1) = P(P)) then there are no cycles of length k.

Proof.

We may assume without loss of generality that there are at least two cycles of length >k,
otherwise the statement is a trivial corollary of items (iii), (iv) and (v) in theorem 5.8. Recall that
by our construction there exist L,_q, Ri_1, Ag such that P, = Lz_le_l, and

P, = Rk_lLZ_l — A, and the absence of cycles of length kis tantamount to A,=0.

From the definition of L,_; and A, it follows that (Lz—lAk)ij = 1 ifthe (k—2)-path i in & is part of
a k-cycle and can be prolonged within this cycle to form the (k-1)-path j, while (Lz_lAk)ij =0

otherwise. Suppose that p(P,) = p(Pi-1)= p>1. Then for a left Perron eigenvector a of P,_1and a
right Perron eigenvector w of P, the following equations hold:

a' (LT Ry_y) = pa’, (Ri—1LL_ )W = Ayw + pw.
Combining the equations above we thus see that

a' LT Ayw = 2 aw; = 0,
i

59

where the sum is taken over all pairs (i, j) such that (Lg_lAk)ij # 0, i.e. the (k—2)-path i is part of

a k-cycle and can be prolonged within such a cycle to make the (k—1)-path j. By remark 5.12, we



can assume that P, is irreducible, and hence, a> 0. It is worth stressing that in this context we
cannot simultaneously make the same assumption on P,. we only know w=0. We therefore
conclude that either the summation in (5.9) is empty, and hence there is no cycle of length
precisely k, i.e., A,=0, or w; = 0 for all open paths of length k—1that are part of a k-cycle. We
claim that the latter is impossible: if there is a cycle of length kin the original graph then there
is at least one such open path, labelled jo in the graph of Py, such that wj, # 0. This claim
proves the statement.

To prove the claim, let us partition the nodes 7" = % U € for fixed k as described at the
beginning of this subsection. We further partition the (k—1)-paths in €, i.e. the nodes of the
graph of Py, into the same four categories described before theorem 5.11. Suppose that there
exists a cycle of length kin € whose nodes all belong to %. Then there exists a (k—1)-path jo
that is indefinitely prolongable and belongs to this cycle. It thus belong to category (i) and
hence w;, > 0 by lemma 5.13. Suppose now that the cycle of length k contains at least one
node in €. From the definition of # and & it follows that there is at most one node in the cycle
that belongs to &%, as otherwise we would have a connected component in the graph spanned
by & that is connected to at least two nodes in %. Hence, there is at least one open path jo of
length (k—1) that belongs to such a cycle and does not entirely take place within &%, but can be
indefinitely prolonged, i.e. is of category (iv). By lemma 5.13 we again have wj, > 0. This proves
the claim and hence the theorem. =

(d) Non-k-cycling centralities and universality classes

We now extend the results in theorem 4.3 to the case of non-cycling walks. In summary, we find
that the limiting behaviour for subgraph centrality measures does not depend on the
underlying scalar function fix). However this is not true for the case of total communicability;
here, in the generic case (iii) in theorem 5.15, this quantity is seen to depend on the coefficients
¢, Co, ..., Cik. AN important corollary of this result is that, unlike in the NBT case k=2 studied in
[19,24], there can be no universal eigenvector-based non-cycling centrality measure arising as
the limit of the walk-counting version.

Theorem 5.15.

Let ¢,>0 for all r, and assume that the underlying graph is simple and connected. Consider the
centrality measuresx,(t) anady(f) in (5.1 for k>2. Suppose that the power series converge with
radii of convergence?k. Then, in the limit t— O we have

1 if there are no cycles of length > k
X, (t = 0) ~ p _ and y.(t - 0) ~d,
d?®  otherwise

where > k is the length of the shortest cycle that can be traversed, if any, d@js the vector
whose ith entry is the number of cycles of length € centred at node i, anddis the vector of
degrees. Moreover,



(i)

(ii)

(iii)

Proof.

if the graph does not contain any cycle of length >k, thent, = coand
Xp(t — 1) ~ landy{t = %) ~ ppii_1.dA)1, where h is the length of the longest path
in Pk-

if the graph contains exactly one cycle of length >k, thenx,(t — 1) only depends
on the distance of each node from the cycle of length >k, whiley,(t — t;) ~ 1.

if the graph contains at least two cycles of length >k, thenx,(t — t)and

Y. (t — tv) exist and are unique. The limit vectorx,(t — t,)depends on k, but not

on the choice of the coefficients c,. Similarly, the shifted limit vector

Y, (t = t;) — (ol + c1d + -+ + ¢cx_1 pr_1.k (A)1) depends on k, but not on the choice of
the coefficients c,.

The limit t— O can be analysed straightforwardly, as was the case in theorem 4.3. For the limit

fort — t,, there are three cases:

(i)

(ii)

If the graph does not contain any cycle of length >k, then the graph associated
with P, is a cycle-less digraph, and hence tx = oo and Xt = ) ~ 1. Moreover, if
we let h be the length of the longest directed path in the graph associated with
Py, then y(t = ) ~ pp. i 1.{A)1; see theorem 5.5.

If the graph contains exactly one cycle of length € > k, the matrix P, has 1 as its
eigenvalue, with algebraic and geometric multiplicity two. Indeed, using the same
partition of nodes described in §5¢ and the labelling of paths of length (k= 1)
described in theorem 5.11, it follows that A(Py) = A(P (%)) U {0}. It remains to
describe P, (%). By the remarks in §5c we can focus on studying Q. (%). It is clear
that anything that touches any shortcut is not indefinitely prolongable. Hence, up
to permutation similarity, O, (%) = C & CT where C € R is the circulant
adjacency matrix of a directed cycle. It immediately follows that 1is an eigenvalue
of P, with both algebraic and geometric multiplicity 2.

The conclusion then follows using a similar reasoning to that of theorem 4.3 (ii).
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(o Finally, suppose that the graph contains at least two cycles of length >k. The
matrix Py is then permutation similar to (5.5), where the matrix P, (%) # 0 in (5.6)
is now nonnegative and irreducible. Therefore, it follows from the Perron—
Frobenius theorem that the spectral radius of P,(%), and hence of P, is a simple
positive eigenvalue. The conclusion then follows from a similar reasoning to that

of theorem 4.3 (i). =

6. Tests on real data

In this section we record the dimension (number of rows/columns), the number of nonzero
elements, and density of the square matrices P,=A, P,=B, P, P, for some example networks.
Our aim is to get a feel for the growth of these quantities as a function of the initial network
size, n. We first consider samples from widely used random graph models, where testing over a
range of nis straightforward. We then take real, fixed, network data and work on increasingly
large subgraphs.

We begin by pointing out some relevant analytical results. For any undirected graph & with ny :
=nnodes and my :=m (directed) edges, the number of nonzeros in P, € R™*™ where n,=rm,
corresponds to twice the number of undirected open paths of length two in &; so, (e.g. [49]) m,
=d’(d —1), where we recall that d=(d) is the vector of degrees. The non-backtracking, non-
triangulating matrix P; € R™ ™ where n3=ms,, has a number of nonzeros that corresponds to
twice the number of undirected open paths of length three in &, so

ny = 2 (di—1)(d;—1)=2-3 (£tr(A%)) = d - D" A - 1) — tr(A°),
(i,))E®E

where the summation was taken over the my directed edges in . We define the density o, of
the matrix P, for k=1, 2, 3, ... as 0,=m/(nn,—1)).

In figure 2 we display on a semi-logarithmic scale (a) the evolution of the dimension ny of the
matrices P, for k=1, 2, 3, 4, (b) the evolution of the number of nonzeros my, and (c) that of their
densities O, for networks of increasing size built using the smallw function from the CONTEST
toolbox for Matlab [50], with default parameters. The function smallw(n) returns the adjacency
matrix of an independent sample from a class of small world networks [51] with n nodes. In our
tests, we selected n=100, 200, ..., 4900, 5000. For each of these we have computed the
dimensions of the matrices P, for k=1, 2, 3, 4, the number of nonzeros, and their densities; we
ran this test 100 times and averaged the results. Error bars are also shown in the plots to
indicate the standard errors. The same test was run for networks of increasing size built using a
preferential attachment type of model [52]: pref(n), for the same values of n. Results are
displayed in figure 3.



Figure 2. Evolution of average dimension, number of nonzeros and density of the non-k-cycling matrices P, for k=1, 2, 3, 4
corresponding to small-world networks of increasing size n=100, 200, ..., 5000. (a) Dimension, (b) nonzeros, and (c¢) density.
(Online version in colour.)
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Figure 3. Evolution of average dimension, number of nonzeros and density of the non-k-cycling matrices P, for k=1, 2, 3, 4
corresponding to preferential attachment networks of increasing size n=100, 200, ..., 5000. (a) Dimension, (b) nonzeros, and (c)
density. (Online version in colour.)
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For these two widely used models, it can be seen that although the dimension of the matrices
P>, P; and P, increases considerably with the size of the original network, they remain very
sparse, thus allowing for fast computations.

For our tests on real world networks, we raise the dimension by constructing increasingly large,
well-connected subsets of a fixed network. To do this, we first compute the Fiedler vector of the
largest connected component. Since the Fiedler vector is an eigenvector of the graph
Laplacian, it is defined up to scalar, nonzero multiples. We retained the sign returned when the
eigenvector was computed using the MATLAB built-in function eigs and we selected the

n mod 100" nodes corresponding to the largest positive entries in the Fiedler vector. We
iterated this process by adding, at each new step, 100 more nodes to the subgraph using the
ordering of the nodes induced by the Fiedler vector, until we reached the size of the largest
connected component of the original graph. Since close components in the Fiedler are good
candidates for members of the same cluster [53], this process is designed to run through well
connected neighbourhoods. The dimension and density of P, P, and P5 are displayed in figure
4 for the largest connected component of the collaboration network ca-HepTh (n=8638) and in
figure 5 for the largest connected component of the collaboration network Erdos02 (n=5534).
Both networks are available at [54]. On the x-axis we display the dimension of P, P, and P5 and
on the y~axis we display the number of nonzeros (top plots) and the density (bottom plots). The
results associated with P, are plotted in a semi-logarithmic scale, while the results for P, and Ps
are displayed in log—log plots. Again, we observe that the non-k-cycling matrices are rather
sparse for these real world networks.
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Figure 4. Evolution of number of nonzeros and of the density of the matrices P;=A, P,, and Ps associated with subgraphs of the
largest connected component of the network ca-HepTh. (Online version in colour.)

Download figure | Open in new tab Download PowerPoint

Figure 5. Evolution of number of honzeros and of the density of the matrices Pi=A, P, and P5 associated with subgraphs of the
largest connected component of the network erdos02. (Online version in colour.)

Download figure | Open in new tab Download PowerPoint

7. Conclusion

Motivated by the wide application of non-backtracking walks, our aim here was a natural
extension of this concept to the case of non-triangulating, non-squaring and, in general, the
elimination of all cycles. From a practical perspective, we showed that recursively unfolding the
Hashimoto matrix construction provides building blocks for the required generating functions
and non-cycling walk centralities. We also developed a range of theoretical results that
characterize the spectra of the associated matrices and the limiting behaviour of the centrality
measures.

We hope that this new computational and analytical framework will initiate further study in
areas where non-backtracking walks have proved attractive. In particular, for the network
science setting of this work, we envisage progress in a number of directions, including :
development of spectral results, such as the decay of p(P) in part (i) of theorem 5.8 as k
increases, for specific graph classes, and their consequences in terms of localization of
centrality measures; fast linear algebra algorithms that can exploit the structure of the matrix-
based subproblems, including the evaluation of general power series in tP,; large-scale tests of
the new network science measures on real-life complex networks of current research interest
in science and technology.
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Footnotes
1 d We selected 100 nodes if n mod 100 = 0.
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