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ABSTRACT

We consider stochastic, individual-level susceptible-infected—susceptible models for the spread of disease, opinion, or information on
dynamic graphs and hypergraphs. We set up “snapshot” models where the interactions at any time are independently and identically sampled
from an underlying distribution that represents a typical scenario. In the hypergraph case, this corresponds to a new Gilbert-style random
hypergraph model. After justifying this modeling regime, we present useful mean field approximations. With an emphasis on the derivation
of spectral conditions that determine long-time extinction, we give computational simulations and accompanying theoretical analysis for the

exact models and their mean field approximations.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0093776

Humans typically interact in groups, not just in pairs. Moreover,
interactions may vary over time. For these reasons, it has recently
been argued that the spread of information, opinion, or disease
should be modeled over dynamic graphs or hypergraphs rather
than a fixed graph. The use of hyperedges naturally allows for a
nonlinear rate of transmission in terms of both the group size and
the number of affected group members. In the context of opinion
dynamics, an individual may be affected differently if multiple
members of the same group (such as a workplace or household)
express a view than if the same number of contacts from different
groups express that view; this is an example of a majority effect.
Similarly, in the spread of a disease, having multiple infected con-
tacts in the same group may lead to a different infection rate
than having the same number of contacts across independent
groups. In this work, we develop and study mathematical mod-
els for processes that spread over graphs and hypergraphs, and we
consider the case where interactions vary over time, allowing for
the dynamic nature of typical encounters in, for example, offices,
schools, retail and leisure outlets, public transport, and enter-
tainment events. Our overall aim in this work is to develop new
mathematical models, derive useful conditions that predict when

a process (such as a disease) will die out, and to test our theory
with computational experiments.

I. INTRODUCTION

We consider a susceptible-infected—susceptible (SIS) disease
spread on a dynamically evolving graph, where the dynamic edges
represent interactions between individuals in a population over
time. We also consider a generalization to the case where a disease
spreads on a dynamically evolving hypergraph, where individuals
interact in groups of size larger than two. Several previous works
have considered SIS spreading on a dynamically evolving graph.'-"*
There, some general conditions were found, which guarantee that
the disease will vanish asymptotically. However, in several of those
works, these conditions require full exact knowledge of the dynamic
graph evaluated at all times. In this work, we motivate and study the
case where the dynamic graph is a sequence of i.i.d. random graphs,
sampled from a static underlying expected graph, and we show how
this assumption allows us to derive simple and practical vanishing
conditions. Based on a mean field approximation, we find that, in
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this setting, the spread of the disease on the underlying expected
graph provides an accurate description of the spread of the disease
on the dynamically evolving graph. We provide both numerical evi-
dence and theoretical analysis to support this observation. We then
extend our investigation to the case of a dynamically evolving hyper-
graph. There too, we proceed via a mean field approximation, in
order to derive a static hypergraph on which the spread of the disease
is accurately predicted. We illustrate this approximation through
numerical simulations.

The main contributions of this paper can be summarized as
follows:

e We compare two different models of an SIS disease spreading on
a (fixed or dynamic) graph and identify the one, which is more
amenable for extension to the hypergraph case. In particular, we
formulate and justify a new model, (18), for the spread of disease
over a dynamic hypergraph.

e We propose mean field approximations (14), (17), (20), and (22
to these exact models and illustrate their accuracy via numerical
experiments. We also show that these mean field approxima-
tions provide spectral conditions, which, if satisfied, guarantee
the asymptotic vanishing of the disease in the population—see
Theorems V.3 and V.4 and the discussion in Sec. V1.

e We contribute further to the theoretical analysis by estimating
the difference between the infection rate of dynamic and static
exact and mean field models—see Lemma 5.8.

e In developing the new dynamic hypergraph model, in
Sec. I1I B 1, we set up and analyze a hypergraph analog of the
classical Gilbert random graph model.

As mentioned in more detail in Section II B, concepts and
results in this area are relevant to many scenarios concerning the
spread of information, opinion, or disease; however, to be con-
crete, we describe the models and analysis in the language of
epidemiology.

Il. REVIEW OF PREVIOUS MODELS FOR THE SPREAD
OF AN SIS DISEASE

A. SIS on static graphs

We first consider a population of n individuals for which we
have a nonnegatively weighted, undirected graph represented by
a symmetric matrix W € R"*" that characterizes pairwise affinity.
Here, 0 < w;; = w;; < 1 represents the strength of the connection
between i and j and, therefore, will be used when we quantify the
likelihood of transmission of the infection. In this graph setting, it
is natural to have no self-loops; that is, w; = 0 for 1 < i < n, but
we note that self-loops will arise when we consider flattening of a
hypergraph—see the discussion after Definition 2.3.

The SIS modeling framework places every individual in exactly
one of two categories: susceptible or infected. Associated with these
categories are a parameter 8 > 0, which quantifies the overall vir-
ulence of the disease, and a parameter § > 0, which quantifies

scitation.org/journal/cha

In describing various SIS models, to avoid an excess of nota-
tion, we will use p;(t) to denote both the exact probability that indi-
vidual i is infected at time ¢, according to a discrete- or continuous-
time process, and an approximation to this quantity arising from,
for example, a mean field assumption. By referring to specific mod-
els, we hope that the precise meaning of p;(f) is clear at each point in
the paper.

In the literature, there are two main approaches to modeling an
SIS disease spreading on a graph. One common approach, initiated
in Ref. 13, considers the parameters 8 and § to be, respectively, the
probability that an infected individual infects a neighbor during one
unit of time and the probability that an infected individual recov-
ers from the disease during one unit of time. One can then derive a
model as follows. Let & > 0 denote the time between two consecu-
tive steps of the process. The probability 1 — p;(t 4 h) that node i is
susceptible at time t + h can be expressed as the probability hép;(t)
that it was infected at time ¢ but recovered at time ¢ + h, plus the
probability ((1 — p;(1)) ]_[;’:1(1 — hBw;;(t)p;(t))) that it was suscep-
tible at time ¢ and did not get infected by any neighbor at time ¢ + h.
This gives the following equation forall 1 < i < n:

1—pi(t+h) = hopi(t) + | 1= pi® [ [(1 = hBwyps(e) | . (1)

j=1

In Ref. 13, spectral conditions were found, which concern the
asymptotic vanishing of the disease. These conditions were derived
by linearizing the system, keeping only first order terms, yielding

it +h) = pi(t) — hépi(t) + kB Y wip;(D). (2)

j=1
We could also move to a continuous-time setting by subtract-
ing p;(#), dividing by h and taking the limit # — 0, yielding

dpi(t) -
b = PO+ B Y wiOp(0). (3)

j=1

We note that (2) may be viewed as an Euler approximation
to (3). Use of (1) or (2) or (3) may be regarded as a mean field
approach, where we directly consider the probabilities for the nodes
to be infected, rather than keeping track of the individual states of
the nodes themselves.

Analyzing the linearized model (2) with h = 1, it was shown
in Ref. 13 that the disease asymptotically vanishes; that is, for all
1 <i<mn, we have lim,, p;(t) =0 if p(W) < §/8, where p()
denotes the spectral radius. Hence, o (W)/§ may be viewed as a
graph-level analog of the classical basic reproduction number.

The authors of Ref. 14 consider an alternative approach based
on Markov chains. There, we regard the state of each individual as a
stochastic process (X;(t)) =, taking values in {0, 1}, with 0 for suscep-
tible and 1 for infected. To this two-state valued process, we associate
a rate of the transition matrix, where the transition rates between
0 and 1 are given as follows. If X;(f) = 0, the rate of infection is
given by

n
the recovery rate. We will assume throughout that recovery of an Ai(X(D) =B Z wiX;(1). (4)
infected individual is independent of the state of the system. =1
Chaos 32, 083131 (2022); doi: 10.1063/5.0093776 32, 083131-2
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Here, in a very similar manner to (2), the overall chance of a
new infection is taken to be linearly proportional to the num-
ber of currently infected neighbors using the affinity weights. If
X;(t) = 1, the rate of recovery is given by 8. Thus, for every
1 <i<n, the stochastic process (X;(t)),, satisfies the Markov
property. It is not a Markov process; however, the rates of infec-
tion are random variables. In order to use Markov theory to
analyze the model further, the authors in Ref. 14 effectuate a
mean field approximation by considering instead the expected
infection rate E[AL(X;(¢))] = B Z;'Zl w;p;i(£), where p;(t) := E[X;(1)]
= P(X;(#) = 1). We can now associate with the process (X;(£)):¢
the transition rate matrix

. -p Z;:1 wipi(H) B Zjnzl wip;(t)
Q) = ( ) L)

which makes (X;(f)),, into a continuous-time Markov process.
Using Markov theory for continuous-time Markov processes (e.g.,
Chap. 10 in Ref. 15), we can then deduce that [p;(#)] satisfies the
differential equation

dp;(t .
PL;E ) - B ;Wijpj(t)(l —pi@®) = dpi®), 1<i=<n_ (5
Let us note that (5) is very similar to the linearized model
in (3), but for the (1 — p;(#)) factor, which, when multiplied with
ZJL w;ipj(t), induces some second order terms. It is argued in
Ref. 14 how the simplification in Ref. 13 of (1) to the linear sys-
tem (2) does not provide a rigorous mean field approximation of the
underlying exact processes {(X;(t));>¢};_,. Nonetheless, we are pri-
marily interested, in this paper, in the derivation of sufficient spectral
conditions to guarantee the asymptotic vanishing of the disease. To
this end, it is sufficient to consider a linear ODE, which dominates
the processes {(p,-(t))tzo}:‘=1 in order to find sufficient spectral con-
ditions. We note furthermore that the spectral vanishing conditions
found in Ref. 13 were identical to those found in Ref. 14.

B. SIS on static hypergraphs

Another important difference to note between (1) and (5),
which is of particular relevance when we wish to capture higher-
order interactions between individuals, is that only the Markov
chain approach (5) naturally extends to a hypergraph setting.
Indeed, the rate of infection A;(X(t)) defined in (4) does not restrict
us to pairwise interactions. The model in (1) on the other hand,
via the product term in the equation, directly uses the assump-
tion that individuals interact pairwise, an assumption that ceases to
hold in the hypergraph setting. Thus, previous works, which studied
epidemic spreading on hypergraphs (e.g., Refs. 16-20), consider a
Markov chain approach, extending model (5). We refer to Refs. 21-
23 for further details of recent work on deterministic and stochastic
models for dynamics on hypergraphs.

To set up our hypergraph regime, we begin with some
definitions.

Definition 2.1. Let V be a finite set, and let E € P(V) be a

scitation.org/journal/cha

In particular, if all hyperedges have size two, then the hyper-
graph (V, E) is a standard graph with nodes V and edge set E. From
now on, let n := |V| and m := |E|.

Definition 2.2. Given a hypergraph (V, E) with |V] = n and
|E| = m, the n x m incidence matrix Z is such that for every
(i,h) € V x E, T, = 1 if node i belongs to hyperedge h and 7, = 0
otherwise.

Definition 2.3. Given a hypergraph (V,E) and incidence
matrix Z, we define the n x n weighted clique expansion matrix
W = ZZ". Here, w; records the number of hyperedges containing
both nodes i and j.

We note that in the graph case, where two nodes can be
involved in at most one edge, the off-diagonal elements of the clique
expansion matrix W reduce to those of the affinity matrix and the
diagonal elements of W contain the node degrees—these diagonal
entries may be interpreted as weighted self-loops.

In Ref. 16, the authors introduced a nonlinear function f
according to which individuals within a hyperedge may propagate
the disease in a nonlinear fashion; here, the likelihood for an indi-
vidual to become infected is not linearly proportional to the number
of infected neighbors. Similar models were further investigated in
Refs. 17 and 18. The introduction of the nonlinear function f marks
a significant departure from the linearity assumption that is used in
typical graph-based models, and it allows us to capture features, such
as the majority effect’’ in opinion dynamics and the viral load effect”
in disease spreading. We refer to Refs. 16-20 for further justification,
noting that there is particular interest in the collective suppression
case,'””” where the function fis assumed to be concave, and the col-
lective contagion case,'”'™*° where a virus spreads in a hyperedge
only if at least a threshold number of individuals in the hyperedge
are infected. Given any such function f, we can define the rate of
infection of a node i by

n

MXO) =B Tuf | D TuX;® | . (6)

heE j=1

In the special case of a graph, the rate in (4) is recovered when f
is the identity map. As in the graph setting, we wish to make the
rates deterministic in order to apply Markov theory to this pro-
cess, yielding a mean field approximation model. Two mean field
approximations have been proposed and studied in Refs. 17, 19,
and 20. In Refs. 19 and 20, spectral conditions were found that
guarantee the asymptotic vanishing of an SIS disease spreading
on a hypergraph for the different mean field models. One of the
insights of Ref. 20 is that the two mean field models, while having
slightly different vanishing conditions, provide very similar approx-
imations of the exact model. Hence, we shall only focus on one of
the two models, the behavior of the other mean field model being
conjectured to provide comparable approximations. We consider
the mean field approximation obtained by replacing the infection
rate (6) with a deterministic rate involving the processes given in
((pu(t) := E[X,()] = P(X,(5) = 1)), to obtain

n

set of subsets of V. We call the tuple (V, E) a hypergraph, where V LX) =8 ZI,-hf ZIjhpj(t) . (7)
denotes the set of nodes and E denotes the set of hyperedges. heE j=1
Chaos 32, 083131 (2022); doi: 10.1063/5.0093776 32,083131-3

© Author(s) 2022


https://aip.scitation.org/journal/cha

Chaos ARTICLE

This ensures that (X;(t)),s, is a Markov process, and as in the graph
setting, we can apply Markov theory to find an ODE system for
{Pi(1)) 120}, We have

dp; 3
pdit) = B2 Tuf | X Tup) | = épito),

heE j=1

1<i<n (8

This mean field approximation and the exact model were studied in
Theorems 6.5, 8.1, and 9.1 of Ref. 19 where it was found that the
disease asymptotically vanishes if

)
p(W) < B ©)

B’

where ¢; > 0is a constant depending on the choice of f [for instance,
if fis concave, ¢ := f(0) is a valid choice].

We note that the internal sum in (6) runs from j = 1 to n and,
therefore, includes j = i. Removing the j = i term from this sum
would not have any effect since the infection rate for node i is only
relevant when node i is uninfected; that is, X;(f) = 0. However, when
we move to mean field models, such as (7), removing the j = i term
from the sum would make a difference. In this work, in keeping with
previous works, we use the full sum, and we note that computational
tests suggest that specifying j # i produces very similar results.

C. SIS on dynamic graphs

We are interested in analyzing an SIS disease spread on dynam-
ically evolving graphs and hypergraphs. Several settings for dynamic
graphs have been investigated.

In Refs. 1-3, 5-8, 27, and 28, the setting consists of a dynamic
graph generated from a finite number of graphs, a typical example
being a periodic graph (W(f));2,, where there exists T € N such that
for each k € N, W(k + T) = W(k). Then, and in other cases where
the dynamic graph is generated by finitely many graphs, a spectral
condition for the vanishing of the disease was given as

max{p(W(®) |0 <t <T} < %

In Ref. 8, the authors derive spectral conditions for the asymp-
totic vanishing of an SIS disease spreading on a dynamic graph
under various assumptions ensuring that the dynamic graph is gen-
erated by finitely many affinity matrices {A(f) | t € {1, ..., T}}. They
argue that a vanishing condition can be found to be generally related
to a weighted average of the spectral radii of the finitely many matri-
ces generating the dynamic graph, the weights being proportional to
the frequency of occurrence of each affinity matrix in the dynamic
evolution of the graph. For instance, if the graph is periodic, cycling
through each affinity matrix one by one following a fixed order, the
vanishing condition they derive is given by

Ly <2 (10)
T 2 P < ﬁ

scitation.org/journal/cha

We note that the authors in Ref. 8 claim that this sufficient condition
can be replaced by the more compact condition

lXT:A(t) ) (11)
P\T4 B

However, since it is not true that the sum of the spectral radii is
bounded above by the spectral radius of the sum, but rather that it is
bounded below by the spectral radius of the sum when the matrices
are Hermitian (the spectral radius then being a norm), which is the
case here, we do not see how (11) arises.

From (10), we may derive a simple spectral vanishing condition
that was also obtained in Theorem 2 of Ref. 6,

max{p(A(®) |1 <t <T} < %

In general, we note that the vanishing conditions derived in these
works require full exact knowledge of the dynamic graph, which is
not a realistic assumption in many settings.

Alternatively, one can model a dynamic graph as a family
of random graphs indexed by time. This is the approach consid-
ered in Refs. 4 and 9-11, and the relationship between discrete-
and continuous-time network propagation is discussed in Ref. 29.
In Ref. 10, the random edges of the graphs evolve according to a
Markov process. There, the authors argue that the spectral vanish-
ing condition provided by the static aggregated graph, for which
the affinity matrix can be regarded as the long-time average of the
affinity matrices of the random graphs, is less informative about the
disease-free state of the process than another condition proved in
Theorem 3.10 of Ref. 10. This may suggest, although this was not
tested by the authors of Ref. 10, that the mean field approximation
induced by the static aggregated graph does not provide an accu-
rate prediction of the exact dynamic model. This observation is an
interesting contrast but is not in contradiction with the results of
this paper, where we show that the mean field model induced by the
static underlying expected graph (which could be regarded as the
analog of the static aggregated graph) provides an accurate approx-
imation of the exact dynamic model in a different dynamic setting
(see Secs. 111 A 2 and V and Fig. 1), and where the associated spectral
vanishing condition is sharp.

lll. SETTING AND MAIN RESULTS
A. Dynamic graphs

We define our dynamic graph with a different approach to
Refs. 1-3 and 5-8. Similarly to Refs. 4 and 9-11, we suppose that
the dynamic graph is generated by random graphs. The main differ-
ence in our setting is that we assume independence of the random
graphs from one time step to the other. We assume the existence of a
static underlying expected graph, from which we sample at each time
step, identically and independently, a new random sample matrix to
represent the interactions of the individuals of the population. Intu-
itively, the expected graph contains information about all potential
interactions a person may have over that time period (of a time step),
each interaction carrying a probability weight proportional to the
likelihood of this interaction occurring. To simulate a typical day
(or some other relevant time period), we, therefore, draw a random

Chaos 32, 083131 (2022); doi: 10.1063/5.0093776
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FIG. 1. Dynamic snapshot graph computation. Proportion of infected individuals
in the population after T = 200 and time step At = 0.1 for various values of 8.
Here, the blue crosses represent the exact model, averaged over 10 runs, and
the red asterisks represent the mean field approximation. The green vertical line
represents the expected spectral threshold for extinction of the disease.

sample using the expected graph, which yields random interactions
between individuals based on the expected potential interactions,
which could occur. We will refer to this as a snapshot modeling
regime for the dynamic interactions.

1. A Gilbert graph model

Let W be the affinity matrix of the static underlying expected
graph. In practice, in order to build W synthetically, we will draw the
entries of W at random, after which they will be treated as fixed in
the model. We assume that W is a real symmetric n X n matrix, and
for all 1 <i < n, w;; € [0,1]. It is reasonable to assume that inter-
actions are sparse in any time period; e.g., we do not expect that
a person has an equal probability to visit any place in a city, but
rather that they will focus a small number of places, typically in a
limited neighborhood. To keep W sparse, we use a Gilbert graph
model. Recall the Gilbert graph distribution G(#, p), where every
(undirected) edge of a random graph on 7 nodes, has independent
probability p € [0, 1] to exist.”” We can view p as a sparsity parame-
ter, tuned as a function of n, which allows us to control the expected
degree of each node, (n — 1)p, and to ensure that the generated
graph does not have too many connections, which could also make

2
related computations too costly to perform. Let [x,-j]?j=1 e [0,1]"
such that x;; = xj;, and let

o | with probability p,
Y77 ]o  with probability 1 — p.
The dynamic graph is then generated as an i.i.d. sequence of
random graphs, sampled independently and identically from W as
follows. Letting 7' C R, be the time domain, for each t € 77, we

scitation.org/journal/cha

sample independently Wj;(t) := w;;(t) ~ Bi(1,wy) if i < j, and we
let wi = wji if i > j. Informally, we toss a biased coin, with bias
determined by wj;, to decide whether the undirected edge is cre-
ated. We set w; := 0 for all 1 <i < n. This gives us a dynamic
graph (W(t)),c7-. We summarize this construction by writing that
each random graph was sampled independently as W(#) ~ Bi(1, W).
In particular, if all the entries of W are equal to 1, then Bi(1, W)
= G(n,p). To each node i, we associate a stochastic process
(Xi(1));e7> where 7' € T C R,. In practice, 7" is assumed to be
discrete, while 7 may be discrete or continuous but must con-
tain 7" as a subset. We can naturally extend the definition of W
to the possibly larger time domain 7', where for all t € 7, letting
to ;== max{s € 7' | s < t}, we let W(t) := W(t).

2. Mean field approximations

Motivated by (4), in this dynamic setting, we consider the
infection rate of the process to be

LX) =B Y wi(OX;(D). (12)

j=1

This rate may be approximated as before by

MX(®) =B Y wyi(Op;(D), (13)

j=1

where p;(t) := E[X;(#)] = P(X;(¥) = 1), from which we derive the
following ODE system to approximate the expected processes:

dp;(t) .

P2 = b= ) Y wyop 0~ spi0. (14)
j=1

In a discrete-time setting, for instance, with constant time increment

equal to 1, we have the corresponding recurrence

pit+1) = B(1 —pi(1)) szj(t)P;(f) + A =8pi@®. (15

j=1

This last model, (15), is studied in previous work on dynamic
graphs.” In Theorems V.3 and V.4, we show that E[p(W,)] < §/8,
where Wy ~ Bi(1, W) is a random sample independent from W(%),
t >0, is sufficient to ensure that lim, ., p;(f) = 0, almost surely
(a.s.) for all 1 <i < n in the continuous case (14) and the discrete
case (15), respectively.

Another approximation of the infection rate (12), more simple
than (13), is given by

MX®) =B Y Wipi(h), (16)
j=1

yielding the following ODE system for the associated mean field
approximation in a continuous-time setting:

dp;
d

() =\
—=h ;wi,-p,m(l — pi(1) — 8pi(D). (17)
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This approximation has the advantage that it summarizes the spread
of the disease using a static graph. Such models are better under-
stood (see Sec. II A), and it is known that if p(W) < §/8, then
the disease vanishes asymptotically. From a computational point of
view, running a simulation of the spread of a disease on a dynami-
cally evolving graph can be very costly when we work at the scale of
awhole city, with a very high number of nodes and interactions. The
mean field approximation (17) suggests that we can obtain an accu-
rate prediction of the disease evolution by considering the spread
on a static graph, understood as the underlying expected graph of
the model, where weighted edges represent the probabilities for an
interaction between two individuals to occur. This mean field model,
therefore, provides us with an efficient computational method to
simulate the spread of disease when the dynamically changing graph
is too large to handle directly.

We compare in Sec. V the spectral vanishing conditions and
the infection rates associated with the two mean field models (14)
and (17).

Under the assumption that the sparsity parameter satisfies
p = w(logn/n), we show in Lemma 5.8 that for a random sam-
ple Wy ~ Bi(1, W), we have p(Wy) = p(W)(1 + 0(1/.,/pn)), and
we show in Lemma 5.7 that S,(i) = E[S,(1)](1 + 0(1)), where S,,(i)
=B 2 wi(Dp;(D).

In Sec. I'V, we verify numerically that the mean field model (17)
induced by W provides us indeed with an accurate approximation of
the behavior of the exact processes {(Xi());s0}_,» thus allowing us
to approximate our exact model with a disease spreading on a static
graph. We do not show the other mean field approximation (14)
in the figures below since the results were visually indistinguishable
from those with the more simple mean field model (17).

B. Dynamic hypergraphs

As discussed in Sec. I1, modeling the spread of an SIS disease via
a Markov process provides us with a more flexible setting, where we
can consider interaction within a hyperedge, i.e., where individuals
can interact in groups of size larger than two and contaminate each
other in a nonlinear fashion. This more general and realistic setting
has already been studied in various works'®'"!%?0222631 in the case
where the higher-order structure remains static in time.

Here, we investigate instead the setting where the disease
spreads on a dynamically evolving hypergraph. This poses an impor-
tant prior problem: which model should we use to generate a ran-
dom hypergraph? Indeed, based on the various requirements, one
may want to impose on the hypergraph (hyperedges sizes, degree
distributions, etc.), various models can be used. Here, we develop
what we feel is a natural extension of the Gilbert graph model that
we used in Sec. III A 1 to generate the random graphs.

1. A Gilbert hypergraph model

Recalling that #n € N represents the number of nodes (i.e., the
number of individuals in the population), we now regard m € N as
the targeted number of hyperedges (i.e., the number of places where
individuals can interact). We will assign nodes at random to each
available hyperedge.

scitation.org/journal/cha

Definition 3.1. Let H(n,m,q) denote the probability space
on the set of hypergraphs of n nodes and m hyperedges such that
the incidence matrix 7 of a random hypergraph satisfies for all
(i,h) € {1,...,n} x{1,...,m},

I, — 1  with probability g,
"7 o with probability 1 — g.

This definition is similar in construction to the Gilbert graph
model. For instance, if n = m, the incidence matrix of a random
hypergraph in H(n, m, q) corresponds to the affinity matrix of a ran-
dom directed graph in G(n, q). The motivation to use this model is
similar to the intuition behind the model described in Sec. III A at
the graph level. We assume that each individual has a list of potential
places to visit on any given day, with a certain probability. Drawing a
new random incidence matrix independently and identically at each
time step simulates a typical day of people visiting places in their
neighborhood.

Justasin Sec. I A 1, it is more realistic here to consider that the
probabilities for a node to be in a hyperedge (i.e., for an individual
to visit a place) vary for every pair (i, h) € {1,...,n} x {1,...,m} so
that visits can focus on a subset of locations. We also wish to keep
the connections sparse. We, therefore, let [xih];f;l"ll €[0,1]",gqbea
sparsity parameter, and set

7 Xy  with probability g,
" 0 with probability 1 — g.

We, therefore, consider a weighted n x m incidence matrix 7,
which, similarly to W being the affinity matrix of the underlying
expected graph in Sec. III A, can be thought of as the incidence
matrix of the underlying expected hypergraph from which we sam-
ple independently and identically an incidence matrix Z(t) at every
timete 7.

Our sampling procedure of (Z(t));e7+ from Z is similar to
the sampling procedure of (W(#)),c7+ from W in Sec. 111 A 1. At
each time step t € 7' and for each node i € {1,...,n} and hyper-
edge h € {1,...,m}, we draw independently Z;,(¢) ~ Bi(1,Z4). We
can observe that this model does not fix a specific configuration of
hyperedges of various sizes, the size of a hyperedge being unknown
a priori.

As in the graph case, we then consider the Markov processes
{(Xi(1) 7}, and we can naturally extend the time domain 7’
of 7 to the possibly larger domain 7 by letting for all t € 7, Z(t)
:= I (t), where t; := max{s € 7' | s < t}. Following our discussion
of hypergraph models in Sec. I, let f be a nonlinear function repre-
senting the manner in which the virus spreads in a hyperedge and
define the infection rate of a node i at time t € 7 by

LX) =B Y Tu®f | D Tn®X;) | . (18)
heE =1
Generating the random graphs in Sec. III A 1 as random Gilbert

graphs sets all diagonal entries to 0. On the other hand, note that the
sum index j spans through all values in {1, . . ., n}, including i in (18).
Assuming that f = Id, we recover the infection rate (12) of a dynamic
graph, but the induced graph here would be given by W = ZZ7;
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hence, the diagonal entries would be nonzero, indicating the degree
of each node instead. As discussed at the end of Sec. II B, we could,
for instance, modify our infection rate (12) by restricting the inner
sum to j € {1,...,n} \ {i}, leading to slightly different mean field
models. Such a change was found to have negligible impact on the
final plots in the numerical experiments in Sec. IV and would not
affect the spectral vanishing conditions derived in Sec. V.

2. Comparison with the Gilbert graph model

Note that H(n,m,q) also induces a probability space on the
set of weighted graphs with n nodes. From Definition 2.3, given
the incidence matrix of a hypergraph Z, there corresponds a graph
represented by W := ZZ7, which we could call the weighted clique
expansion of the hypergraph. Every entry of this matrix is a random
variable defined by

m
Wi = Z L.
=

Thus, the entries of the induced affinity matrix W take random
values in {0,1,...,m}. Little seems to be known about how the
choice of the parameters in H(n, m, q) can affect properties of the
induced random graph associated with W. In practice, it is impor-
tant to know, for instance, how the sparsity parameter can be tuned
to control the expected degree of the nodes and ensure that the
graph is connected with high probability. In the case of a ran-
dom Gilbert graph, it is known that connectivity of the graph holds
with high probability if p = Clogn/n for C > 1.” One may ask
whether knowledge about the well-studied properties of random
Gilbert graphs leads to results about the random Gilbert hyper-
graphs described above and their induced random graph.

Let W = ZZ7, where 7 € H(n, m, q), and let M € G(n,p) be a
random Gilbert graph.

By independence, we have

E[W;] = ) EIZ4]E[Z;] = mq’,
h=1

while E[M;] = p. Turning to the variance, we have
m 2
Var(Wy) = E (Z I,-hzjh> —mlg’
h=1

=Y ElLTul + ) T T Lo T, — m’q"
h=1 hy#hy

=mq* + m(m — 1)q* — m*q*
=mq*(1 - ¢,

while Var(Mj) = p(1 — p).

Equating the expected values, which is equivalent to equating
the expected nodal degree of the two random graphs, we would
choose p := (q/m)"/*. Hence, we see that for an equal expected
value, the variance of the entries of W is larger than the variance of
the entries of M but remains finite and contained in [0, 1]. We may
then argue heuristically that by equating the two expected degrees
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of the two graph models, the variance does not differ greatly; hence,
the connectivity properties of the two graphs should remain similar.
We have, therefore, chosen q := (C log n/(mn))l/z, for some C > 1,
to sparsify the H(n, m, g)-induced graph while making sure that it
remains connected with high probability. Let us emphasize that this
is just a rule of thumb to derive a sensible value for the sparsity
parameter g and should not be regarded as a rigorous argument.

3. Mean field approximation

The function fin (18) represents the nonlinearity of the infec-
tion rate: specifying how the probability for a node to get infected
depends on the number of infected group members. A typical choice
for fis a concave function; e.g., x — log(1l + x) or x > arctan(x).
Another classic choice is to consider a collective suppression model,
where fhas the form x = ¢, 1(x > ¢;), ¢1,¢, > 0.

As in Sec. I1I A, we can consider a mean field approximation
with the expected processes {(p;(£)) .7 }i_, := (E[Xi(t)]);c7 and the
deterministic infection rate at node i,

BY Tut)f | D Tup | (19)
1

heE j=

yielding

dp d .

P~ B T | Y Tuon | ~p0, 1=i=n
heE j=1

20)

Following Sec. I1I A, we propose to further approximate this rate of
infection by substituting Z;;(f) by its expected value Z;; forall t € 7,
thus making the infection rate completely deterministic, yielding at
node i,

BY Tuf | D _Tupsv) | » (21)
heE j=1

which corresponds to the rate of infection for a disease spreading
on a static hypergraph, a setting that was already studied in Refs. 16
and 19, yielding the ODE system

dpi(t) - [&= '
a 2/3%;1”«]( ;I;hpj(f) —Spi(), 1<i<n (22)

There, it was shown that this model satisfied a similar spectral
condition for the vanishing of the disease to the graph-based
model. Specifically, if f(0)p(W) < §/8, then for all 1 <i<mn,

lim;_, o, pi(t) = 0, where W := ﬁT. We check the accuracy of this
mean field approximation in Sec. I'V.

IV. COMPUTATIONAL EXPERIMENTS
A. Simulation algorithm for dynamic graphs

Let us first summarize our approach to simulating the exact
individual-level SIS model and its mean field approximation on a
dynamic graph. In the simulations, we chose n = 600. We used
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iid. weights wy, where 1 <i < j < n, sampled uniformly at ran-
dom in [0, 1], a sparsity parameter p := 8(log n/n), and we let (aij)i<j
be iid. random variables where a; =1 with probability p and
a; =0 otherwise. We then built the symmetric matrix W, where Wij
= wj; a;. The sparsity parameter p controls the amount of con-
nectivity between the nodes of the graph. Choosing p too small
will make the graph disconnected, while choosing p too large will
make the graph behave like a complete graph, increasing the com-
putational cost and failing to capture the levels of interaction that
typically arise. We know from the study of random Gilbert graphs™
that the asymptotic connectivity threshold of these random graphs
occurs at log n/n. Here, we choose p = 8(log n/n) so that the con-
nectivity threshold is satisfied even for small n = 600.

The weights of the matrix W indicate the probability for any
two individuals i and j in the population to meet at any given time
t. We let 7' := NN [0, T], where we choose the final time step to
be T := 200 so that at every time ¢ € 7, we draw an i.i.d. random
sample W(#) from W, where W(%) is symmetric, and such that for
every i < j, Wj(t) := w;(t) = 1 with probability w;; and w;;(£) = 0
otherwise.

We then proceed with a standard time discretization of the
stochastic processes {(Xi())eo,r},- We fix a small time step
At:=0.1 and advance from time ¢ to time f+ At at each iter-
ation. As explained in Sec. II C, we extend the definition of
W= (W(t)),e7r over this finer time partition by setting W(f)
= W(ty), where t;, := max{t € 7' | ¥ < t}. We choose a vector
r € [0,1]" of ii.d. uniformly random values in [0, 1], and for every
nodei e {1,...,n},

e when X;(f) = 0, we set X;(t + Af) = 1if
ri < 1—exp (—A;(X(1)AL)

and set X;(t + At) = 0 otherwise;
o when X;(t) = 1, we set X;(t + At) = 0if

r; <1 —exp(—8At)
and set X;(t + At) = 1 otherwise.

In Sec. II C, we proposed a mean field model (17) to approxi-
mate and simplify the above exact individual-based model. This
allows us to consider the spread of a disease on the static underlying
expected graph W from which we draw the random dynamic graph
W = (W(1))c7> a setting which is well-understood and investigated
in previous works (see Sec. IT A). We simulated this system of ODE
using Euler’s method with time step At = 0.1 and tested numer-
ically how accurately it matches the behavior of the exact process
described above.

B. Simulation algorithm for dynamic hypergraphs

We simulated the exact individual-level SIS model on a
dynamic hypergraph similarly, following Sec. III B. We chose
n = 600 nodes, m = 500 hyperedges, and following the heuristic
in Sec. IT B and our choice of p in Sec. IV A, we chose the spar-

sity parameter as q := (8 log n/(mn)) /2 We then created the n x m

incidence matrix Z. As in Sec. IV A, we chose i.i.d. weights X,
sampled uniformly at random in [0, 1]. Then, we let a; := 1 with
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probability g and a;, := 0 otherwise, and we let T := Xipay, for all
(i,h)y e {1,...,n} x{1,...,m}

As in the graph setting, we then discretized the stochastic pro-
cesses {(X;(t))epo,m);, With time step At = 0.1. The construction
of the processes is the same than in Sec. IV A; therefore, we do not
repeat it here.

The mean field approximation proposed in Sec. IIT B follows
the ODE system (22) As in Sec. IV A, we simulated this system using
Euler’s method with time step At = 0.1.

C. Computational results
1. Dynamic graphs

In these simulations, we fixed the recovery parameter to § =1
and varied the value of the infection parameter g, taking all the
values in {(0.02)k | k € {0,...,15}}. The plots in Fig. 1 show the
proportion of infected individuals after a large time T = 200 as a
function of the infection rate parameter 8. The blue crosses repre-
sent the proportion of infected individuals given by the exact model,
averaged over 10 runs. The red asterisks represent the proportion
of infected individuals predicted by our mean field model (17). We
observe from Fig. 1 that our mean field model (17) provides a very
accurate approximation of the exact model. The vertical line in Fig. 1
intersects the abscissa at 8. := 8/p(W). In the case where an SIS
disease is spreading on a fixed graph with affinity matrix W, B, rep-
resents a threshold value in the sense that if 8 < ,, then the disease
vanishes asymptotically from the population (e.g., Refs. 14 and 33).
Here, the mean field model is defined on a fixed graph with affinity
matrix W; hence, we can expect that the vertical line in Fig. 1 serves
as a threshold value for extinction of the disease, i.e., that the red
asterisks will be set to 0 for B < . but not necessarily for 8 > B..
On the other hand, there is no such theory available to analyze SIS
diseases spreading on dynamic graphs (blue crosses in Fig. 1). We
observe nonetheless that due to the close approximation of the exact
model by the mean field model (17), . can also serve as a useful
threshold value for extinction for the exact model spreading on the
dynamic graph (W ()7

2. Dynamic hypergraphs

We also find that the mean field model (22) provides an accu-
rate approximation of the exact individual-based model induced
by (18), as shown in Figs. 2-4. Here, as in Sec. IV C 1, we fixed
the recovery parameter to § = 1 and varied the value of the infec-
tion parameter 8, taking all the values in {(0.02)k | k € {0,. .., 15}}.
The plots show the proportion of infected individuals as a func-
tion of B after a large time T = 200. The blue crosses represent
the proportion of infected individuals given by the exact model,
averaged over 10 runs. The red asterisks represent the proportion
of infected individuals predicted by our mean field approximation
(22). For the nonlinear function f, according to which the disease
spreads in a hyperedge, we used f(x) :=log(1 +x) (Fig. 2) and
fix) := arctan(x) (Fig. 3). We also tested the collective contagion
model, where we apply f(x) := x for edges, and for each hyper-
edge of size k > 3, we apply fi(x) := cgk)]l(x > c§k>) (Fig. 4). Here,
we chose ¢ = ¢ := (k — 1)/2 for all hyperedges of size k > 3.
Choosing cgk) too large, e.g., cik) = k — 1, would prevent the disease
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FIG. 2. Dynamic snapshot hypergraph computation. Proportion of infected indi-
viduals in the population after T =200 and time step At = 0.1 for various
values of B. Here, the blue crosses represent the exact dynamic hypergraph
model, where the nonlinearity function is x — log(1 + x), averaged over 10 runs,
and the red asterisks represent the hypergraph mean field approximation. The
green vertical line represents the expected spectral threshold for extinction of the
disease.
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FIG. 3. Dynamic snapshot hypergraph computation. Proportion of infected indi-
viduals in the population after T =200 and time step At = 0.1 for various
values of B. Here, the blue crosses represent the exact dynamic hypergraph
model, where the nonlinearity function is x + arctan(x), averaged over 10 runs,
and the red asterisks represent the hypergraph mean field approximation. The
green vertical line represents the expected spectral threshold for extinction of the
disease.
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FIG. 4. Dynamic snapshot hypergraph computation. Proportion of infected indi-
viduals in the population after T = 200 and time step At = 0.1 for various values
of B. Here, the blue crosses represent the exact dynamic hypergraph model with a
collective contagion model of propagation in hyperedges, averaged over 10 runs,
and the red asterisks represent the hypergraph mean field approximation. The
green vertical line represents the expected spectral threshold for extinction of the
disease.

from spreading in the hyperedge even for large values of 8 unless
the initial proportion of infected individuals iy is higher than ¢\ /k,
which would cause the plotted functions in Fig. 4 to remain flat. On
the other hand, choosing ¢® too small would produce a collective
contagion model similar to a linear graph-based contagion model.
We can observe a discontinuity in the plots shown in Fig. 4, both for
the mean field approximation and the exact model, indicating that
the predicted long-time proportion of infected individuals in the
population is not a continuous function of the infectiousness param-
eter, 8. This discontinuity is only observed in the case of collective
contagion and contrasts with Figs. 2 and 3, where the nonlinear
functions representing the rate of contagiousness in the hyperedges
are, respectively, x — log(1 + x) and x +— arctan(x), and where the
plots appear to be continuous functions of . In the case of the
collective contagion model, the nonlinear functions used to repre-
sent the contagiousness of the hyperedges are step functions, with
sharply discontinuous changes of value. This implies that a small
perturbation in the value of Z;ZI Zin(t)p;(t) or Z;’:l Zin()X;(t) can
induce a large change of value in the resulting probability p;(¢) for
node j to get infected at time f. By the construction of the exact
model, or by the relation describing the mean field approximation
(20), we, therefore, see that a small change in the value of B can
recursively induce a large change in the value of the p;(t)’s and,
hence, a large change in the final proportion of infected individuals.
This effect is the same as the one inducing bistability and hystere-
sis found in Ref. 17 for the collective contagion model. The effect
does not occur in Figs. 2 and 3, however, since the concave functions
used in the models are smooth. The spectral vanishing condition in
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Fig. 4, represented by the green vertical line, is given by g. := §/p
(WO + 3K (0 /Dy wh), where W .= 70 (Z®)", with 7®
being the incidence matrix of the sub-hypergraph consisting only of
hyperedges of size k. We can observe that this condition is less sharp
than those in Figs. 2 and 3, which are given by B, := §/f (0)p(W). A
possible explanation for this difference is that f(x) := log(1 4 x) and
f(x) := arctan(x) are concave functions, which can be dominated by
a simple linear expression, f(x) < f(0)x. For the collective conta-
gion analysis, we used the bound fi(x) < (¢} /c{)x, which replaces
discontinuous step functions by smoother concave functions and is
likely to introduce greater inaccuracies. We leave for future work
the issue of deriving better vanishing conditions for non-concave
functions, such as those in the collective contagion model.

V. SUPPORTING ANALYSIS FOR THE DYNAMIC GRAPH
CASE

In this section, we provide theoretical analysis to support the
observations made in our numerical experiments. In previous works
on disease spreading on dynamic graphs (Refs. 2, 7, and 8), the anal-
ysis focused on the discrete-time mean field approximation (15). We
analyze this model and its continuous counterpart (14) with regard
to our specific assumptions on the interaction dynamics. In Sec. V A,
we derive spectral conditions, which guarantee the asymptotic van-
ishing of the disease in the population. A corresponding result for
the hypergraph case is given in Sec. V1.

In Sec. V B, we provide a comparison between the two mean
field approximations (14) and (17), in order to justify why their plots
closely match numerically. The latter model has the advantage of
considering a static graph W, instead of a dynamic graph (W(#)) =,
leading to a more straightforward analysis, and as we have seen in
Sec. IV, nonetheless provides an accurate prediction of the behavior
of the exact model on a dynamic graph.

A. Spectral vanishing condition

Here, we derive spectral conditions, which guarantee the
asymptotic vanishing of the disease for the mean field approxima-
tions (14) and (15). Since we focus on deriving sufficient conditions
for the vanishing of the disease, it suffices to find such conditions on
a simpler system that dominates the original version. This approach
was also used in previous works, as described in Sec. II, where, for
instance, the authors of Ref. 13 chose to linearize their ODE sys-
tem to make it more amenable to analysis. To this end, we appeal to
the following result from Ref. 20, which follows as a corollary from
Ref. 34.

Corollary 5.1 (Ref. 20). If, for all 1 <i < n, we have u(t)
< &(®), y;(t) = g(y(1), and u;(0) = y;(0), then u;(t) < y;(t) for
allt > 0.

We also use the following lemma.

Lemma5.2. Let (ar)7., be a sequence of (strictly) positive real
numbers. Suppose that

lim alT/T < 1. (23)
T—o0
Then,
lim ar = 0. (24)
T—o0
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Proof. We have

1
alT/T = exp (?ln(aT)) .

Hence, by continuity of the exponential, condition (23) is
equivalent to

lim %ln(ar) < —a (25)

T—o0

for some o > 0.
If limr o lln(aT)| < 00, then we would have limr %ln
(ar) = 0, which is not the case. Hence, we must have

Tlingo |ln(aT)| = o0.

With the limit being strictly negative in (25), we can, therefore,
deduce that

Tlim In(ar) = —o0
and, hence, that
Tan;o ar = Tlingo exp (In(ar)) = 0. O

Theorem 5.3. Consider the model described in (14). For all
initial conditions, if E[p(Wy)] < 8/8, then a.s., for all 1 <i<mn,
lim;_, o0 pi(t) = 0, where Wy ~ Bi(1, W) is a random sample inde-
pendent from W(t), t > 0, and identically distributed.

Proof. Since (1 — p;(t)) < 1, by Corollary 5.1, it suffices to find
conditions to guarantee the asymptotic vanishing of the disease
described by the following ODE system:

dap; - .
P _ B Z wy(®)p;(H) = dpi(t), 1<i=<n. (26)
=1

dr

By assumption, W(f) remains constant on every interval
t € [kh, (k + 1)h]. On such an interval, we can, therefore, express a
solution to (26) as P(t) = exp((8 W(kh) — 8I)(t — kh))P(kh), where
P(t) := [pi()]_,. We, therefore, find recursively that for all K € N*,

K-1

P(Kh) = [ [ exp((BW(kh) — §Dh)P(0).

k=0

Hence, a sufficient condition for the disease to vanish asymptotically
is given by

K—1
lim p <]_[ exp((BW(kh) — az)h)) =0.

k=0
Since the spectral norm is submultiplicative, it suffices that

K-1

lim [ o (exp ((BW(kh) — 8Dh)) = 0
k=0

and, hence, that

K-1
Jlim [ e (exp ((BW(kh) — 5D)) = 0.
k=0
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By Lemma 5.2, it thus suffices that

K-1

lim [1e (exp(BWkh) — 61)"* <1
k=0

or, equivalently, that

K-1

lim [Texp (Bo(W(kh)) - 8))
k=0

1/K<1

or, equivalently, by continuity of the exponential, that

1 K—1
Ig&ﬁi Zp(W(kh)) -5 <0.

k=0
By the law of large numbers, we have, a.s.,

K-1

1
Jim > p(Wiki) = Elp(Wo)),
k=0

where Wy ~ Bi(1, W) is a random sample, and the claim follows.
O

Note that there is nothing specific about constructing W, as
a matrix of binomial random variables in the above proof; i.e.,
Wy ~ Bi(1, W). A similar result holds for any other random matrix
W, sampled with respect to a fixed expected matrix W.

A similar argument yields to the same spectral vanishing con-
dition in the discrete-time setting.

Theorem 5.4. Consider the model described in (15). For all
initial conditions, if E[p(Wy)] < 8/B, then a.s., for all 1 <i<mn,
lim;_, o pi(t) = 0, where Wy ~ Bi(1, W) is a random sample inde-
pendent from W(t), t > 0, and identically distributed.

Proof. By Corollary 5.1, it is sufficient to find an epidemic
threshold for the system of linear equations for 1 <i < n,

pilt+1) = (1= 8pi(H) + B Y wy(tp;(1), 27)

=1
which, in a matrix notation, gives
P(t+1) = (1 = &I+ BW())P(1). (28)

We then find recursively that

0
P(t+1) = [ J(1 = §)I+ BW(k))P(0)

k=t

and
0
P = lim [T((1 = &)+ BW(K)P(O)
k=t

are well-defined and equal to 0 if

0
p(lim [Tc@ = &)1+ pWiky) =o.
k=t
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By Lemma 5.2, it suffices that

0 1/(t+1)
lim p (H((1 — I+ ﬁW(k))) <1

k=t
With the spectral norm being submultiplicative,
o 1/(t+1) ;
p Q‘[((l — I+ ﬂW(k))> < [Tea=o1+pwin",
=t k=0

and the right hand side above, by the arithmetic-geometric mean
inequality, has the bound

A

t
[Te(@ = &)1+ pWiin” " <

1 t
— ) p(A=OI+ pW(K)
i t+1 ;

1 t
1-6 — W(k)).
( )+ﬁt+1k§p< *))
Hence, it suffices that
1 t

lim(1 -4 T Wik 1,

lim ( )+ﬂt+1k§p< (k) <
and by the law of large numbers, we have a.s.

R B
lim — kgp(w(k)) = E[p(Wo)],

where W, ~ Bi(1, W) is a random sample. O

B. Comparison of the mean field approximation
models

It was numerically observed that the mean field approxima-
tion model in (14) and the more simple model proposed in (17)
closely matched. In this section, we compare the two mean field
models by relating their respective infection rates (13) and (16) and
by comparing the vanishing spectral conditions found in each case.

Let us fixi € {1,...,n} and t € 7. We are interested in com-
paring the infection rate in (22)13 given by Z;;l w;i(Dp; (1), where
Vje{l,...,n}, wi(t) ~ Bi(1,w;), with the infection rate in (16)
given by S 27:1 wip;(t). It thus suffices to estimate the right hand
side in

D wy(® = Wpi O] < D (wi(t) — wy)| . (29)
j=1 j=1

Definition 5.5. Let S,(i) := Z}'Zl wi;, where wy; ~ Bi(1, wy)
independently for all j € {1,...,n}.
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Note that estimating (29) is equivalent to estimating |S, (i)
— E[S,()]]. To this end, we shall make use of Hoeffding’s inequal-
ity, which states here that foralli € {1,...,n}and alle > 0,
2¢2(E[S,()))?
YL Wy
< exp (—ZGZE[S,,(i)]) .

P(18:() — E[Sx(D] > €E[S(H)]) < exp <—

Recall from Sec. II C that we build the weights [Wij]:izl of
the underlying static graph as follows. We let w;; = wj; ~ x;Bi(1, p),
where we let [;vc,-j]zj:1 € [0,1]"2 be such that x; = x;, p € [0,1]
a sparsity parameter to be chosen and where w; =0 for all

ijell,... n.
The following lemma is a direct application of Hoeffding’s
inequality.

Lemma 5.6. Suppose that the sparsity parameter satisfies
p > logn/n and that foralli € {1,...,n},

> xy=0(n), (30)
j=1

then there exists a.s. ng € N such that for all n > ny and all
ie{l,...,n}, ZJ’LI w; = O(pn).

The condition in (30) is a natural requirement that applies
to most models in practice. For instance, asking that the x;; are
uniformly bounded away from 0 for all 4, j, which is natural for non-
zero probability weights, implies (30). Our specific construction in
Sec. IV, where xj~U [0, 1] for all i < j, also satisfies this condition
as.

Proof. By Hoeffding’s inequality, for all i € {1,..

n n n n
= 2
P E Wi —p E Xjj| > €p E Xj| <exp|—€p E Xij
j=1 =1 j=1 j=1

By the assumption in (30), there exists C > 0 such that for all suffi-
ciently large nand alli € {1,...,n}, Z};l x;; > Cn, hence, using the
assumption on p,

., 1}, we have

P ZW"J' —-p inj > €p Zx,-j < exp(—2€*pCn)
=1 =1 =1

< exp(—2€>Clog n)

— n*ZeZC.

Choosing, for instance, € := /3/(2C), we can conclude that

n n n
Pl3ie{l,...,n}, Zwij—pr,-j >6p2x,-j <n}
j=1 j=1 j=1

hence, by the Borel-Cantelli lemma, there exists a.s. o € N such
that foralln > ngandalli € {1,...,n},

ZWU=®(Pinj)=®(pn). 0

j=1 =1
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From now on, we shall assume that condition (30) holds.

Lemma 5.7. Suppose that the sparsity parameter satisfies
p = w(logn/n), then there exists a.s. ny € N such that for all n > n,
and foralli € {1,...,n},

Su(@) = E[S,(H](1 + o(1)).

Proof. By Lemma 5.6 and the choice of p, there exists a, a
function of # tending to oo arbitrarily slowly as n — oo such that
min{E[S,(1)] | i € {1,...,n}} = a(n)log(n). Let € be a function of
n, chosen such that €(n) = o(1) and €(n) = w(@(n)~"?). Such a
choice is possible since a(n) = w(1). Using Hoeffding’s inequality
and our choice of €, there exists N € N such that for all n > N,

P@Eie{l,...,n}, [S.() —E[S.()]
> e(mE[S,(H)])

< Y P (IS,(0) — EIS, ()]l > e(mE[S,(i)])

i=1
< nexp(—2¢ (n)’a(n) log(n))
= exp(log(n) (1 — 2¢(m)a(m)) < n2,

and the claim follows by the Borel-Cantelli lemma. |
Recall that in Theorems V.3 and V.4, we have found the follow-
ing spectral vanishing condition for the mean field approximation
given by (14):
E[p(Wo)] < /B,

where W, ~ Bi(1, W) is a random sample. On the other hand, the
more simple mean field model proposed in (17) has the spectral
vanishing condition

p(W) < 8/B.
We can also compare these two spectral vanishing conditions, which
comes down to comparing E[p(W;)] with po(W).

Lemma 5.8.  Suppose that the sparsity parameter of W satisfies
p = logn/n,and let Wy ~ Bi(1, W) be a random sample, we have a.s.

p(Wo) = p(W) (1 +0 (\/%)) .

Proof. Note that we can write W, = W + R, where R is a zero
mean symmetric matrix, with nonzero entries in the upper trian-
gle that are i.i.d. and have finite variance. By Weyl’s inequalities, we
have, in particular,

lo(Wo) — p(W)| < p(R).

By the law of large numbers, we have a.s. p(R) = O(/pn), while

by Lemma 5.6, p(W) = ©(pn) a.s., from which the claimed result
follows. O

VI. ANALYSIS FOR THE DYNAMIC HYPERGRAPH CASE

The mean field approximation in (22) was noted in Sec. I1I B to
be similar to the model studied in Ref. 19. where a vanishing spectral
condition was shown to be

gp(W) <8/,

where ¢; > 0 depends on the choice of the function f.
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We note furthermore that the mean field approximation in (20)
can similarly be analyzed. Using Corollary 5.1, we can find a linear
ODE system to dominate (20), given by

dp; - )
pdit) =B Y witp(H) — opi(t), i€ (1,...,n},  (31)
j=1

where ¢; > 0 is chosen such that for all x > 0, f(x) < cpx.

As noted in Ref. 20 for the collective suppression case, where
fis concave and f(0) = 0, we may take ¢; = f(1), and for a collec-
tive contagion model of the form f(x) := c;1(x > c1), we may take
¢ =6/c. In (31), we have wy(t) := >, Zn(D Ly (). We will

define W(¢) := [wij(t)]zj=1, and likewise, W := 77" Then, we can
invoke Theorem 5.3, noting that the specific construction of
Wy ~ Bi(1, W) there is not required and that any other random
matrix construction yields the same result. Let Z, ~ Bi(1,7), and
let Wy := ZoyZ[. By Theorem 5.3, if cE[p(Wy)] < 8/8, then a.s. for

alll <i<mn,lime,pi(t) =0.

VII. DISCUSSION

Interactions between individuals are typically structured but
dynamic—at any given time, we may be likely to engage with a
small subset of the population and very unlikely to engage with
the rest. Our aim in this work was, therefore, to develop and ana-
lyze SIS spread in a snapshot-style dynamic graph framework that
accounts for such interactions. Moreover, hyperedges can be used
to capture the group-level interactions that take place in, for exam-
ple, workplaces, schools, retail and leisure outlets, public transport,
and entertainment events. We, therefore, extended the graph-based
modeling and analysis to a new dynamic hypergraph setting.

The main take-home message from our work is that a use-
ful spectral threshold for the infection rate parameter, below which
infection dies out, can be expressed in terms of an overall static
expected affinity matrix (or expected clique expansion in the hyper-
graph case). One implication is that computationally expensive,
dynamic, and individual-level stochastic simulations can be replaced
by cheaper deterministic mean field versions. A further implication
is that in a practical scenario, we can draw useful conclusions by ask-
ing individuals about their expected, or typical, interactions—this
type of information is much easier to gather than more detailed
microscale descriptions.

In terms of future directions, we note that our work has focused
on the fundamental question of disease extinction. It would also be
of interest to study more general properties of these new dynamic
models, for example, along the lines developed in Refs. 16, 17,
21, 22, 26, and 31 for the static hypergraph case. With access to
appropriate real data, it would, of course, be of interest to develop
methods to calibrate model parameters, compare functional forms
of the infection rate, and test the predictive power of the modeling
frameworks.
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