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Abstract

Higham, D.J., The tolerance proportionality of adaptive ODE solvers, Journal of Computational and Applied
Mathematics 45 {1993) 227-236,

Modern software for solving ordinary differential cquation (ODE) initial-value problems requires the user to
specify the ODE and choose a value for the error tolerance. The software can be thought of as a black box
with a dial — turning the dial changes the accuracy and expense of the integration process. It is therefore of
interest t0 know how the global error varies with the error tolerance. In this work, we look at cxplicit
Runge-Kutta methods and show that with any standard error control methed, and ignoring higher-order
terms, the global error in the numerical solution behaves like a known rational power of the error tolerance.
This generalises earlier work of Stetter, who found sufficient conditions for the global error to be linear in the
tolerance, We also display the order of the next-highest term. We then analyse continuous Runge-Kutta
schemes, and show what order of interpolation is necessary and sufficient for the continuous approximation to
inherit the tolerance proportionality of the discrete formula. Finally we extend the results to the case of ODE
systems with constant delays, thereby gencralising some previous results of the author.

Keywords: Global error; interpolation; tolerance proportionality; delay ordinary differential equations.

1. Introduction

When using standard software to solve the ODE

vi(r)=f(t y(1)), () =y, €RY, fy<t, (1.1)
a user will be asked to specify an error tolerance § > 0, which gives an indication of the level of
accuracy required. A typical integrator will proceed from tq, computing discrete approxima-
tions y, =y{z,), for n=1, 2,... . The meshpoints ¢, are chosen dynamically, and they depend
upon the error tolerance. Usually, decreasing the error tolerance 8 will cause the code to refine
the mesh and hence to produce a more accurate solution. However, the user may want to know
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how much more accuracy is produced — if the tolerance is decreased by a factor of ten, how
much does this change the global error?

This question was examined by Stetter [11,12]. Stetter looked for a linear relationship
between global error and error tolerance (this is what a user might assume if the documenta-
tion did not say otherwise) and said that a method exhibits folerance proportionality if, for any
3, there exists a piecewise C! interpolant n(¢) to the mesh data {z,, y,} such that

n(1) —y(t) =0v(1)d +g(1), (1.2)
where ©{t) is C' and independent of 8, and g(¢) is piecewise C' with zeroth and first
derivatives of o(8). The condition (1.2) involves asymptotics and is relevant for sufficiently smali
tolerances. Note also that (1.2} guarantees asymptotically linear behaviour of #»'(#) —y'(1).
Stetter showed that for a pth-order method, tolerance proportionality can be achieved by
controlling any smoothly varying O(h#) quantity on each step. (Here h; denotes the stepsize
{;—t;_,) We mention that the interpolant ={r} for which (1.2) was shown to hold is not
computable in general.

In [6] we examined the case where n(¢) is a computable Runge-Kutta interpolant (or
continuous extension), Two classes of computable interpolants have been proposed in the
literature — higher- and lower-order interpolants, whose local errors are O(h?7%) and O(h?),
respectively. It was shown that neither type of interpolant can satisfy (1.2), although higher-order
interpolants satisfy the weaker condition

(1) —y{t)=v{1}d + o). (1.3)
We considered systems of ODEs with constant delays in [7], taking the usual approach of
applying a Runge-Kutta method to a nearby standard ODE by using an interpolant to
approximate the delayed values. We showed that the above results hold if discontinuities in the
solution are crossed with sufficiently smali steps and delay terms are computed with higher-order
interpolants.

The purpose of this work is to examine a general error control mechanism and to show that a
relationship like (1.2) will always hold with a known rational power of § in the leading term.
We also give a more precise quantification of the higher-order terms — if §7/9 appears in the
leading term, then the remaining terms are Q(8%*1/9), The extension also applies to the
previous results on computable interpolants and constant-delay equations.

2. Discrete formulae

We begin this section with a generalisation of [6, Theorem 2.1]. Condition A below asks for
the global error to be asymptotically proportional to &', where » can be any positive real
number, and for the higher-order terms to be O(8"*#), where r = 8 > 0. [6, Theorem 2.1] was
restricted to r =1, and only asked for higher-order terms of o{8). However, the proof of the
new theorem is very similar to that of [6, Theorem 2.1], and both proofs are based on the ideas
in [111

Theorem 2.1. Given the initial value problem y'(t) — flt, y(1)) =0, y(t,) =y,, suppose that to
every tolerance value 8 there corresponds a piecewiese C* approximation m(1t), satisfying n{ty) =y,
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Let €(t) =n(t) —y(t) denote the global error in w(t), and let r = B > 0. Then, for sufficiently
smooth f, the conditions A and B below are equivalent.

Condition A: (1) = v(£)8" + g(t), where v(t) is C' and independent of 8, and g(1) is piecewise
C? with zeroth and first derivatives of O(8"7F).

Condition B: n'(1) — f{t, n(£)) = v{1}8" + s(1), where y(t} is continuous and independent of 8,
and s(t) is piecewise continuous and O(8"7F),

Proof. We introduce a third condition, C, and then prove that A= B, B=C and C = A.
Condition C: €'(¢)} — f (2, y(1De(t) = y(1)8" + ult), where y() is the function appearing in
condition B, and u(¢) is piecewise continuous and O(8""F) + O(e(r)?).
(A = B) We have

() —f{t () =y () e (t) = (1, y(1) +e(1))
=e'(t) = [, y(2))e(t) +w(1),
where w(t) = O(e(1)?), and hence, from A, w(¢) = O(8%"). Using A in this equation, we obtain
n'(t) = f(1, (1)) = 8"[ 0" (1) = f,(t, ¥(£))u(1)]
+g'(2) —f(1, y(1))elr) +w(r),

which has the required form.
(B = C) Subtracting the original ODE y'(¢) — f(¢, v(¢)) =0 from B gives

7'(8) =y () = (f(t, n(e)) = (&, y(£))) = y(£)8" +5(1).
Using a Taylor expansion of f(t, n(¢)) = f(t, y(¢)} + €(¢)) this becomes
e'(t) =16, y()e(ty +w(t) = y(1)8" +s(t),

where W(t) is piecewise continuous and O(e(1)?).
(C = A) Let v(r) denote the unique solution to the linear initial-value problem

V() = [0 y(O)e() =v(t), v(ty) =0.
Then, from C, €(¢) — 6"v{1) satisfies
(e(1) = 870(t)) =t y(e(t) = 87u(r)) =ule), e(ry) ~87v(zy) = 0.

Standard theory (see, for example, {1, p.86]} shows that this linear, inhomogeneous, variable-
coefficient initial-value problem has a solution of the form

(1) =7u(t) =Y(1) [ ¥ (hu(n) di,

where the fundamental solution matrix Y(¢) is defined by
Yi(e) =f(t, y(e Y (e), Y(t,) =1

It follows that
e(t)y —8"v(t)=g(1),
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where g(1) is O(8""#) + O(e(£)?) and continuous, and g'(¢) is O(8"7#) + O(e(1)?} and piece-
wise continuous, leading to the desired result. O

The usefulness of Theorem 2.1 lies in the fact that condition B is easier to verify than the
equivalent condition A. Our aim is now to examine a very general class of error control schemes
and show that there always exists an interpolant n{z) that satisfies condition B for some » and
B.

We will suppose that a pth-order Runge-Kutta method is used to advance the numerical
solution, and we will let z,(¢} denote the local solution over a step from ¢, to ¢, =1¢, , +h,,
so that z (1) =f{z, z (¢)) and z,(¢,_;) =y,_,. We assume throughout that (1.1} is sufficiently
smooth to allow the local error expansion

l‘en = yn —Zn(fn) = i!f(ynfh rn-k«l)h;;)‘;i + O(hrf+2)’ (2])

where the function ¢ is C* and independent of h,,.

We regard the error control process as having two parts;

(1) an acceptance criterion;

(2) a stepsize changing formula.

For (1) an atternpted step from ¢,_, to ¢, is deemed acceptable if est, <&. Here the
computed quantity est, is some measure of the error, and we will assume that it has the form

est, = he(v,_1s L, 1, h) 1L (2.2)
where the expansion
e(yn,}, ‘tan’ hn) = lﬁ(ynfi’ tﬂ-*l)h;}l + O(thrl) (23)

holds, with r,l; being a C* function, independent of /,. Any vector norm is allowed in (2.2).
For (2} the next stepsize 4, is computed according to

6 /g
hn”ivl = 9(5) hn’ (24)

where & is a fixed safety factor in (0, 1). In the case of a rejected step, (2.4) could be used to
give a stepsize with which to retry the step, or some other strategy such as halving the stepsize
could be used. The particular strategy for retaking steps does not affect the analysis below,
since we are concerned with asymptotic 8 — 0 results and the presence of the safety factor
ensures that for sufficiently small 8§ no rejections will occur.

We belicve that the error control process outlined above encompasses virtually all widely
used Runge-Kutta algorithms. The most common scenario is to advance from y, , with a
subsidiary Runge—Kutta formula of order p # p to produce an additional approximation y,.
The error estimate is then taken to be either |y, —7, | (error-per-step) or Hly, =¥, Il /4,
(error-per-unit-step). If p <p, then “local-extrapolation” is said to have taken place. Each of
the four combinations of error-per-step or error-per-unii-step with local-extrapolation or
without local-extrapolation has been used in practice [16], and it follows from the local error
expansion (2.1) that (2.3) holds with ¢ =min{p, p)+ 1 for error-per-step control and with
g = min( p, p) for error-per-unit-step control,
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More recently a closely related alternative to local error control was proposed in [3]. Here a
computable interpolant w(r) is formed on each step and

est, = {w'(t*) —f(t*, w(t* ),
where 1% =1,_, +7%h,, and 7* is fixed in (0, 1). In this case est,, satisfies (2.2) and (2.3) with
g=p if w(t) is a higher-order interpolant and g=p — 1if w(t} 15 a lower-order interpolant.
In order to prove our results, we must assume that a/f in (2.3) does not vanish, so that the
error estimate always behaves like O(h?), and never like some higher power of h,. It follows
from this assumption that max{%,} — 0 as § — 0 and also that max{h,} = O(8!/9).

After a successful step to ¢, using (2.4) to give the new stepsize, the error estimate on the
next step can be expanded to give

(s tur o) I =165, 2[00, + O(REL)
me yn-l +0(hn)’ tnw-l + O(h th+1 +O(hg_—:]l)
z“‘!;(yn 1 bne 1)Hh 1+O(h +1)+O(h31]1)

= vyt 1)]{ hq+o(5<q+1)/@v)

f’l

Now, using (2.2} and (2.3), it follows that
4l an + 0(5(q+1)/q) (25)

This shows that on every step the error estimate will be asymptotically equal to 87 times the
tolerance §. (Note that this also confirms that no step failures will arise for sufficiently small §.)
We may express the local error on each step in terms of 8. Writing (2.1) as

le, =@ (Y, 1, L1V hl + O(h2*?),

n"tR

and using, from (2.2} and (2.3),

est

est pr/e
R =17 - +O(he}
G(Vaois L, 1)“
we conclude that
est?/4 ,
le’l:‘!f(yn—'l? tn'—l)h’n N ia ‘JF‘O((S(‘[)_{_ )/‘?).
lljf(yn—}.? tnwi)”

Now if (2.5) holds on every step, then we find that
{96}5 + 0(5(q+1)/q)}”/q

|

ieﬂ=§b(yn—1? In—l)hn +O(8(p+2)/4),

P/

S

"b(yn—b fn—»l)

which simplifies to

llf(yn—iﬂ rnfi)

le, =
[CA R

n

hnﬁpﬁ‘”/‘?‘—i— 0(3{p+2}/q). (2.6)
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We are now in a position to show that condition B of Theorem 2.1 holds for a particular
interpolant, known as the “ideal interpolant”, which is defined by

. (1,4
771(‘) = Zn(t) + mmgmicn’ A= (Zn—lﬁ fn]‘ (27)

i

Theorem 2.2. Suppose that a pith-order Runge—Kutia method is used to solve (1.1), with an error
control process of the form described above. Suppose further that
o the problem is sufficiently smooth for the expansions (2.1} and (2.3} to hold;
e for all sufficiently small 8, 1y, t I in (2.3) never vanishes;
o the initial stepsize is chosen so that (2.5) holds for n = Q.
Then condition B holds for the ideal interpolant defined by (2.7) withr=p/q and B =1/q.

Proef. We have, from (2.7), for t (¢, ., 1,1,

1 le
M) =1t M) = 2i(0) + 2 = (1, 2,(6)) + Olle,) = - + O(le,).

il 123

Now under the assumptions of the theorem, we have shown that the local error at ¢, satisfies
(2.6), and hence,

l,!'l(yn,l, tnfl)
~ D/
‘wb(yn—lﬂ rnm])”

Now t, —t,_; = O(8'/?) and, from standard convergence theory (see, for example, [4, Theorem
34D, v, —¥(t,_ ) = O(max{h,}) = O(6'/9). Hence we may replace #,_, by ¢ and y,_; by
y{(¢) in (2.8) to give

mie) = f{t, ;1)) = 075779 + O(5 7T 1/9). (2.8)

Y(y(t), 1)

~ r/4
[y (1), )]
and hence condition B holds with r=p/g and g =1/g. O

7H(0) =~ (t, mi(6)) = 0767/ + O /%), @29)

We mention that the result remains valid when the vector norm in (2.2) involves component-
wise absolute and relative weights. In this case the norm |- || depends upon 8, but this does
not present a serious difficulty; sec [6] for details,

Experiments in 386-Matlab [8], based on the built-in ode23.m program, have verified
Theorem 2.2. Here, due to space limitations, we present a subset of our fest results. We give
results for the combinations p=2, g=5 and p =5, ¢ =2. Here the fourth- and fifth-order
pair HIHAS from [5, Table 2.1] was used to provide the higher-order approximations. (We
mention that we have chosen rather extreme cases of p>g and p <g in order to test the
theory fully; we do not advocate the use of such values in practice.} We give results for the
logistic equation

y'=v(1-5y), y(0)=1, 0<1r<20,
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Fig. 1. Global error ratios on logistic equation for three different tolerance values.
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In both cases we recorded the global error ratio, [y, —y(t,)]/87/9, at each meshpoint. If
condition A is satisfied with r=p/g and B8 =1/g, then these values should be close to the
limiting values v(¢,} for small 8. For the p < g test we used tolerances of § = 1075, 1078, 107,
while for the p > ¢ test we used § = 1077, 107%, 107°. (In the latter case, larger tolerances are
more realistic, since a high-order formula is coupled with a low-order estimate.) Figure 1
presents the results, Here the discrete values are joined for clarity, and the curves change from
dash-dotted to dashed to solid as the tolerance decreases. We see that the global error ratio
appears to be settling down to a limit, as predicted by Theorem 2.2.

3. Interpolants

In general, the interpolant m,(¢) in (2.7) is not computable, and hence Theorem 2.2 should
be regarded as a result about the discrete numerical solution {z_, v }. Recently a great deal of
work has been done on the derivation of computable interpolants, or continuous Runge-Kutta
formulae; see, for example, [9] and the references therein. Here, a continuously differentiable
function w(z) is made available, such that for any fixed r &[0, 1],

w(t,_ +7h,}y—z,(t, | +7h,)=0(hl). (3.1)

If I = p, then the order of the local error in the interpolant is generally one less than the order
of the local error in the discrete formula. In this case we have a “lower-order” interpolant. In
the case where [ = p + 1, the local errors in the interpolant and the discrete formula are of the
same order, and we have a “higher-order” interpolant. Both higher- and lower-order inter-
polants have been proposed in the literature.

If we assume that condition A holds for the ideal interpolant, then we may split the global
error in w(t) into three parts;

w(t) =y (1) = [w(t) =2,()] = [:(8) = 2, ()] + [m(1) =y (1)]. (3.2)
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The first term, w(z) —z,(f), is O(Ah}) = O(8'/9), the second term, m,(r) ~ z (1), is O(hP 1) =
O(§77D/9) and the third term, »(¢) — y(¢), satisfies condition A with r=p/g and B =1/4.
Hence we find

w(t) = y(z) =0(1)57/9 + O(3vnde+1/a), (33)
For a higher-order interpolant, we have [ =p + 1, so that
w(t) —y(t) =v(r)d7/9+ O3/ 2y, (3.4)

This shows that the tolerance proportionality in n,(r) is inherited by w(¢). However, for a
lower-order interpolant, the O(57/9) Jocal error term is of the same asymptotic order as the
first term in (3.3) and, as discussed in [6], does not behave smoothly as the tolerance varies. (In
fact, w(r) —z,(t) has a smooth expansion in 7, where = (+ —¢,_,)/h,, but as § decreases for
fixed ¢,  behaves in a sawtooth manner.)

Differentiating (3.2) gives a splitting for the global error in the first derivative approximation.
Here it can be shown that w'(¢) —z/(1) = O(k'™") for standard computable interpolants. It
follows that for a higher-order interpolant this local error term contaminates the »(z) —y'(z)
term, and we cannot extend (3.4) to first derivatives. Note, however, that if (3.4) holds, then

e, w(t))y —y'(£) =£,(1, y{e)ol(t)ds/ 1+ O(g(pﬂ)/q),

and hence f(z, w(#)) is a computable approximation to y'(¢) with a global error that is
asymptotically proportional to 8774,

For lower-order interpolants, if we differentiate (3.2), then the local error term actually
dominates in the expansion, and hence the ratio [w'(¢) —y'(¢)]/87/¢ will not even remain
bounded as 6 — 0.

These results generalise those given in [6], and numerical results that illustrate the effect of
the wir) —z,(¢) and w'(¢) — z,(¢) terms can be found there.

4, Constant delays

We now consider a system of ODESs with & constant delays, which we write as

yi(ey=F(, y(t), y(t=7), y({t = 73),...,y(t —1,)) €RY, 20,

4.1
Y1) = B(1), 1[50 0), 0<r, <ry< oo <r,. (4.1)

We will assume that F and @ are smooth functions, but we will not assume that @'(() =
F(0, &(0), &(—7,), D(—71,),...,P(—71,)). Hence, in general, the solution has a first derivative
jump at ¢ =0, and this is propagated into higher-order derivative discontinuities at later points.
The points where y“X¢) is discontinuous for 2 <i <p + 1 can be determined a priori, and we
will label them {£)" ,.

A standard approach for solving (4.1) is to use an interpolant to approximate the delayed
values, and to apply a Runge-Kutta method to the resulting ODE. Formally we assume that a
method as described in Section 3 is applied to the ODE

v () =Fe, v (), wlt — 1), w(t — 75} ., w(t— 7)), 120,

y*(0) = 0(0), (*2)
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where w{t) = @(¢) for t &€ [—r,, 0], and for ¢ > 0, w(z) denotes either a higher- or lower-order
interpolant to the discrete approximation. We must also be careful to “tiptoe” over the points
of discontinuity — we assume that the stepsize selection is altered so that each point {fd} is
crossed with a step of length O(§*9). We will also effectively restart the integration after
crossing a discontinuity by choosing the stepsize in the same manner as the initial stepsize in
Theorem 2.2.

In [7] we derived sufficient conditions for the error control to cause the global error to be
asymptotically lincar as a function of 8. Here, we extend those results to allow for the more
general error control scheme discussed in the last section. The extension of the analysis in [7] is
of a similar spirit to the extension of the analysis in [6] given in Sections 2 and 3, and so we
state the final result without proof.

Theorem 4.1. Suppose that we solve {4.1) in the manner described above. Suppose further that if
we were given exact back-values y(t — 1) and applied the Runge-Kutta method to the correspond-
ing standard ODE, then ¢y, t, )l in (2.3) would not vanish for sufficiently small 8.

If w(t) is a higher-order interpolant, then there exists an interpolant n(t) through the mesh data
such that

n(t) —y(1) =V{(£)87/* + G(1), (4.3)

where V(1) is continuous and is C' over [0, [,), over each (i, {,,,) and over (i,, =), and is
independent of 8, and G(t) is piecewise C' with zeroth and first derivatives of O(8*"1/4),
Further,

wlt) —y(t) =V{(1)82/9+ O(82+D/9). (4.4)

However, if w(t) is a lower-order interpolant, then (4.3) and (4.4) do not hold.

Essentially, Theorem 4.1 says that the previous results for standard ODEs also hold for
constant-delay ODEs if and only if a higher-order interpclant is used to approximate the
delayed values. We mention that in {2] it was also found that higher-order interpolation offered
an important advantage over lower-order interpolation in the context of local error estimation
for uniformly corrected implicit Runge~Kutta methods.

40 Higher orde; mterpolTant 40 LoTwer orde{ mtemolgnt
o o
g 20k - B
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T 20 )

~40 .

10
t t

Fig. 2. Global error ratios on delayed logistic equation for three different tolerance values.
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We illustrate Theorem 4.1 using the delayed logistic equation
y' ()= ()1 —py(t—1)), t=0,
y(t)y=1, te[~1,0],

We used a second- and third-order Runge~Kutta formula in extrapolated error-per-unit-step
mode, so that p=23 and g =2. Two interpolants were tested: the Hermite piecewise cubic
polynomial defined over each step by wif,_ ) =y,_,, w(t, )=y, w'(t,_}=Ff(t,_ 1, v,_,),
w'{t,) = f(¢,, v,); and the quadratic piecewise polynomial which satisfies only the first three of
the above interpolation conditions. Tolerance values of & =10"* 1077, 10 ¢ were used. In Fig.
2 we plot the global error ratios [w(t,} — $(¢,)] /8777 for 101 equally spaced values 1,. (Since the
true solution is not known, we used the numerical solution with &§ =107 to generate $(z,).)
Note that the cubic interpolant is higher order (locally O(h2)), and gives global error ratios that
seem to approach a limit as 8 decreases. For the lower-order quadratic interpolant, which is
locally O(h?), the ratios do not settle down to a fixed limit function, and the characteristic
sawiooth oscillations can be seen. These results are in agreement with Theorem 4.1,
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