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Abstract. Triadic closure describes the tendency for new friendships to form between individuals
who already have friends in common. It has been argued heuristically that the triadic closure effect
can lead to bistability in the formation of large-scale social interaction networks. Here, depending on
the initial state and the transient dynamics, the system may evolve towards either of two long-time
states. In this work, we propose and study a hierarchy of network evolution models that incorporate
triadic closure, building on the work of Grindrod, Higham, and Parsons [Internet Math., 8 (2012),
pp. 402-423]. We use a chemical kinetics framework, paying careful attention to the reaction rate
scaling with respect to the system size. In a macroscale regime, we show rigorously that a bimodal
steady state distribution is admitted. This behavior corresponds to the existence of two distinct
stable fixed points in a deterministic mean-field ODE. The macroscale model is also seen to capture
an apparent metastability property of the microscale system. Computational simulations are used
to support the analysis.
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1. Motivation and background. Network science is built on the study of
pairwise interactions between individual elements in a system. However, it is becoming
more widely recognized that higher-order motifs involving groups of elements are also
highly relevant [2, 3, 35]. In this work we focus on the formation of triangles—
connected triples of nodes—over time.

Naturally occurring networks are often observed to have an overabundance of
triangles [25, 26]. In the case of social networks, where nodes represent people and
interactions describe friendships, triadic closure is widely regarded as a key triangle-
forming mechanism. The concept of triadic closure dates back to the work of Simmel
[32] and gained attention after the widely cited article [20]. Suppose two people,
B and C, are not currently friends but have a friend, A, in common. The triadic
closure principle states that the existence of the edges A-B and A-C increases the
likelihood that the edge B-C will form at some future time. In other words, having a
friend in common increases the chance of two people becoming friends. As discussed
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in [10, Chapter 2], there are three reasons why the chance of the B-C connection
increases. First, B and C both socialize with A and hence have a greater opportunity
to meet. Second, A can vouch for B and C and hence raise the level of trust between
them. Third, A may be incentivized to encourage the B-C friendship if maintaining
a single triadic friendship is viewed as more efficient than maintaining a separate
pair of dyadic friendships with B and C separately. Building on these ideas it is also
natural, as in [13, 22], to argue that the increased likelihood that B and C will become
connected via triadic closure grows in proportion to the number of friends they have in
common.

With the advent of large-scale time-stamped data sets that record online human
interactions, it has become possible to test for the presence of triadic closure [2, 25,
28]. Moreover, the triadic closure principle can be used as the basis of link prediction
algorithms, which attempt to anticipate the appearance of new edges over time [2,
12, 27, 36].

A time-dependent random graph model that incorporates triadic closure was pro-
posed and analyzed in [22], and also calibrated to real cellphone data. The model,
from the general class defined in [21], takes the form of a discrete-time Markov chain
where edges may appear or disappear independently at random over each time step.
Numerical simulations revealed bistable dynamics—different paths of the same sto-
chastic process were observed to evolve towards either a sparse regime or a rich,
well-triangulated regime. A heuristic, deterministic mean-field approximation was
put forward to explain the behavior.

In this work, our aim is to develop and study a hierarchy of time-dependent
network models that incorporate triadic closure and admit bistable behavior. We
use a chemical kinetics framework to describe the system at a microscale level and
then consider macroscale approximations. This allows us to clarify the assumptions
that go into the micro-to-macro step and to be clear about the scaling of the model
parameters with respect to system size. At the macroscale level, the resulting process
can be shown rigorously to admit bistable behavior, in the sense of possessing a
bimodal steady state distribution for a particular choice of model parameters. The
macroscale steady state also gives insights into the apparent metastability behavior
observed in the microscale simulations for large system size, where the switching time
between sparse and well-triangulated regimes becomes extremely long. We study this
effect by computing the mean time to transition between regimes. We also introduce
the corresponding diffusion, or Langevin, model and compute its mean transition
times. Here, reaction rate theory [31] gives a good approximation to the observed
growth in mean passage time with respect to system size. Finally, we show that the
underlying deterministic reaction rate ODE, arising in the thermodynamic limit, gives
a continuous-time analogue of the mean-field equation in [22].

The rest of the manuscript is organized as follows. In section 2 we set up the
notation and define the microscale model. We also report on computational experi-
ments that motivate the subsequent material. In section 3 we derive a macroscopic
approximation and analyze its steady states and mean exit times. Section 4 intro-
duces the corresponding Langevin and ODE models. We finish with a brief discussion
in section 5.

2. Microscopic model. We suppose now that a network has a fixed set of
n nodes, which at each point in time may be connected by undirected edges. For
example, the nodes may represent individuals in an online social media platform and
the edges may represent mutual friendships. To be concrete, we assume that the
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nodes are labeled from 1 to n, and we let N = n(n — 1)/2 denote the total number
of edges that may be present at any time. We are interested in the case where n is
large, say n > 30, and we find it useful to think of a one-parameter family of models,
parameterized by N.

Our modeling framework allows edges to be created or deleted in continuous time.
We will use a chemical kinetics setting where the creation or deletion of an edge is
represented as a reaction between “edge” and “no edge” molecules. To be precise,
consider any pair of distinct nodes, ¢ and j. Without loss of generality, we take ¢ < j.
Then, with the corresponding undirected edge between nodes i and j we associate two
species, F;; and O;;. Existence of Ej;; represents the presence of the edge connecting
nodes ¢ and j and the existence of O;; represents the absence of this edge. So exactly
one of F;; and O;; exists at any given time ¢.

The mechanisms governing the edge evolution will be modeled as the following
set of reactions, with rate constants ¢y, ¢z, and ¢3:

(2.1) 0ij > Eij,
(2.2) E;j 2 0y,
(23) Oij + Ejk + Eip 3 Eij + Ejk + Eig, where i, j, k are distinct.

Here, reactions (2.1) and (2.2) represent spontaneous edge birth and spontaneous edge
death, respectively. The third reaction, (2.3), captures the triadic closure effect: if i
and j are not currently connected, then for every instance where there is a node k
connected to both ¢ and j, there is chance that ¢ and j will become connected via
triadic closure. Hence, we use the same principle as [22]: the overall chance of an edge
arising from triadic closure is linearly proportional to the number of new triangles that
this event would create.

We refer to (2.1)—(2.3) as the microscopic model. For the purpose of our work,
this microscopic model is regarded as an exact description of the network evolution.
Our aim is to study this model, and in later sections we will introduce approximations
that allow us to gain insights.

In principle, we could apply the stochastic simulation algorithm (SSA), also known
as Gillespie’s algorithm, the Doob—Gillespie algorithm, and the Bortz—Kalos—Lebowitz
algorithm, to this system [6, 15, 16, 24]. The state vector, which records the number
of E;; and O;; “molecules” at each time point will have 2N components. There are
N reactions of type (2.1), N reactions of type (2.2), and N(N — 1) reactions of type
(2.3). Hence, the stochiometric vectors would have dimension N(N + 1). Given an
initial state vector, at each step of the SSA we draw two random numbers: one to
determine time of the next reaction and one to determine which reaction takes place.

Because exactly one of F;; and O;; can exist, the propensity functions for reactions
(2.1)—(2.3) have simple forms:

e for reaction (2.1), the propensity function is ¢; if O;; exists and zero otherwise;

o for reaction (2.2), the propensity function is ¢y if E;; exists and zero otherwise;

e for reaction (2.3), the propensity function is ¢z if O;;, Ej, and Ej, exist and
zero otherwise.

We note that reactions (2.1) and (2.2) involve individual edges, and it is reason-
able to assume that the rate constants ¢; and co do not depend on the system size.
Reaction (2.3), however, involves interactions between edges, and the question of how
¢3 depends on the system size could be viewed as a modeling issue. We will argue in
section 3 that ¢3 should scale like 1/n, since this produces systems where the triadic
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closure mechanism remains present but does not overwhelm the spontaneous birth
and death of edges. More precisely, we will let

C3

(2.4) &=

for a fixed constant c3 (independent of n).

From the SSA perspective, we can reduce the size of the stoichiometric vectors,
and thereby save considerably on storage and bookkeeping, by exploiting the special
structure of this system. To do this, we draw three random numbers at each step: one
to determine time of the next reaction, one to determine which class of reaction takes
place, and one to pick a reaction from within this class. In this way, the computation
can be performed directly with the symmetric adjacency matrix, A(t) € R™*", where
(A(t))i; = 1 if the edge connecting 7 and j is present at time ¢ and (A(t));; = 0
otherwise. (It would be sufficient to work with just the upper triangle of A(t), but we
find it more natural to use the whole matrix when describing the algorithm.)

To summarize this approach, we introduce the class-level propensities

(2.5) Gbirth = C1 Z Z(l — A(t)ij),

1<j J
(2.6) Qdeath = €2 Z Z A(t)ij,
i<j J
(2.7) Qtriadic = C3 Z Z Atriadic(t) i,
i<j J

where Agiaqic(t) € R™*" is defined as
(2.8) Abriadic(t)ij = (A2(£)ij (1 = A(t)5)-

In (2.5) we form the product of the rate constant ¢; and the total number of missing
edges. Similarly, in (2.6) we form the product of the rate constant ¢y and the total
number of current edges. To understand (2.7), note that the term (A?(t));; counts
the number of nodes that are connected to both ¢ and j. Hence, in (2.7) we form
the product of the rate constant ¢3 and the total number of opportunities for triadic
closure.

A step of SSA may then be performed as follows:

1. Compute apirth, Adeath, dtriadic; and form asum = @death + Abirth + Gtriadic-

2. Choose the time until the next reaction from an exponential distribution with
parameter Ggym,-

3. Choose the class of reaction: death, birth, or triadic, with probability pro-
portional t0 @geath, Ubirth, and Ggriadic, respectively.

4. If the class is death, choose one of the nonzeros from the upper triangle of
A(t) uniformly at random, and set it to zero.

5. If the class is birth, choose one of the zeros from the upper triangle of A(t)
uniformly at random, and set it to one.

6. If the class is triadic, choose one of the nonzeros from the upper triangle of
the matrix Agriadic(t)i; with probability proportional to its value, and set it
to one.

It is worth pointing out here that the elements of the adjacency matrix represent
chemical species, and they can only take the value 0 or 1. However, the Markov chain
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Fi1G. 1. Time evolution of the adjacency matriz A(t). Nonzeros are represented by dots. We
show the connectivity at the initial time (upper left), at a time of low density (upper right), a time
of high density (lower left), and a later time where the density is again low (lower right). Here, we
have n = 30 nodes and nz denotes the number of nonzeros in the adjacency matriz.

simulated by the algorithm described above has a state space of dimension 2V (all the
possible undirected graphs with n-nodes). This in turn implies that as the number
of nodes n increases the computational cost of the algorithm will become a severe
limiting factor in understanding the dynamics of the system. One possible way of
accelerating the simulation is to use the 7-leaping algorithm [19]. In the case 7 =1,
this would essentially reduce to the model in [22].

We visualize in Figure 1 the adjacency matrix A(t) at different time instances
along a path computed by the SSA algorithm described above. Here, a dot in the
picture corresponds to the existence of an edge. We used reaction rate coefficients

(2.9) c1 = 0.025, ¢y =0.25, c3=0.91

with €3 defined in (2.4). Here, the initial configuration was a sample from the Erdds—
Rényi class with parameter p = 0.3, i.e., every edge has independent probability p to
exist at t = 0. As t increases the system is seen to transition between states of low
and high connectivity. We can summarize the overall connectivity by the edge density

(2.10) a(t) = = 33" Alt)y.
i<j

In Figure 1, the upper and lower right states have edge density of around 0.18 and
0.1, respectively, and the lower left state has an edge density of around 0.5. The
transitioning becomes clearer in Figure 2, where we plot the evolution of ¢(t) for
a range of different system sizes, again using an Erdés—Rényi initial condition with
p = 0.3. As n is increased from 30 to 50, the edge density spends longer periods of
time around each level. For n = 80 and n = 100, switching does not take place over
the interval 0 < t < 10%*. We will return to these observations in the next section,
where we construct and study an explanatory macroscopic approximation.
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FIG. 2. Evolution of edge density for n. = 30, 50, 80,100, up to time t = 10%.
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F1G. 3. Time evolution of all P;;(t), the probability that the edge i <+ j exists at time t. Thick
black line is the mean of Pi;(t) over all i and j.

Given that the overall edge density is a macroscopic quantity, it is natural to ask
if it captures the effective behavior of the system. To investigate this issue, let P;;(t)
denote the probability that the edge connecting ¢ and j exists at time ¢. In Figure 3
we superimpose all the individual values P;;(t) for the case n = 30. Here, we used
a Monte Carlo approach to estimate each P;;(t) by applying SSA to compute 250
independent paths. For each path, an initial state was chosen where half of the edges
exist. We see that after a fast transient all probabilities fluctuate around a value that
lies between the low and high edge density regimes that were seen in Figures 1 and 2.
(The mean of P;;(t) over all ¢ and j is superimposed as a thick black line.) This implies
that after an initial transient phase the topology of the network is homogeneous in
the sense that no nodes have distinguishable behavior.
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3. Macroscopic model. We saw in section 2 that after an initial transient
the specific topology of the network appears to be homogeneous. Motivated by this
observation we now define a simplified stochastic model. In this macroscopic model
we do not retain any information about the topological structure of the network;
we simply keep track of the number of edges. This reduces the size of the state
space dramatically; in the microscopic model there are 2V distinct networks. In
this macroscopic model the scalar edge count ranges between 0 and N. The simpler
model allows long-time numerical simulation to be performed more efficiently, and, as
we show in section 3.3, it is also amenable to rigorous analysis.

3.1. Macroscopic regime. Our simplified, macroscopic version of the microscale
system (2.1)—(2.3) involves two species: E represents an edge and O represents a miss-
ing edge. The species undergo three types of reaction, representing birth, death, and
triadic closure, respectively,

(3.1) 0O—E,
(3.2) E— 0O,
(3.3) O+E+E—-E+E+E.

The state vector may be written X (t) € R?, where X;(¢) and X(¢) record the number
of edges (species E) and missing edges (species O), respectively. Notice that X (t) +
X5 (t) = N for all t > 0. The stoichiometric vectors for the three reactions are

as[ 4] me[A] e[ 1]

Reactions (3.1) and (3.2) are first order reactions that model spontaneous birth
and death of edges. These effects are independent of the network structure, and hence
we reproduce the corresponding birth and death behavior from the microscale model
exactly by taking propensity functions a; (X (t)) = ¢1 X2(t), and as(X(t)) = c2 X1 (t),
where ¢; and ¢ are the rate constants from (2.1) and (2.2). For the reaction (3.3)
representing triadic closure, we must introduce simplifying assumptions, because the
macroscale regime does not keep track of individual node and edge labels. Based
on our observation in section 2, we suppose that at the current time t edges are
uniformly and independently distributed among the nodes—every possible edge i <+ j
(with ¢ < j) has a chance X;(t)/N of existing. (We note that this is effectively the
mean-field assumption used in [22].) Our aim is now to approximate the number of
open wedges; that is, node triples ¢, j, k such that edges ¢ <+ j and i <> k are present
and edge j < k is absent. This quantity records the number of opportunities for
the microscale reaction (2.3) to take place, and hence will be used in forming the
propensity function at the macroscale level in (3.3).

To derive this approximation, we first note there are X;(t) ways to choose an
edge i <> j. Then, fixing this ¢ and j, for every other node k there is a chance of
~ (Xi1(t) — 1)/N that the edge i <+ k also exists. So, taking into account all n — 2
nodes, there are ~ (n — 2)X;(¢)(X1(t) — 1)/N chains of the form j <> i ++ k. For any
such chain, the chance of the third edge, j <> k, being absent is &~ X5(¢)/N. So the
overall number of open wedges is ~ (n —2) X1 (t)(X1(t) — 1) X2(t)/N?2. Hence, we find
that a suitable propensity function for reaction (3.3) is

(3-4) as(X (1)) = 3(n — 2)X2(t) X () (X1 (£) — 1)/N?,

where €5 is the rate constant in (2.3).
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Since X (t) + X2(t) = N, the macroscopic model (3.1)—(3.3) may be written as a
scalar, continuous-time birth and death process for which X;(t) takes integer values
between 0 and N. Using A; and p; to denote the overall birth and death rates, we
have the general form

(3.5) P (Xy(t+6t) =i+ 1X(t) =) = \i 6t + 0o(6t) for i = 0,..., N — 1,
(3.6) P ((X1(t+06t) =i — 1| X(t) =) = p; 6t + o(6t) for i = 1,..., N.

Based on the arguments above, these birth and death rates take the form

(3.7) Ai=c(N—1i)+ w

(N —)i(i = 1),

Using the scaling (2.4), we obtain the birth rate

20 R () ()]

We then rewrite the death rate (3.8) as

i
(3.10) i = Neg N
We note in particular that the ¢3 o< 1/v/N scaling from (2.4) has balanced the size of
the separate terms in the birth and death rates (3.9) and (3.10).
We emphasize that cq, ¢, and c3 are regarded as positive constants and we have a
family of birth and death processes parameterized by the system size, N, representing
the number of edges.

3.2. Comparison between the macroscopic and microscopic models.
Having derived an approximation to the microscopic model in the previous subsec-
tion it is natural to compare individual paths of the two stochastic models. We will
choose two sets of reaction constants ci,cs,c3. From now on, and for reasons that
will become apparent, we will refer to the parameters in (2.9) as the bistable regime,
and we will also use a second set of parameters with a larger birth rate, c¢1, given by

(3.11) 1 =025, ;=025 c5=0091.

We will refer to (3.11) as the monostable regime.

The behavior of paths in the monostable regime can be seen in the upper plots
of Figure 4, for n = 30 on the left and n = 100 on the right. The initial state was an
Erdés—Rényi sample with parameter p = 0.2. For both values of n, we see that the
microscopic and macroscopic models are behaving in the same way, namely, having the
edge density increasing towards a high value and oscillating around it. Additionally,
we superimpose in these plots the solution of the deterministic mean-field model in [22]
(see also the discussion in section 4). As we can see, both models agree closely with the
mean-field approximation, with the size of fluctuations becoming smaller for larger n.

The behavior of the paths in the bistable parameter regime (2.9) can be seen in
the lower plots of Figure 4. Again we have n = 30 on the left and n = 100 on the right
and we used an Erd6s—Rényi initial configuration with p = 0.2. We see again there
is excellent qualitative agreement between the microscopic and macroscopic paths.
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F1G. 4. Comparison between the microscopic, the macroscopic, and the mean-field model. An
Erdds—Rényi initial configuration with p = 0.2 using n = 30 (left) and n = 100 (right). Upper plots:
monostable regime (3.11). Lower plots: bistable regime (2.9).
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Fic. 5. Comparison between the steady states of the microscopic and macroscopic models in the
monostable (left, parameter set (3.11)) and bistable (right, parameter set (2.9)) regimes for n = 30.

However, unlike the monostable regime, for n = 30 the paths now do not agree with
the mean-field model, which, by its deterministic nature, does not switch between the
low and high density regimes.

Our second comparison of the two models concerns their long-time behavior. In
the case of the macroscopic model, we will see in the next section that it is possible to
obtain an analytic expression for the steady state. For the microscopic model it is not
possible to derive an analytic expression for the steady state, so we used a long-time
simulation (7' =5 x 10° in the bistable case, T = 10* in the monostable case). We
plot this comparison in Figure 5. Here, the horizontal axis represents the scaled state
values 0,1/N,2/N,...,1. We observe excellent agreement between the two steady
states both in the monostable and bistable regime.

3.3. Steady state of the macroscopic model. We now show that the bistable
behavior observed in Figures 1, 4, and 5 can be explained by analyzing the long-term
behavior of the macroscopic model. Standard theory [34] shows that in our ergodic
setting a process of the form (3.5)—(3.6) has a stationary distribution
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FI1G. 6. Steady state distribution of the macroscopic model (3.5)—(3.6) for n = 30,50, 80,100 in
the bistable regime (2.9).
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In Figure 6 we show the steady state distribution in the bistable regime (2.9) when
the number of nodes is n = 30, 50, 80, and 100. This figure may be compared with
Figure 2. For internal consistency we have regarded these four curves as continuous-
valued probability density functions over [0, 1], thereby normalizing them to have
unit area. We see in Figure 6 that the bimodal steady state distribution has peaks
at around 0.2 and 0.5, in agreement with the low and high connectivity regimes seen
in Figure 2. We also see that although the location of the two peaks seems to be
fixed, their relative heights vary. For n = 30, the lower mode in Figure 6 captures
more probability, which is consistent with the trajectory of ¢(¢) in Figure 2 spending
more time in the lower connectivity regime. As n increases the higher connectivity
regime begins to dominate, and indeed the bimodality is barely visible for n = 100 in
Figure 6. This is consistent with the less frequent switching observed in Figure 2.
The following result shows that the bimodality of the macroscopic steady state is
connected to the roots of the cubic equation (3.13), which depend only on ¢;, ¢o, and
cs. We note that these roots are py ~ 0.17, p5 ~ 0.31, and p3 ~ 0.52 for the bistable
regime used in Figures 2 and 6. (We also note that the cubic equation (3.13) has a
single real root of p* & 0.75 in the monostable regime (3.11) used in the upper plots
of Figure 4.)

(3.12) 7

0.

THEOREM 3.1. Consider the scalar cubic equation

(3.13) (1 —p)(c1 + e3p®) —cap =0
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for which any real root must necessarily lie in (0,1). Then

(a) the cubic equation has one real root 0 < p* < 1 if and only if for sufficiently
large N the family of birth and death processes (3.5)—(3.6) with (3.9) and
(3.10) has a unimodal steady state with mazimum probability at state j, where
j/N =p*+ O(1/N),

(b) the cubic equation has three real roots 0 < py < p5 < p3 < 1 if and only if for
sufficiently large N the family of birth and death processes (3.5)—(3.6) with
(3.9) and (3.10) has a bimodal steady state with locally maximum probability
at state ji, where j1/N = pf + O(1/N) and at state js, where js/N =
p5+O(1/N), and with locally minimum probability at state ja, where jo /N =
p5 + O(1/N).

Proof. Let

2

C2

so a root of (3.13) corresponds to f(p) = p. Because f(p) > 0 for p < 0 and f(p) <0
for p > 1, we see that any real root must lie in (0,1). We know from (3.12) that
Tj+1/m; = Aj/ui+1. Hence, from (3.9), (3.10), and (3.14), we see that that for any
j=0,1,...,N—1,
T fG/N)| . C

— N’

(3.15) . N

where C' is a constant that is uniform in j.
For case (a), suppose that the cubic equation has one root p* in (0,1). Then, by
construction,

f;p)>1forp€(0,p*) and "?<1forp6(p*71)~

Let j* be the largest j such that j/N < p*. Then, for sufficiently large N, we see
from (3.15) that

5 . . Uy . .
St s T for j <% and <1 for j >
Tj Tj
Hence, mp < m < --+ < Wy« and mjxqq1 > Tjrqg > --- > Ty. So one or both of 7«

and 7«41 give a maximum value.
On the other hand, suppose we have a unimodal distribution, that is, my < m <
<o < mjx and mjxqpq > Wirqo > -+ > . Then, by (3.15),

@+O(1/N) >1forp= EA with p < p*
p N
and
J(p) +O(1/N)<1lforp= J with p > p*.
p N
For this to be true for all sufficiently large N, by continuity we must have a unique

root in (0, 1) at p*.
Case (b) may be proved in a similar manner. d
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3.4. Exit times. Figures 2 and 6 suggest that for large n there is a metastability
effect, where the process spends a long time in one regime before eventually switching
to another. It is, of course, extremely challenging to verify such behavior by directly
simulating a trajectory [5]. To gain further understanding of this type of behavior,
we will study the expected time taken to move between modes in the bimodal case of
the macroscopic model.

Let G € RWHDX(N+1) he the tridiagonal matrix

o Ao 0 .0
pr — (A4 ) A1
(3.16) 0 o —(atp2) A 1|
AN-1
L O UN  —UN

and, given 0 < i < N, let QI) € RV*N be the matrix obtained from G by neglecting
the 7th row and column, where we index from 0 to N. Denote by 15 the vector in
RY of all ones, and consider the linear system

(3.17) QU = —1y.

The component Tj[i] then gives the mean time spent by the process (3.5)—(3.6) to reach
the state ¢ starting from state j [33]; that is,

) =Elfinft: X(t) =i[X(0)=4], j=0,....N, j#i.

Let |-| denote the integer flooring operation. In the case where the cubic (3.13)
has three real roots, 0 < pj < p5 < p3, and for a fixed value n, and hence N, we
let Ny = |ptN], Noa = |p5N|, and N3 = |p5N|. Hence, by Theorem 3.1, N; and
N3 are the state values corresponding to the peaks of the bimodal density, and Ns
corresponds to the trough in-between. In Figure 7, on the left, by repeatedly solving
appropriate systems of the form (3.17), we show the mean time taken for the process
to move from Nj to Na (dashed line) and from N3 to Ny (solid line), as a function of n.
This characterizes for a specific system size n how long it takes on average to switch
between the two regimes. Note that both axes in Figure 7 are logarithmically scaled.
We see that as the system size increases, the time to transition between the two modes
increases dramatically. Moreover, for small n, the N; — N, transition takes longer
than the N3 — N, transition, whereas this relation changes over as n increases. In
Figure 7, on the right, we show the ratio of the N; — Ny and N3 — N, mean exit
times. This behavior is consistent with the steady state plots in Figure 6, where for
small (respectively, large) n there is more probability mass around Nj (respectively,
N3).

4. Langevin and deterministic ODE models. The macroscale model (3.5)—
(3.6) with (3.9) and (3.10) may be viewed as part of a hierarchy of models that includes
a stochastic differential equation (SDE), or Langevin process, and a deterministic
reaction rate ODE. We will first look at the Langevin version and test whether it
retains the metastable behavior observed earlier.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/06/23 to 192.41.114.229 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1406 DI GIOVACCHINO, HIGHAM, AND ZYGALAKIS

10
10 10°
--N,-->N

108 1 2
(]
g —N>N, o
£ 6 . 2
S 10 ®
§ s
E 10 102

102 -3

40 60 80 100 10 40 60 80 100
n n

F1c. 7. Bistable regime: mean time for the macroscale model to reach the central trough of the
steady state, N2, starting from each peak, N1 and N3 (left). Ratio between corresponding times

(right).

Using standard arguments [17, 18] the Langevin equation may be written as an
1t6 SDE of the form

(4.1a) dy(t) = p(y(t))dt + B(y(t))dW (t),
(4.1b) w(y) =c1 (1 —y) — coy + e3(1 — y)y?,

(410 8(y) %\/ = 9), v Ve~ 9

where W (t) = [W1(t), Wa(t), Ws(t)]T is formed of three independent Brownian mo-
tions. Here the scalar, real-valued, random variable y(t) represents the edge density
at time t. Because of the presence of the square roots in (4.1c), the process be-
comes ill-defined when y(t) leaves the interval [0,1]. This circumstance is common
in Langevin formulations; intuitively, it arises from the fact that the approximations
used to transfer between Poisson and diffusion processes break down when the mol-
ecule count for any species becomes small. Many approaches have been proposed to
overcome this issue; see, for example, [1, 9, 29] and the references therein. We will
avoid this difficulty by focusing on the mean first passage time for the SDE with a
reflecting boundary at one end, thereby considering only paths that do not leave [0, 1].
Letting

1
o*(y) = 5 (1 (1= y) + oy + e5(1 = y)y*) ,
we may then define the following partial differential operator

d?u

du 9
g (y)diyga

(4.2) L= () 3 +:

and the corresponding boundary value problem in the interval (a,b)
(4.3) LT = -1,

subject to one of the two following pairs of boundary conditions:
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F1G. 8. Analogues of the mean exit times in Figure 7 for the Langevin equation (4.1).

The solution T'(z) with boundary conditions (4.4a) gives the mean time for paths of
(4.1) starting from x to reach the value b when the SDE has a reflecting boundary
condition at y(t) = 0 [14]. Similarly, with the boundary conditions (4.4b), T'(x) gives
the mean time for the SDE paths to reach a starting from x when there is a reflecting
boundary condition at y(t) = 1.

In the manner of Figure 7, in Figure 8 we show the mean times taken for the
Langevin process to reach the central trough of the steady state distribution (scaled
to represent edge count rather than edge density) from each peak. The curves were
obtained by numerically solving the relevant boundary value problems. In separate
computations, not reported here, we observed that it was very unlikely for an SDE
path to leave the interval [0, 1] over any reasonable timescale, and hence the reflecting
boundary condition, which is introduced to avoid the technical issue of ill-defined
square roots, has little effect on the results.

For further comparison, in Figure 9 we superimpose the mean exit times from
Figure 7 (on the left) for the macroscale model and the mean first passage times from
Figure 8 for the Langevin process. Here, we have plotted n? on the horizontal axis
against the logarithm of the mean time on the vertical axis. We see that the SDE
captures the extreme rate observed for the macroscale model, and for both models the
mean time appears to scale exponentially in n2, in line with the reaction rate theory
of Kramers [23, 31]. It would, of course, be of interest to pursue the rigorous analysis
of (4.1) with respect to long-term behavior as the system size increases.

4.1. Deterministic model. The reaction rate ODE arising from (4.1) takes the
form dy/dt = p(y(t)). We note that p coincides with the cubic equation in (3.13),
and hence the edge densities p* in part (a) of Theorem 3.1 and p},p3, p5 in part
(b) of Theorem 3.1 coincide with fixed points of this ODE. We also note that the
deterministic mean field from [22] is essentially an Euler discretization of this ODE
with unit step size. In the upper plots of Figure 4 we see that, in the monostable
regime, the deterministic mean-field approximation captures the long-term behavior
of the macrolevel edge density. In the lower plots, corresponding to the bistable
regime, the deterministic approximation is not able to switch, and hence settles on
one of the two stable fixed points, p} or p3, depending on the initial condition.
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Fi1G. 9. Comparison between mean exit times for the SDE (4.1) (as in Figure 8) and the
macroscale Markov process (3.5)—(3.6) with (3.9) and (3.10) (as in Figure 7).

5. Discussion. Our aim in this work was to perform multiscale stochastic mod-
eling and analysis to add insights to the bistability effect observed in [22]. A major
objective was to develop simplified stochastic models that (a) reproduce the switching
and metastability behavior observed for the full microscale model, (b) make long-term
simulation feasible, and (c) offer the potential for rigorous analysis. A key step in this
work was to set up a suitable scaling for the triadic closure reaction rate as a function
of system size, i.e., the total number of possible edges, N. Returning to the original
microscale model (2.1)—(2.3), we note that ¢3 is the rate constant for each individ-
ual triadic closure reaction. So the chance of reaction (2.3) happening is ¢3 if each
of Oy;, Eji, and Ej, exist, and zero otherwise. Based on the way our macroscale
approximations arose, it was then natural for ¢ to have the scaling ¢ o 1/v/N in
(2.4). Here, the chance of any individual triadic closure event taking place decreases
as the system size grows. This scaling is necessary if we wish to be in a regime where
spontaneous birth, spontaneous death, and triadic closure all coexist for large system
size. In particular, keeping ¢3 constant as N grows would lead to a system where
triadic closure dominates, in general.

There are several directions in which this work could be pursued. For example, we
note that although online social networking has the potential to increase the number
of friendships an individual may form, there is evidence of an upper limit of around
150 in practice [4, 8]. This “Dunbar number” effect can be explained in part by
cognitive constraints and in part by the time costs of maintaining relationships [7,
8]. In our model, in a bistable regime the low and high connectivity levels (p7N and
p5N in Figure 6) lead to nodal degrees that become arbitrarily large in terms of N.
Hence, in the case of very large networks it would be reasonable to investigate models
that incorporate some sort of saturation or carrying capacity effect in order to limit
the maximum number of friendships a person may maintain.

Furthermore, it is of course possible to move from triadic closure to more gen-
eral mechanisms that encourage cliques [30] or other motifs to form in a network.
Here new challenges include the incorporation of appropriate higher order matrix-
level nonlinearities in expressions such as (2.7), and the justification of mean-field
approximations across longer-range interactions. Moreover, the network evolution
model could include mechanisms that produce heterogeneous degree distributions by,
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for example, encouraging preferential attachment [11]. Finally, it would be of interest
to develop calibration methods along the lines of [28] in order to fit parameters to
real data and search for bistability effects.

Data Availability Statement. Code to perform the computational experi-

ments reported here can be found at https://www.maths.ed.ac.uk/~dhigham/algfiles.
html.
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