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Abstract. We typically interact in groups, not just in pairs. For this reason, it has recently
been proposed that the spread of information, opinion, or disease should be modeled over a hyper-
graph rather than a standard graph. The use of hyperedges naturally allows for a nonlinear rate of
transmission, in terms of both the group size and the number of infected group members, as is the
case, for example, when social distancing is encouraged. We consider a general class of individual-
level, stochastic, susceptible-infected-susceptible models on a hypergraph, and focus on a mean field
approximation proposed in [G. F. de Arruda, G. Petri, and Y. Moreno, Phys. Rev. Res., 2 (2020),
023032]. We derive spectral conditions under which the mean field model predicts local or global
stability of the infection-free state. We also compare these results with (a) a new condition that
we derive for decay to zero in mean for the exact process, (b) conditions for a different mean field
approximation in [D. J. Higham and H.-L. de Kergorlay, Proc. A, 477 (2021), 20210232], and (c)
numerical simulations of the microscale model.

Key words. compartmental, collective contagion, epidemiology, spectral analysis, susceptible-
infected-susceptible
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1. Motivation and background. Biological and social contagion processes can
be used to model the way that opinions, rumors, ideas, or diseases propagate through
a community [9, 17]. Traditionally a graph, or network, is used to represent the
possible routes for person-to-person transmission [11, 14, 22, 26]. Recent work has
suggested that it is beneficial to account directly for the higher-order group structures
that arise in human-to-human interactions, using hypergraphs [7, 15, 20] or simplicial
complexes [16, 24, 25]. Indeed, beyond-pairwise interactions are also relevant in many
other social, economic, and technological settings [1, 2, 3, 4, 10].

In the context of opinion dynamics, an individual may be affected differently if
multiple members of the same group (such as a workplace or household) express a
view than if the same number of contacts from different groups express that view
[16]; this is an example of a majority effect [18]. Similarly, in the spread of a disease,
having multiple infected contacts in the same group may lead to a different infection
rate than having the same number of contacts across independent groups [20]. For
example, (unknowingly) sharing a photocopier with four infected colleagues may not
be four times as risky as sharing it with one infected colleague if the item is cleaned
regularly. On the other hand, if there is a viral load threshold [8], then sharing a car
with four infected colleagues may be more than four times as risky as sharing a car
with one infected colleague. Moreover the overall group size may have an effect---for
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1988 DESMOND JOHN HIGHAM AND HENRY-LOUIS DE KERGORLAY

a fixed classroom space, there may be a cutoff on the number students beyond which
attempts at social distancing become ineffective.

For these reasons, it is natural to consider a model of spreading that (a) uses
information about the groups present, rather than simply the resulting pairwise in-
teractions, and (b) allows for the transmission rate to be a nonlinear function of the
number of active individuals. Particular nonlinearities of interest are the concave,
or collective suppression, case [15] and the threshold, or collective contagion, case [7,
15, 16, 20]. This leads to the hypergraph-based model that we describe in section 2
and the mean field approximation from [7] that we describe in section 3. Sections 4
and 5 give stability analysis for the exact and mean field processes, respectively. In
section 6 we compare results with those for an alternative mean field model of [15].
An unusual feature of the mean field model in [7] is that, although it takes the form of
a deterministic ODE system with real-valued components, it evaluates the nonlinear
infection rate function only at nonnegative integer arguments, just as the exact sto-
chastic model does. This feature complicates the analysis, but we show that it offers
benefits when the nonlinearity is concave. Illustrative computational experiments are
described in section 7. Corresponding results for a more general and flexible ver-
sion of the hypergraph-based model are given in section 8, and conclusions appear in
section 9.

To be concrete, we describe the models and analysis in the language of epidemi-
ology, but we emphasize that the concepts and results are relevant in other scenarios.

The main contributions of this work are
\bullet for the exact model: a condition that guarantees decay to zero in mean of the

infection level (Theorem 4.3) and, for concave nonlinearity, a condition that
guarantees exponential decay to zero of the disease level (Theorem 6.1);

\bullet for the mean field model of [7]: a condition for local asymptotic stability
of the disease-free state (Theorem 5.1) and conditions for global asymptotic
stability of the disease-free state with collective suppression and collective
infection nonlinearities (Theorems 5.2 and 5.3);

\bullet extensions for the mean field model associated with a more general multitype
model, where the nonlinear infection rate may depend on the type and size
of the hyperedge (Theorems 8.1, 8.2, and 8.3).

2. Notation and individual-level model. Before describing the model, we
first introduce some definitions and notation.

A hypergraph [6] is a generalization of graph in which an edge, now called a
hyperedge, may join any number of vertices. More formally, a hypergraph is a tuple
\scrH := (V,E), where V is a set of vertices and E is a set of nonempty subsets of V
which specifies the hyperedges.

We denote the number of nodes and hyperedges by n and m, respectively; that is,
| V | = n and | E| = m. Assuming that the vertices and hyperedges have been ordered
in some (arbitrary) way, we use \scrI to denote the corresponding incidence matrix ; here
\scrI \in \BbbR n\times m has \scrI ih = 1 if node i belongs to hyperedge h and \scrI ih = 0 otherwise.

In our context the vertices represent individuals in a population of size n, and
the hyperedges record group interactions. For example, a set of vertices may form a
hyperedge if the corresponding individuals live in the same household, work in the
same office, or sing in the same choir.

Following the original idea in [5], which has also been studied in [7, 16], we
use a continuous time Markov process to track the propagation of disease through
the population in a susceptible-infected-susceptible framework. The state vector

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HYPERGRAPH CONTAGION 1989

X(t) \in \BbbR n is such that Xi(t) = 1 if vertex i is infected at time t and Xi(t) = 0
otherwise.

We assume that the instantaneous recovery rate is given by a constant \delta > 0, and
we let \lambda i(X(t)) denote the state-dependent instantaneous infection rate for vertex i,
given X(t); that is,

\BbbP (Xi(t+ \varepsilon ) = 1 | X(t)) =

\Biggl\{ 
\lambda i(X(t)) \varepsilon + o(\varepsilon ) if Xi(t) = 0,

1 - \delta \varepsilon + o(\varepsilon ) if Xi(t) = 1,
(2.1)

and

\BbbP (Xi(t+ \varepsilon ) = 0 | X(t)) =

\Biggl\{ 
\delta \varepsilon + o(\gamma ) if Xi(t) = 1,

1 - \lambda i(X(t)) \varepsilon + o(\varepsilon ) if Xi(t) = 0.
(2.2)

In this way, specifying the model reduces to defining the infection rates, \lambda i(X(t)). We
mention that, in the standard graph setting [11, 22, 26], where interactions involve
only pairs of vertices, \lambda i(X(t)) is taken to be proportional to the number of infected
neighbors of vertex i at time t. Hence, in that case, the infection rate is linear in
the number of infected neighbors. As discussed in section 1, we are interested in the
setting of group interactions and possibly nonlinear infection rates.

Now, writing Xj rather than Xj(t) for convenience, we will assume that, for a
given vertex i, the contribution to the overall infection rate from a given hyperedge
h is

\beta \scrI ih f

\left(  n\sum 
j=1

\scrI jhXj

\right)  .(2.3)

Here, when \scrI ih = 1 so that i is a member of the hyperdge, the argument passed
to the function f is the number of infected individuals to which i is exposed in this
hyperedge. Hence f describes the dependence of the infection rate on the number of
infected individuals. The disease cannot spread unless there is at least one infected
individual in the hyperedge, so we may assume throughout that f(0) = 0. The factor
\beta in (2.3) represents the inherent infectiousness of the disease.

For example, consider a one-hour meeting between a predefined group of coworkers
(forming a hyperedge) that takes place in a dedicated meeting room. Suppose further
that, for this size of meeting room, five infected individuals, but no fewer, generate
sufficient viral load to pass on the infection (perhaps through airborne microdroplets
or through indirect contact). Then a suitable nonlinearity in (2.3) could be f(x) =
c max\{ 0, x  - 4\} or f(x) = c1(x \geq 5) for some constant c; these are of collective
contagion form [7, 15, 16, 20]. Now suppose that the meeting room is in continual
use, for different groups (hyperedges) within the workforce, and that vertex i may
participate in several meetings. We may then take the sum of (2.3) over all groups
(hyperedges).

For the purpose of analysis, it will be useful to distinguish between hyperedges
according to their size, so we have classes \scrC 2, . . . , \scrC K with h \in \scrC k \leftrightarrow | h| = k. Then
the overall infection rate for vertex i may be written

\lambda i(X(t)) = \beta 

K\sum 
k=2

\sum 
h\in \scrC k

\scrI ih f

\left(  n\sum 
j=1

\scrI jhXj

\right)  .(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1990 DESMOND JOHN HIGHAM AND HENRY-LOUIS DE KERGORLAY

It is also natural to generalize the expression (2.4) to incorporate different types of
hyperedge; for example, these may correspond to groups that congregate in various
sizes of classroom, workspace, residence, or vehicle and to groups that interact through
various kinds of sports or leisure activities. Each different type of hyperedge may be
given its own function f to quantify the dependence of the infection rate on the
number of infected individuals in that setting, and \lambda i(X(t)) in (2.4) would generalize
to include the sum over all contributions. The analysis below extends readily to this
case at the expense of notational complexity. For the sake of clarity, we therefore
state and prove results for the one-type model (2.4), and in section 8 we explain how
the results extend to the multitype model.

In [7] the authors considered a model of the form (2.1), (2.2), (2.4) with a partic-
ular collective contagion nonlinearity f . (More precisely, the model in [7] is covered
by the multitype setting of section 8.) A first-order, or mean field, approximation
to the individual-level model was derived in [7], and the dynamical behavior of the
resulting ODE system was investigated numerically. In the next section, we describe
this mean field approach for a general nonlinearity, f . Later, in section 6, we compare
the performance of this model with another simpler, mean field approximation that
was derived and studied in [15] based on the idea of commuting the order of \BbbE and f .

3. Mean field hypergraph models. The rate of infection expressed in (2.4) is
random. To make large-scale simulations tractable, and to facilitate analysis, it is nat-
ural to focus on the evolution of the the expected processes (pi(t))t\geq 0 := (\BbbE [Xi(t)])t\geq 0,
i \in \{ 1, 2, . . . , n\} . Substituting the random rates of infection by their expectation gives

dpi
dt

= \BbbE [\lambda i(X(t))](1 - pi) - \delta pi.(3.1)

Taking expected values in (2.4), the expected rate of infection may be written

\BbbE [\lambda i(X(t))] = \beta 

K\sum 
k=2

\sum 
h\in \scrC k

\scrI ih\BbbE 

\left[  f
\left(  n\sum 

j=1

Xj\scrI jh

\right)  \right]  
= \beta 

K\sum 
k=2

\sum 
h\in \scrC k

\scrI ih
k\sum 

l=1

f(l)\BbbP 

\left(  n\sum 
j=1

Xj\scrI jh = l

\right)  .(3.2)

This expression defines the expected rate exactly, but it does not appear to be
amenable to numerical simulation. In [7], an approximation was introduced by as-
suming independence of the Xj , giving

\BbbP 

\left(  n\sum 
j=1

Xj\scrI jh = l

\right)  \approx \Psi (h, l) :=
\sum 
Jl\subset h

\prod 
j\in Jl

pj
\prod 

j\in h\setminus Jl

(1 - pj),(3.3)

where Jl runs over all possible subsets of nodes of hyperedge h of size l. To avoid
cumbersome notation, we do not explicitly denote the dependence of pj on t or the
dependence of \Psi (h, l) on the pj . With this approximation, the expected processes
P (t) := (pi(t))

n
i=1 satisfy the deterministic ODE system

dP (t)

dt
= g(P (t)),(3.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HYPERGRAPH CONTAGION 1991

where g : \BbbR n \rightarrow \BbbR n is defined by

gi(P (t)) := \beta 

K\sum 
k=2

\sum 
h\in \scrC k

\scrI ih

\Biggl( 
k\sum 

l=1

f(l)\Psi (h, l)

\Biggr) 
(1 - pi(t)) - \delta pi(t).(3.5)

We emphasize that, with a slight abuse of notation, pi(t) is now being used to denote
a mean field approximation to \BbbE [Xi(t)]. We also note that the factors \scrI ih in (3.5)
implicitly depend on k through the hyperedge constraint h \in \scrC k. To make the model
physically reasonable we assume that the initial conditions satisfy 0 \leq pi(0) \leq 1 for
i = 1, . . . , n, and we note that 0 \leq pi(t) \leq 1 for i = 1, . . . , n then follows for all t > 0.

This mean field ODE was derived and studied numerically in [7] with an emphasis
on first-and second-order transitions, bistability and hysteresis. Our aim in this work
is to derive analytical results that address a more fundamental question: under what
conditions will the disease die out? We do this by studying the local and global
stability of the disease-free state. In the next section, we show that it is possible to
analyze the exact expected process, and in section 5 we move on to the mean field
approximation (3.4)--(3.5).

4. The exact expected process. Here we show that, while the exact equation
describing the dynamics of the expected processes (3.1) does not seem to be amenable
to numerical simulation, an upper bound argument allows us to derive vanishing
conditions. In the following analysis and throughout the remaining sections, we define
the symmetric matrix W \in \BbbR n\times n by

Wij :=

K\sum 
k=2

\sum 
h\in \scrC k

\scrI ih\scrI jh(4.1)

so that Wij records the number of hyperedges containing both nodes i and j. Given
a symmetric matrix A, we let \lambda (A) denote its largest eigenvalue. Recall from (3.1)
and (3.2) that we have, for i \in \{ 1, 2, . . . , n\} ,

dpi
dt

= \beta (1 - pi)

K\sum 
k=2

\sum 
h\in \scrC k

\scrI ih\BbbE [f(Xj\scrI jh)] - \delta pi.(4.2)

We also define the constant

cf := max
\{ k\in \{ 1,2,...,K\} | \scrC k nonempty\} 

f(k)

k
.

We then have

\beta 

K\sum 
k=2

\sum 
h\in \scrC k

\scrI ih\BbbE 

\left[  f
\left(  n\sum 

j=1

Xj\scrI jh

\right)  \right]  \leq \beta cf

K\sum 
k=2

\sum 
h\in \scrC k

\scrI ih
n\sum 

j=1

pj\scrI jh

= \beta cf

n\sum 
j=1

Wijpj .

Hence, from (4.2), we have the following differential inequalities for i \in \{ 1, 2, . . . , n\} :

dpi
dt

\leq cf \beta 

n\sum 
j=1

Wijpj(1 - pi) - \delta pi.(4.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1992 DESMOND JOHN HIGHAM AND HENRY-LOUIS DE KERGORLAY

To analyze this system of differential inequalities, we first state a result that has been
proved for scalar problems.

Theorem 4.1 (see [23]). Suppose that u satisfies the scalar ordinary differen-
tial inequality du(t)/dt \leq f(u(t), t) and that y satisfies the scalar ODE dy(t)/dt =
f(y(t), t), with boundary condition u(t0) = y(t0). Then\Biggl\{ 

\forall t < t0, u(t) \geq y(t),

\forall t > t0, u(t) \leq y(t).

This result extends naturally to systems of differential inequalities as follows.

Theorem 4.2. Suppose that \{ ui\} ni=1 satisfies the system of ordinary differential
inequalities

\forall i \in \{ 1, 2, . . . , n\} \forall t \in \BbbR ,
dui(t)

dt
\leq fi(u(t), t);

that \{ yi\} ni=1 satisfies the ODE system

\forall i \in \{ 1, 2, . . . , n\} \forall t \in \BbbR ,
dyi(t)

dt
= fi(y(t), t);

and that, for all i \in \{ 1, 2, . . . , n\} , ui(t0) = yi(t0). Then for all i \in \{ 1, 2, . . . , n\} \Biggl\{ 
\forall t < t0, ui(t) \geq yi(t),

\forall t > t0, ui(t) \leq yi(t).

For our purposes, we have the following.

Corollary 4.1. If, for all i \in \{ 1, 2, . . . , n\} , dui(t)/dt \leq gi(u(t)), dyi(t)/dt =
gi(y(t)), and ui(0) = yi(0), then, for all i \in \{ 1, 2, . . . , n\} and all t \geq 0, ui(t) \leq yi(t).

We are interested in finding conditions under which the spread of the disease
predicted by (4.2) vanishes as t \rightarrow \infty . By Corollary 4.1 and (4.3), it suffices to find
such conditions for the following more simple model:

dP (t)

dt
= \widetilde g(P (t)),(4.4)

where \widetilde g : \BbbR n \rightarrow \BbbR n is defined by

\widetilde gi(P (t)) := \beta cf

n\sum 
j=1

Wijpj(t)(1 - pi(t)) - \delta pi(t).(4.5)

This system can be analyzed by appealing to [15, Theorem 6.4] in the case where the
infection function is the identity (which, in particular, is concave), and we deduce the
following result.

Theorem 4.3 (extinction in mean for the exact process). If

\beta cf \lambda (W )

\delta 
< 1,(4.6)

then 0 is a globally asymptotically stable equilibrium for (4.4) and hence for (4.2);
that is, for all i \in \{ 0, 1, . . . , n\} and all initial conditions, limt\rightarrow \infty pi(t) = 0 in (4.2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HYPERGRAPH CONTAGION 1993

Considering the collective suppression case, where f is concave and f(0) = 0, we
have, for all x \in \BbbN , f(x) \leq f(1)x; hence cf = f(1).

For a collective contagion model of the form f(x) := c2 1(x \geq c1) for some
constants c1 \geq 1 and c2 > 0, we have, for all x \in \BbbN , f(x) \leq c2 x/c1; hence cf \leq c2/c1.

Theorem 4.3 gives a practical condition for the exact model that guarantees decay
to zero in mean of the infection level of every component. In the next section, we
seek similar results for the mean field approximation (3.4)--(3.5). This allows us (a)
to judge the accuracy of this mean field approximation in terms of a corresponding
spectral threshold and (b) to get insights into the behavior of a system that can be
simulated directly. Also, in section 6 we use this analysis to compare predictions
against those of the alternative mean field model from [15].

5. Analysis of mean field hypergraph model. Here we analyze the mean
field model described in (3.4)--(3.5). We find conditions for local and global asymptotic
stability of the disease-free state of the process, considering various assumptions on the
infection function f , including collective contagion and collective suppression cases.
Our first result is a spectral condition for local asymptotic stability.

Theorem 5.1 (general condition for local asymptotic stability). If

\beta f(1)\lambda (W )

\delta 
< 1,(5.1)

then 0 \in \BbbR n is a locally asymptotically stable equilibrium for (3.4)--(3.5).

Proof. We have g(0) = 0 in (3.4)--(3.5), so 0 \in \BbbR n is an equilibrium. Recall
the standard result that local asymptotic stability follows if every eigenvalue of the
Jacobian matrix \nabla g(0) has a negative real part. For j0 \not = i we compute

\partial gi
\partial pj0

= \beta 
\sum 
k

\sum 
h\in \scrC k

\scrI ih\scrI j0h
k\sum 

l=1

f(l)
\partial \Psi 

\partial pj0
(h, l)(1 - pi),(5.2)

and along the diagonal

\partial gi
\partial pi

= \beta 
\sum 
k

\sum 
h\in \scrC k

\scrI ih
k\sum 

l=1

f(l)
\partial \Psi 

\partial pi
(h, l)(1 - pi) - \beta 

\sum 
k

\sum 
h\in \scrC k

\scrI ih
k\sum 

l=1

f(l)\Psi (h, l) - \delta .

(5.3)

We see that \nabla g(0) = B  - \delta I, where

Bij := \beta 
\sum 
k

\sum 
h\in \scrC k

\scrI ih\scrI jh
k\sum 

l=1

f(l)
\partial \Psi 

\partial pj
(h, l)| P=0.

Let h \in E be a hyperedge, let j0 \in V = \{ 1, 2, . . . , n\} be a node of the hypergraph,
and let \~h := h \setminus \{ j0\} . Using (3.3), we find

\partial \Psi (h, l)

\partial pj0
= \scrI j0h

\left(  \sum 
Jl - 1\cup \{ j0\} \subset h

\prod 
j\in Jl - 1

pj
\prod 

j\in \~h\setminus Jl - 1

(1 - pj) - 
\sum 
Jl\subset \~h

\prod 
j\in Jl

pj
\prod 

j\in \~h\setminus Jl

(1 - pj)

\right)  
and hence

\partial \Psi (h, l)

\partial pj0
| P=0 = \scrI j0h\delta l1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1994 DESMOND JOHN HIGHAM AND HENRY-LOUIS DE KERGORLAY

with Kronecker delta notation, so that \delta xy = 1 if x = y and \delta xy = 0 otherwise. It

follows that Bij = \beta f(1)
\sum K - 1

k=2

\sum 
h\in \scrC k

\scrI ih\scrI jh = \beta f(1)Wij .
We see that \nabla g(0) is symmetric and \lambda (\nabla g(0)) = \lambda (B - \delta I) = \lambda (W )f(1)\beta  - \delta . So

it suffices for local asymptotic stability that \lambda (W )f(1)\beta /\delta < 1, as stated.

The above result has the advantage that it does not require specific assumptions
on the infection model. However, it is relevant only when the initial proportion of
infected individuals is sufficiently small. We now consider particular infection models
with the aim of constructing a global asymptotic stability result. As discussed in
section 2 and in more detail in [15], two cases of practical relevance are a collective
suppression model , characterized by a concave infection function f , and a collective
contagion model , characterized by f(i) = 0 for i = 0, 1, . . . ,m  - 1 with some m \geq 2.
In the latter case, the disease may only start spreading in a hyperedge if the number
of infected individuals in that hyperedge reaches a critical threshold value, m. When
the infection function is concave, the local asymptotic stability result obtained in
Theorem 5.1 extends to the case of global asymptotic stability.

Theorem 5.2 (global asymptotic stability for a collective suppression model).
Suppose that f is concave. If the spectral bound (5.1) holds, then 0 \in \BbbR n is globally
asymptotically stable for (3.4)--(3.5).

To prove this theorem, we first introduce a few preliminary results. Let h \in E be a
hyperedge. To avoid cumbersome notation we assume that | h| = K and let the nodes
in h be \{ 1, 2, . . . ,K\} . Any other hyperedge could be analyzed in similar way, but, for
example, in Lemma 5.2 below we would then need to write \{ 1, 2, . . . ,K\} \setminus \{ i\} rather
than \{ 1, 2, . . . ,K  - 1\} . Also, to streamline the presentation, we use the additional
notation [K] = \{ 1, 2, . . . ,K\} where convenient.

We seek to estimate the spectrum of the Jacobian matrix of g at all points P \not = 0.
Hence, from (5.2)--(5.3), we need to estimate

\sum k
l=1 f(l)

\partial \Psi 
\partial pK

(h, l). To this end, let us
first rewrite \Psi (h, l) according to the following lemma.

Lemma 5.1. Let \{ zi\} Ki=1 be a set of independent Bernoulli random variables such
that for each i \in \{ 1, 2, . . . ,K\} 

zi =

\Biggl\{ 
1 with probability pi,

0 with probability 1 - pi.

For every l \in \{ 1, 2, . . . ,K\} 

\BbbP 

\Biggl( 
K\sum 
i=1

zi = l

\Biggr) 
=

\sum 
Jl\subset [K]

\prod 
j\in Jl

pj +

K\sum 
k=l+1

( - 1)k - l

\biggl( 
l + k

l

\biggr) \sum 
Jk\subset [K]

\prod 
j\in Jk

pj ,

where Jl runs over all possible subsets of [K] := \{ 1, 2, . . . ,K\} of size l.

Proof. Letting Ai := \{ zi = 1\} for every i \in [K], we have for l \in [K]

\BbbP 

\Biggl( 
K\sum 
i=1

zi = l

\Biggr) 
=

\sum 
Jl\subset [K]

\BbbP 
\bigl( 
(\cap i\in Jl

Ai) \cap (\cap j\in [K]\setminus Jl
Ac

j)
\bigr) 
,(5.4)

where Ac denotes the complement of event A.
Let us estimate \BbbP (A\cap Ac

l+1\cap \cdot \cdot \cdot \cap Ac
K), where A := A1\cap \cdot \cdot \cdot \cap Al, thus considering

without loss of generality the case Jl = [l]. Define the induced probability measure
from A by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
23

 to
 1

92
.4

1.
11

4.
22

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



HYPERGRAPH CONTAGION 1995

\BbbP A(B) :=
\BbbP (A \cap B)

\BbbP (A)
.

By the inclusion-exclusion principle, we have

\BbbP (A \cap Ac
l+1 \cap \cdot \cdot \cdot \cap Ac

K)

= \BbbP (A)\BbbP A(A
c
l+1 \cap \cdot \cdot \cdot \cap Ac

K)

= \BbbP (A)

\Biggl( 
1 - 

K\sum 
i=l+1

\BbbP A(Ai)

+
\sum 

l+1\leq i<j\leq K

\BbbP A(Ai \cap Aj) + \cdot \cdot \cdot + ( - 1)K - l\BbbP A(Al+1 \cap \cdot \cdot \cdot \cap AK)

\right)  
= \BbbP (A) - 

K\sum 
i=l+1

\BbbP (A \cap Ai)

+
\sum 

l+1\leq i<j\leq K

\BbbP (A \cap Ai \cap Aj) + \cdot \cdot \cdot + ( - 1)K - l\BbbP (A \cap Al+1 \cap \cdot \cdot \cdot \cap AK).

Spanning over all Jl, we see that, for each i \in \{ l+1, . . . ,K\} , \BbbP (A\cap Ai) is substracted
in (5.4) exactly l + 1 times. Indeed it is counted once for each Jl satisfying

\exists i0 \in [K] \setminus Jl, (\cap j\in Jl
Aj) \cap Ai0 = A \cap Ai = A1 \cap \cdot \cdot \cdot \cap Al \cap Ai

\leftrightarrow \exists i0 \in [K] \setminus Jl, Jl \cup \{ i0\} = \{ 1, 2, . . . , l, i\} ,

which yields
\Bigl( 

l+1
l

\Bigr) 
= l+1 possible choices for Jl. Likewise, for every 1 \leq i < j \leq K,

\BbbP (A \cap Ai \cap Aj) is added exactly
\Bigl( 

l+2
l

\Bigr) 
times in (5.4), and more generally every

( - 1)k - l\BbbP (A \cap Ajl+1
\cap . . . Ajk) is added in (5.4) exactly

\Bigl( 
l+k
l

\Bigr) 
times. This, together

with the independence of the zi, yields the claimed formula.

Using Lemma 5.1, we deduce the following lemma.

Lemma 5.2. We have

K\sum 
l=1

f(l)
\partial \Psi 

\partial pK
(h, l) = f(1) +

K - 1\sum 
k=2

xk

\left(  \sum 
Jk - 1\subset [K - 1]

\prod 
j\in Jk - 1

pj

\right)  ,

where, for k \geq 2, we let

xk := f(k) +

k - 1\sum 
l=1

( - 1)l
\biggl( 
2k  - l

k  - l

\biggr) 
f(k  - l).(5.5)

Proof. By Lemma 5.1, we can rewrite \Psi (h, l) as

\Psi (h, l) =
\sum 

Jl\subset [K]

\prod 
j\in Jl

pj +

K\sum 
k=l+1

( - 1)k - l

\biggl( 
l + k

l

\biggr) \sum 
Jk\subset [K]

\prod 
j\in Jk

pj .(5.6)

From (5.6), we find for K \geq 2 (for K = 1, the partial derivative is equal to 1) that
\partial \Psi (h, l)/\partial pK takes the form\left\{   1 +

\sum K - 1
k=1 ( - 1)k

\Bigl( 
l+k+1

l

\Bigr) \sum 
Jk\subset [K - 1]

\prod 
j\in Jk

pj if l = 1\sum 
Jl - 1\subset [K - 1]

\prod 
j\in Jl - 1

pj+
\sum K - 1

k=l ( - 1)k - l+1
\Bigl( 

l+k+1
l

\Bigr) \sum 
Jk\subset [K - 1]

\prod 
j\in Jk

pj , otherwise.
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1996 DESMOND JOHN HIGHAM AND HENRY-LOUIS DE KERGORLAY

Multiplying the above by f(l), summing over l, and grouping the terms according to
each

\sum 
Jk\subset [K - 1]

\prod 
j\in Jk

pj , we find that

K\sum 
l=1

f(l)
\partial \Psi 

\partial pK
(h, l)

may be written

f(1) +

K - 1\sum 
k=2

(f(k) +

k - 1\sum 
l=1

( - 1)l
\biggl( 
2k  - l

k  - l

\biggr) 
f(k  - l))

\left(  \sum 
Jk - 1\subset [K - 1]

\prod 
j\in Jk - 1

pj

\right)  .

Lemma 5.3. Suppose that f is concave; then xk \leq 0 in (5.5) for all k \geq 2.

Proof. It is clear that x2 \leq 0, so it remains to show that xk \leq 0 for all k \geq 3.

Letting Cl :=
\Bigl( 

2k - l
k - l

\Bigr) 
for fixed k \geq 3, we have

k - 1\sum 
l=1

( - 1)lClf(k  - l) =\Biggl\{ 
 - ((C1f(k  - 1) - C2f(k  - 2)) + \cdot \cdot \cdot + Ck - 1f(1)) , k \equiv 0 mod 2,

 - ((C1f(k  - 1) - C2f(k  - 2)) + \cdot \cdot \cdot + (Ck - 2f(2) - Ck - 1f(1))) , k \equiv 1 mod 2.

Since Clf(k  - l) is decreasing in l, it suffices to show, for all k \geq 3, that

f(k) \leq 

\Biggl\{ 
Ck - 1f(1) = (k + 1)f(1), k \equiv 0 mod 2,

Ck - 2f(2) - Ck - 1f(1) =
\Bigl( 

k+2
2

\Bigr) 
f(2) - (k + 1)f(1), k \equiv 1 mod 2.

By the concavity of f and f(0) = 0, we see that the slopes f(k)/k are decreasing in
k \geq 1. Hence we already have that f(k) \leq (k + 1)f(1), and it remains to show that
for all k \geq 3

f(k) \leq 
\biggl( 
k + 2

2

\biggr) 
f(2) - (k + 1)f(1).

Dividing both sides of the above inequality by k, we see that the LHS decreases in k,
while the RHS increases in k; hence it suffices to show the inequality for k = 3. By
the concavity of f , f(3) \leq 2f(2) - f(1); hence

\bigl( 
5
2

\bigr) 
f(2) - 4f(1) \geq 4f(3).

Proof of Theorem 5.2. From the global asymptotic stability result in [13, Lemma
1\prime ] it is sufficient to show that all eigenvalues of the symmetric matrix

(\nabla g(P ))(S) := (\nabla g(P ) +\nabla g(P )T )/2

are strictly less than 0 for all P \not = 0.
From (5.2)--(5.3), using Lemma 6.3 in [15] with the diagonal matrix given by

\Lambda ii := \beta 
\sum 

k

\sum 
h\in \scrC k

\scrI ih
\sum k

l=1 f(l)\Psi (h, l) \geq 0, we deduce that

\lambda (\nabla g(P )(S)) \leq \lambda (B(S)  - \delta I),

where Bij := \beta 
\sum 

k

\sum 
h\in \scrC k

\scrI ih\scrI jh
\sum k

l=1 f(l)
\partial \Psi 
\partial pj

(h, l)(1 - pi).
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HYPERGRAPH CONTAGION 1997

Since f is concave, we know by Lemmas 5.2 and 5.3 that, for all 1 \leq j \leq n,\sum K
l=1 f(l)

\partial \Psi 
\partial pj

(h, l) \leq f(1), from which it follows that

0 \leq B
(S)
ij \leq \beta f(1)

K - 1\sum 
k=2

\sum 
h\in \scrC k

\scrI ih\scrI jh = \beta f(1)Wij .

Hence \lambda ((\nabla g(P ))(S)) \leq \lambda (\beta f(1)W  - \delta I), and it suffices that \lambda (W ) f(1)\beta \delta < 1, which
completes the proof of Theorem 5.2.

Applying Lemmas 5.2 and 5.3 to the identity function (which is concave), we find

K\sum 
l=1

l
\partial \Psi (h, l)

\partial pK
\leq 1.

Hence for all choices of f , if cf > 0 is such that, for all x \in \BbbN , f(x) \leq cfx, then

K\sum 
l=1

f(l)
\partial \Psi (h, l)

\partial pK
\leq cf

K\sum 
l=1

l
\partial \Psi (h, l)

\partial pK
\leq cf .

In particular for a collective infection model, where f(x) := c21(x \geq c1), we deduce
that

K\sum 
l=1

f(l)
\partial \Psi (h, l)

\partial pK
\leq c2

c1
,

from which the next theorem follows.

Theorem 5.3 (global asymptotic stability for a collective contagion model).
Suppose that f(x) := c21(x \geq c1). If

\beta c2 \lambda (W )

\delta c1
< 1,(5.7)

then 0 \in \BbbR n is globally asymptotically stable for (3.4)--(3.5).

The proof of Theorem 5.2 above may be used to establish this result, substituting
f(1) by c2/c1 everywhere.

6. Comparison with the alternative mean field model and exact model.
As mentioned in section 2, an alternative mean field approximation model was intro-
duced and studied in [15]. This is given by

dP (t)

dt
= \widehat g(P (t)),(6.1)

where \widehat gi : \BbbR n \rightarrow \BbbR is defined by

\widehat gi(P (t)) := \beta 
\sum 
h\in E

\scrI ihf

\left(  n\sum 
j=1

pj(t)\scrI jh

\right)  (1 - pi(t)) - \delta pi(t).(6.2)

The key approximation in the derivation of this model is to take the expectation
operation inside the function f . Comparing (3.4)--(3.5) and (6.1)--(6.2), one major
difference is that, while the infection function f is only evaluated over integers in g,
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1998 DESMOND JOHN HIGHAM AND HENRY-LOUIS DE KERGORLAY

it is evaluated on a continuous domain in \widehat g. This leads to different factors in the
spectral bounds. Indeed, suppose that f is concave. Theorem 5.2 tells us that the
solution of the mean field approximation model given by g in (3.4)--(3.5) vanishes if
\beta f(1)\lambda (W )/\delta < 1. For the model defined by \widehat g in (6.1)--(6.2), [15, Theorem 6.4] gives
the condition

\beta f \prime (0)\lambda (W )

\delta 
< 1(6.3)

for global asymptotic stability. In this concave setting, the slopes x \mapsto \rightarrow (f(x)  - 
f(0))/(x  - 0) are decreasing in x > 0. Since f(0) = 0, we deduce that f \prime (0) =
limx\rightarrow 0 f(x)/x \geq f(1) always holds true. Hence, for the mean field model (3.4)--(3.5)
we have a less restrictive sufficient condition for vanishing of the disease. Moreover,
the following theorem shows that a similar condition controls the behavior of the exact
solution, and hence, in this sense, (3.4)--(3.5) gives a more accurate approximation
than (6.1)--(6.2) in the concave case.

Theorem 6.1. Suppose that f is concave in the mean field model given by (3.4)--
(3.5). Also assume for simplicity that each node has the same independent, initial
infection probability denoted by i0 ; that is, for j = 1, 2, . . . , n,

\BbbP (Xj(0) = 1) = i0.(6.4)

Then

\BbbP 

\Biggl( 
n\sum 

i=1

Xi(t) > 0

\Biggr) 
\leq n i0 exp ((\beta f(1)\lambda (W ) - \delta )t) .

Hence, if \beta f(1)\lambda (W )/\delta < 1, the disease vanishes at an exponential rate.

Proof. This result may be proved using the arguments in the proof of [15, Theorem
8.1], noticing that we can substitute f \prime (0) by f(1).

The following corollary also holds, analogously to [11] and [15, Corollary 8.2],
where f \prime (0) is again replaced by f(1).

Corollary 6.1. Suppose f is concave in the mean field model given by (3.4)--
(3.5). Let \tau denote the time of extinction of the disease, and suppose \beta f(1)\lambda (W )/\delta <
1. Then

\BbbE [\tau ] \leq 1 + log n

\delta  - \beta f(1)\lambda (W )
.

7. Computational experiments. In this section, we report on results of com-
putational experiments that allow us to test the sharpness of the results derived in
section 5 and also allow us to compare the two mean field models that we have dis-
cussed against each other and against the exact stochastic model.

7.1. Simulation algorithm. First, let us summarize our approach for the mean
field approximation (3.4)--(3.5). We use the discrete Fourier representation of \Psi (h, l)
derived in [7] to render the computation of (3.5) more stable. We solve the ODE
systems (3.4)--(3.5) and (6.1)--(6.2) with Euler's method, using a time step \Delta t = 0.05.

For the exact stochastic model, defined by (2.1), (2.2), and (2.4), we use the
discretization approach described in [15]. More precisely, to advance from time t
to t + \Delta t we first let r \in [0, 1]n be a random vector of independent and identically
distributed values uniformly sampled from [0, 1]. Then for 1 \leq i \leq n,
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HYPERGRAPH CONTAGION 1999

Fig. 7.1. Proportion of infected individuals, i, over time. Infection function f(x) = arctan(x).
Purple dots: mean field approximation from (3.4)--(3.5). Red dashed line: mean field approximation
from (6.1)--(6.2). Black solid line: mean of the individual-level stochastic model.

\bullet when Xi(t) = 0, we set Xi(t+\Delta t) = 1 if

ri < 1 - exp ( - \lambda i(X(t))\Delta t) ,

and we set Xi(t+\Delta t) = 0 otherwise;
\bullet when Xi(t) = 1, we set Xi(t+\Delta t) = 0 if

ri < 1 - exp ( - \delta \Delta t) ,

and we set Xi(t+\Delta t) = 1 otherwise.
For these computations we also used \Delta t = 0.05.
The number of nodes is chosen to be n = 400, and hyperedges of prescribed sizes

are generated independently by choosing nodes uniformly at random. In Figures 7.1--
7.5, there are 400 edges, 200 hyperedges of size 3, 100 hyperedges of size 4, and 50
hyperedges of size 50. The sizes and number of hyperedges differ in Figures 7.6--7.8
and are specified in the descriptions of the figures.

7.2. Experimental comparisons. In Figures 7.1--7.5, we compare the time
evolution of the two mean field models (3.4)--(3.5) and (6.1)--(6.2) with the exact
model. The figures show the proportion of infected individuals:

\sum n
j=1 Xj(t)/n for the

exact model and
\sum n

j=1 pj(t)/n for the mean field models. The exact model was run
100 times independently. The solid green envelopes represent the span of the runs:
at each time point we discard the most extreme 10\% of the values, that is, 5\% of the
values above and below the average. In these plots, we used the same initial infection
probability i0 for each node, as in (6.4). The figures give results for different i0 and
\beta values. In all figures, we label the y-axis by i, indicating the proportion of infected
individuals over time for Figures 7.1--7.4 and the proportion of infected individuals at
a fixed time T in Figures 7.5--7.8.

Figures 7.1 and 7.2 use concave infection rates of arctan(x) and log(1+x), respec-
tively. Here, both mean field models are seen to give good qualitative approximations
to the exact models, but it is noticeable that the model (6.1)--(6.2) (red dashed line),
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2000 DESMOND JOHN HIGHAM AND HENRY-LOUIS DE KERGORLAY

Fig. 7.2. Proportion of infected individuals, i, over time. Infection function f(x) = log(1+ x).
Purple dots: mean field approximation from (3.4)--(3.5). Red dashed line: mean field approximation
from (6.1)--(6.2). Black solid line: mean of the individual-level stochastic model.

Fig. 7.3. Proportion of infected individuals, i, over time. Infection function f(x) = min\{ 3, x\} .
Purple dots: mean field approximation from (3.4)--(3.5). Red dashed line: mean field approximation
from (6.1)--(6.2). Black solid line: mean of the individual-level stochastic model.

which applies continuous-valued arguments to f , overestimates the infection level
when \beta and i0 are small, and hence the disease vanishes over time.

Figure 7.3 uses another concave infection rate, f(x) = min\{ 3, x\} . Here, both
mean field models substantially overestimate the infection level for small \beta and i0.
It is intuitively reasonable that the two mean field models behave similarly in this
example since on hyperedges of size less than or equal to 4 the infection rate function
is linear and hence commutes with the expectation operation.

In Figure 7.4, we consider a partitioned collective contagion model defined as
follows. Letting fk denote the infection rate function applied to all hyperedges of size
k + 1, we let f1 : x \mapsto \rightarrow x, and fk : x \mapsto \rightarrow c2,k1(x \geq c1,k), k \in \{ 2, . . . , 4\} . Here we chose
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HYPERGRAPH CONTAGION 2001

Fig. 7.4. Proportion of infected individuals, i, over time. Collective contagion partitioned
model. Purple dots: mean field approximation from (3.4)--(3.5). Red dashed line: mean field ap-
proximation from (6.1)--(6.2). Black solid line: mean of the individual-level stochastic model.

Fig. 7.5. Infection function 2 log(1 + x) (left) and arctan (right). Horizontal axis is infection
strength, \beta . Vertical axis is the proportion of infected individuals at time T = 200 for the two mean
field approximations, (6.1)--(6.2) (red dots) and (3.4)--(3.5) (black circles), and for the individual-
level stochastic model (blue crosses), averaged over 10 runs. The spectral bounds on \beta from (5.1)
and (6.3) relating to the two mean field approximations are shown, respectively, as a solid green
vertical line (below which the red dots must be 0) and a dashed green vertical line (below which the
black circles must be 0).

c1,k = c2,k := k  - 1 for k \in \{ 2, . . . , 4\} . In this case, the mean field model (3.4)--(3.5)
(purple dots) fails to predict decay of the disease for small \beta and i0.

In Figure 7.5 we directly compare the accuracy with which the mean field models
predict disease outbreak as a function of \beta , and we also test the sharpness of the
spectral bounds. Here we use the concave infection rates 2 log(1+x) and arctan. The
vanishing conditions predicted by the spectral bounds (5.1) and (6.3), yielding the
green vertical lines in Figure 7.5, occur at \beta 1

\sim = 0.0369 and \beta 2
\sim = 0.0268, respectively,

for f(x) = 2 log(1 + x) and at \beta 1
\sim = 0.0629 and \beta 2

\sim = 0.0494, respectively, for f(x) =
arctan(x). With initial infection probability i0 = 0.5 we averaged the infection level at
T = 200 over 10 runs. Blue crosses correspond to the exact model. We see both mean

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 7.6. Proportion of infected individuals, i, at time T = 100 for the two mean field approx-
imation models (red dots for (6.1)--(6.2) and black circles for (3.4)--(3.5)) and the individual-level
stochastic model (blue crosses). Using 200 hyperedges of size 3, 100 hyperedges of size 4, and 50
hyperedges of size 5 for 400 nodes.

Fig. 7.7. Proportion of infected individuals, i, at time T = 100 for the two mean field approx-
imation models (red dots for (6.1)--(6.2) and black circles for (3.4)--(3.5)) and the individual-level
stochastic model (blue crosses). Using 200 hyperedges of size 4 and 100 hyperedges of size 5 for 400
nodes.

field models are conservative in the sense that they give growth for \beta values where
the exact model produces no infection. The figures also show the spectral bounds
on \beta arising from (5.1) and (6.3) as vertical lines, and we see that they give sharp
predictions.

7.3. Collective contagion model: Sensitivity to the initial condition.
An interesting working assumption is that only hyperedges of size 3 or greater are
present, and hence there are no pairwise interactions. This circumstance may arise,
for example, if we restrict attention to a workplace or school environment. Here we
check how this assumption may impact the predictive performance of the two mean
field models in the case of collective contagion. We used the same infection rate

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 7.8. Proportion of infected individuals, i, at time T = 100 for the two mean field approx-
imation models (red dots for (6.1)--(6.2) and black circles for (3.4)--(3.5)) and the individual-level
stochastic model (blue crosses). Using 100 hyperedges of size 4 and 50 hyperedges of size 5 for 400
nodes.

functions as in Figure 7.4. In Figures 7.6--7.8, we show, for both mean field models
and the exact stochastic model, the proportion of infected individuals at time T = 100
averaged over 5 runs as a function of the initial proportion i0 of infected individuals.
We observe that the mean field model given by (3.4)--(3.5) remains relatively stable,
while the behavior of the mean field model given by (6.1)--(6.2) appears to be sensitive
to the initial condition i0, its predictive performance degrading if i0 is small (e.g., red
dots in Figure 7.6). This sensitivity can be understood intuitively by recalling that the
model in (3.4)--(3.5) is expressed as a continuous function of P \in \BbbR n, while the model
in (6.1)--(6.2) is expressed in terms of step functions of the form 1 (

\sum 
i pi\scrI ih \leq c1); the

later are not continuous functions of P and are more sensitive to small perturbations
of the initial condition. Furthermore, for initial value P (0) = (i0)

n
i=1 sufficiently small

that the threshold conditions of the above step functions are not satisfied, the infection
rate expressed by (6.1)--(6.2) will remain zero, while the infection may start to spread
according to the other models, thus yielding an underestimate of the propagation of
the virus in the population.

We note that if the number of hyperedges is relatively low compared with the
number of nodes (as in Figure 7.8), then the exact model will not propagate, in which
case the mean field model given by (6.1)--(6.2) will give a better prediction. However,
we see that both mean field models fail to accurately predict the behavior of the model
for sufficiently large initial condition i0.

8. Multitype model. In the above results, we assumed for simplicity that a
fixed infection function f applies for all hyperedges. The results, however, readily
extend to a multitype partition model , where the infection rate function may depend
on the type and size of the hyperedge. As we discussed in section 2, the classes of
hyperedge may correspond to locations, such as households, schools, offices, shops,
and public transport vehicles, and hyperedge size may have an impact on transmission
if individuals are attempting to mutually distance. We will therefore explain how the
main results change when we extend the infection rate model. Let us partition the
hyperedges of the hypergraph into S disjoint families \{ \scrF s\} Ss=1 such that to each family
\scrF s corresponds an infection function fs. For each s \in \{ 1, 2, . . . , S\} we may further
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2004 DESMOND JOHN HIGHAM AND HENRY-LOUIS DE KERGORLAY

partition the hyperedges in \scrF s into disjoint classes \scrC (s)
2 , . . . , \scrC (s)

Ks
, where a hyperedge

h \in \scrF s belongs to \scrC (s)
k if and only if | h| = k. The infection rate model (2.4) may then

be extended to

\lambda i(X(t)) = \beta 

S\sum 
s=1

Ks\sum 
k=2

\sum 
h\in \scrC (s)

k

\scrI (s),(k)
ih fs(

n\sum 
j=1

\scrI (s),(k)
jh Xj),(8.1)

where \scrI (s),(k) is the incidence matrix inducing the subhypergraph spanned by the hy-
peredges of \scrC (s)

k \subset \scrF s, i.e., \scrI (s),(k)
ih = 1 if h \in \scrC (s)

k \subset \scrF s and i \in h and \scrI (s),(k)
ih = 0 oth-

erwise. We then have the following generalization of the ODE system
in (3.4)--(3.5):

dP (t)

dt
= g(P (t)),(8.2)

where g : \BbbR n \rightarrow \BbbR n is defined by

gi(P (t)) = \beta 

S\sum 
s=1

Ks\sum 
k=2

\sum 
h\in \scrC (s)

k

\scrI (s),(k)
ih

\Biggl( 
k\sum 

l=1

fs(l)\Psi (h, l)

\Biggr) 
(1 - pi(t)) - \delta pi(t).(8.3)

Define also \scrI (s) :=
\sum Ks

k=2 \scrI (s),(k) to be the incidence matrix inducing the subhy-
pergraph spanned by the hyperedges in \scrF s, and let W (s) := \scrI (s)(\scrI (s))T so that

W
(s)
ij records the number of hyperedges in \scrF s containing both i and j. We then

have the following results for the generalized partition model, which are extensions of
Theorems 5.1--5.3.

Theorem 8.1 (general condition for local asymptotic stability). If

\beta \lambda 
\Bigl( \sum S

s=1 fs(1)W
(s)
\Bigr) 

\delta 
< 1,(8.4)

then 0 \in \BbbR n is a locally asymptotic stable equilibrium for (8.2)--(8.3).

Theorem 8.2 (global asymptotic stability for a collective suppression model).
Suppose that fs is concave for all s \in \{ 1, 2, . . . , S\} . If (8.4) holds, then 0 \in \BbbR n is
globally asymptotically stable for (8.2)--(8.3).

Theorem 8.3 (global asymptotic stability for a collective contagion model).
Suppose that, for each s \in \{ 1, 2, . . . , S\} , fs(x) := c2,s1(x \geq c1,s), where c1,s \geq 2 and
c2,s > 0. If

\beta \lambda 
\Bigl( \sum S

s=1
c2,s
c1,s

W (s)
\Bigr) 

\delta 
< 1,

then 0 \in \BbbR n is globally asymptotically stable for (8.2)--(8.3).

9. Summary and conclusions. Hypergraphs offer more flexibility and realism
than pairwise, graph-based models, and they are relevant to many spreading pro-
cesses where members of a population form groups. In the pairwise setting, with
linear infection rates, graph-based models have been widely studied, and spectral
stability bounds derived [11, 14, 22, 26]. Spectral analysis for the hypergraph case
was initially developed in [15], both for an exact individual-level stochastic model
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and a deterministic mean field approximation. In this work we focused on a more
sophisticated mean field approximation that was proposed in [7] and requires a more
detailed analysis. Although this ODE system produces real-valued trajectories, it has
the unusual feature of evaluating the nonlinear infection rate function only at integer
arguments. Intuitively, since the infection function is zero at the origin, this feature
is likely to make the approximation more accurate than the version in [15] in the
case of concave nonlinearity and small infection levels. This behavior was observed
in our computational tests (Figures 7.1--7.3 and 7.5) and is backed by our theoretical
analysis---in the concave case, this mean field model produces a locally asymptotically
stable disease-free state under the same condition as the exact model (see Theorem
4.3 with cf = f(1) and Theorem 5.2). However, for other types of nonlinear infection
rate, it is possible for the mean field model in [15] to give a better approximation
(Figure 7.4). Hence a key conclusion from this work is that both mean field models
can be analyzed rigorously and that both can provide useful information. A second
conclusion is that the matrix W in (4.1) is an informative flattening of a hypergraph
in terms of predicting stability of the infection-free state. We may view W as the
weighted adjacency matrix associated with the clique expansion of the hypergraph,
and we mention that recent work [21] has argued that the ``expansion eigenvalue""
\lambda (W ) is also useful for relating hypergraph assortative mixing patterns to other dy-
namical processes. We note that in many settings W will be a more convenient and
less invasive quantity to measure or estimate than the overall hypergraph interaction
structure: asking an individual for a list of their contacts and the number of distinct
group-level interactions they have with these contacts is less demanding and intrusive
than asking for complete details of all their group memberships.

It is notable that the spectral conditions for decay of the disease level appearing
in our results have the form

\beta c \lambda (W )

\delta 
< 1

for some constant c that is determined by the type of nonlinear infection rate (with
generalized versions in section 8). This expression separates out different aspects of
the process in a natural manner and offers a means to inform mitigation strategies.
The parameters \beta and \delta quantify the inherent infectiousness and recovery rate for
the disease, respectively. The constant c is affected by the way that the chance of
a new infection depends on the number of infected people in a group. This could
be controlled by changing behavioral patterns; for example, through face-covering or
social distancing. The factor \lambda (W ) summarizes the interaction structure. Lockdown
measures that restrict movement and therefore limit physical encounters will have the
effect of reducing the size of the nonnegative integer entries in W . It follows from
the Perron--Frobenius theorem that if the resulting matrix is irreducible, then \lambda (W )
will have been strictly reduced. Hence lockdown has a tangible effect on the spectral
bound. It would of course be interesting to characterize \lambda (W ) for various classes of
hypergraph and to derive results that quantify more precisely the effect on \lambda (W ) of
removing hyperedges.

On a practical level, it would also be of interest to calibrate a hypergraph model
against real data and investigate the predictive power of the spectral bounds that we
have derived.

Finally, we note that hypergraph epidemic models have also been studied with
regard to the analysis of bifurcation phenomena. It was found in particular in [7] that
the collective contagion model exhibits bistability and hysteresis. More generally,
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2006 DESMOND JOHN HIGHAM AND HENRY-LOUIS DE KERGORLAY

it was shown in [19] that any generic additional parameter variation can cause a
transformation from a second-order to a first-order transition phase at a critical point.
This was illustrated in particular with adaptive epidemic dynamics [12, 19]. Given
such an additional parameter for adaptive hypergraphs and a particular choice of the
nonlinear infection function f , if the global stability condition for the disease-free
state fails before the local condition (5.1) does, this would suggest the existence of a
discontinuous transition.

10. Data availability statement. MATLAB code for the experiments de-
scribed here may be found at https://www.maths.ed.ac.uk/\sim dhigham/algfiles.html.
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