IMA Journal of Applied Mathematics (2024) 89, 175-196
https://doi.org/10.1093/imamat/hxad017
Advance Access publication on 28 June 2023

Adversarial ink: componentwise backward error attacks on deep learning

Lucas BEERENS AND DEsMoND J. HiGHAM™
School of Mathematics and The Maxwell Institute for Mathematical Sciences, University of Edinburgh,
Edinburgh EHS 9BT, UK
*Corresponding author: d.j.higham@ed.ac.uk

[Received on 28 October 2022; revised on 05 June 2023; accepted on 12 June 2023]

Deep neural networks are capable of state-of-the-art performance in many classification tasks. However,
they are known to be vulnerable to adversarial attacks—small perturbations to the input that lead to a
change in classification. We address this issue from the perspective of backward error and condition
number, concepts that have proved useful in numerical analysis. To do this, we build on the work of
Beuzeville, T., Boudier, P., Buttari, A., Gratton, S., Mary, T. and Pralet S. (2021) Adversarial attacks
via backward error analysis. hal-03296180, version 3. In particular, we develop a new class of attack
algorithms that use componentwise relative perturbations. Such attacks are highly relevant in the case
of handwritten documents or printed texts where, for example, the classification of signatures, postcodes,
dates or numerical quantities may be altered by changing only the ink consistency and not the background.
This makes the perturbed images look natural to the naked eye. Such ‘adversarial ink’ attacks therefore
reveal a weakness that can have a serious impact on safety and security. We illustrate the new attacks on
real data and contrast them with existing algorithms. We also study the use of a componentwise condition
number to quantify vulnerability.

Keywords: misclassification; stability; conditioning; optimization.

1. Motivation

Over the past decade it has become clear that state of the art deep learning image classification tools
are susceptible to adversarial attacks—deliberately constructed perturbations that are intended to go
unnoticed by humans but cause a change in the predicted class (Szegedy et al., 2013; Goodfellow
et al., 2015). This type of vulnerability is of concern in high stakes application areas, including medical
imaging, transport, defence and finance (Marcus, 2018). Consequently there has been a great deal of
interest in the design of practical attack and defence strategies (Moosavi-Dezfooli et al., 2016; Papernot
et al., 2017; Akhtar & Mian, 2018; Goodfellow et al., 2018; Madry et al., 2018) and, more recently,
in theoretical questions concerning the existence and computability of adversarial perturbations (Fawzi
et al., 2018; Shafahi et al., 2019; Tyukin et al., 2020; Bastounis et al., 2021; Tyukin et al., 2021).

From the perspective of applied and computational mathematics, the fundamental question to be
addressed here concerns well-posedness, or conditioning. In particular, backward error theory from
numerical analysis is highly pertinent. In Beuzeville et al. (2021), the authors used the concept of
backward error to construct a new form of adversarial attack algorithm. In this work, we build on this idea
by focusing on a special class of data perturbation. We develop attack strategies based on componentwise
relative perturbations; for example, each pixel may be perturbed by a small percentage of its original
value. In particular, this approach allows us to preserve the background of a document and perturb only
the ink levels in the text. We also test the corresponding condition number as an indicator of vulnerability
to attack.

© The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.
0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

176 L. BEERENS AND D. J. HIGHAM

(a) Image from MNIST dataset [16], which (b) Perturbed image using DeepFool [19]. (c) Perturbed image using Algorithm 4 from
is correctly classified as a 7 by a neural The background is now smeared. This image section 4. The background is unchanged.
network. is classified as an 8. This image is classified as an 8.

Fic. 1. Image from MNIST and two adversarial attacks.

To illustrate the main idea, Figure 1 (a) shows a handwritten digit from the MNIST data set (LeCun
& Cortes, 2010), and Figure 1 (b) and (c) show adversarial attacks on a trained network described in
Section 4. The original image (a) is correctly classified as a 7 by the network. The perturbed images in (b)
and (c) are both classified as an 8. For (b), we attacked with the DeepFool algorithm (Moosavi-Dezfooli
et al., 2016), which controls the Euclidean norm of the perturbation. Although the image still has the
appearance of a 7, we see that the background, where pixels had a value of zero, is noticeably altered.
For (c), we computed a componentwise perturbation with the new Algorithm 4 from section 4 and we
see that the background is unchanged. The componentwise perturbation in part (c) is compatible with a
blotchy pen, imperfect paper or inconsistent handwriting pressure. Indeed, variations in line continuity,
line quality and pen control have been widely observed, and are listed among the 21 discriminating
elements of handwriting (Huber & Headrick, 1999; Harrison et al., 2009). Hence we argue that this type
of ‘adversarial ink’ attack produces a more natural result than the perturbation in part (b).

The manuscript is organized as follows. In Section 2, we set up some notation and introduce the
concept of backward error. Section 3 describes the adversarial attack algorithms in Beuzeville et al.
(2021), and Section 4 extends these to the componentwise setting. Computational results on the MNIST
data set are presented in Section 5; we show illustrative images, summarize the perturbation sizes,
consider untargeted attacks, compare against state-of-the-art algorithms, summarize the most likely class
changes, look at the use of a condition number to indicate vulnerability to attack, test on different neural
networks, and report on black box attacks. Conclusions are given in Section 6.

2. Image classification and backward error

We begin by considering a general image classifier, in the form of a map F : [0, 1]" — R¢. Hence, we
regard an image as a single vector in R”. The n components may correspond to individual pixel intensities
in the greyscale case, or red, green and blue channel pixel intensities in the colour case. Intensities are
assumed to lie in [0, 1]. Each image is assigned to one of c classes, according to the largest component
of F(x). In practice, the output vector y = F(x) € R may be passed through a softmax function, so that

eyi

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

ADVERSARIAL INK 177

is viewed as the probability that x belongs to class i. Since x is assigned to the most likely class, we do
not need to include this final layer when considering the classification results.

In numerical analysis, the concept of backward error deals with the following question: given an
approximate solution, what is the size of the smallest perturbation to the input which makes this solution
exact? In more detail, suppose an approximation algorithm produces a function H, instead of the desired
function H. For an input x, when the algorithm returns H (x) = y+ Ay instead of y = H(x), we may
ask for the smallest Ax such that H(x + Ax) = y + Ay. In many settings, the size of Ax (the backward
error) is more relevant and more amenable to analysis than the size of Ay (the forward error) (Higham,
2002; Corless & Fillion, 2013). For an adversarial attack on a classifier, we may interpret Ay as a desired
change in the output. Then a question of the same structure arises—what is the smallest perturbation to
the input that achieves the desired output? In this setting, we require Ax such that F(x + Ax) =y + Ay.

This approach was exploited in Beuzeville ef al. (2021), leading to what we describe as Algorithms
1 and 2 in subsections 3.2 and 3.3.

3. Normwise backward error attacks: algorithms 1 and 2
3.1 Set-up

In the next two subsections, we describe the data perturbation approach from Beuzeville et al. (2021);
leading to Algorithms 1 and 2. We cover this existing work in sufficient detail that (a) there are well-
defined algorithms that can be implemented in practice, and (b) the new versions, Algorithms 3 and 4 in
Section 4, can be introduced naturally and compared computationally.

We formulate all algorithms in terms of linearly constrained linear least-squares problems, for which

high quality software is available. Letting || - |, denote the Euclidean norm, these problems have the
form
Crz < ks,
min||Cyz — kll,, suchthat { 2°='2 3.1)
z C3Z = k3,

where the matrices Cy, C,, C5 and vectors z,k;, k,, k3 have appropriate dimensions and where vector
equalities and inequalities are to be interpreted in a componentwise sense. (More traditionally, the
objective function in (3.1) may be written 1||C,z — k, ||%, but, of course, the factor and the square
may be ignored.) We also assume for now that the Jacobian of the classification map is available; in
subsection 5.6, we test the use of a finite-difference approximation to the Jacobian.

3.2 Linearized algorithm

We begin by measuring perturbations in the Euclidean norm. Given an image x with F(x) = y and a
desired new outputy, a suitable perturbation may be expressed as

argminf{|| Ax|l, : F(x+ Ax) =73} (3.2)
Ax

In general, this problem cannot be solved analytically. On the grounds that we are looking for a small
perturbation, it is reasonable to linearize, using F(x + Ax) — F(x) &~ &/Ax, where &/ € R*" is the
Jacobian of F at x, and F is assumed to be differentiable in a neighbourhood of x. The problem (3.2) then

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

178 L. BEERENS AND D. J. HIGHAM
reduces to

argAmin{HAxH2 D dAx =7 —y}. (3.3)
X

For any fixed y this is a minimum Euclidean norm linear system. Typically ¢ < n, so the system is
underdetermined. Generically, a solution for this fixed y can be found by introducing the Moore-Penrose
inverse (Wang et al., 2018), ,saﬂ, to give

argmin {|| Ax|, : Ax =7 — y} =d"G-y). (3.4)
Ax

Given the solution (3.4), we can use y as an optimization variable. In the targeted case, where we
wish the perturbed image to be classified with label ¢, we introduce the misclassification set

S ={yeR": ’y\co = maxy;}. (3.5)

1<i<c
To compute an adversarial attack we then solve

argmin |77 5 —), (3.6)
ye
and set Ax = 7' (5 —).
We now show that the problem (3.5)—(3.6) has the form (3.1). The variable to be optimized isy, so

we will use z =y in (3.1). We may take C; = CEI] = and k, = k&l] := o/"y. The misclassification
condition is equivalent to

Yeo

In order to write this in matrix form, we define the matrix G € R¢*¢ with

1 ifj = ey,
G.. = 3.7
4 [0 otherwise. 3.7)

The misclassification condition may then be written
-Gy =<0.
Hence we use C, = C[21] =1—-Gand k, = k[21] = 0. There are no equality conditions, so we set

Cy=Ci=0andky = & := 0.
This leads to Algorithm 1, as summarized in the displayed pseudocode listing.

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

ADVERSARIAL INK 179

Algorithm 1 Basic normwise attack, returning a perturbed image

1: procedure ATTACK(F, X, ¢()

2 out < F(x)

3 Jjac < Jacobian(F, x)

4 pi < Pseudolnverse(jac)

5: con < Constraints(cg)

6 obj < Objective(pi, our)

7 7 < OptimizationVariable

8 prob < Minimize(z, obj, con)
9

Solve(prob)
10: Ay < z.value — out
11: Ax < pi- Ay
12 return Scale(F, x, Ax, ¢y)

13: end procedure

The final step of Algorithm 1 requires further explanation. We note that the constrained linear least-
squares problem is not guaranteed to produce a perturbed image with values in [0, 1]. For this reason,
we prune the entries using

0 ifx; <0
Prune;(x) = 1x; ifx; € [0,1]
I ifx; > 1.

We also note that the resulting Ax might be unsuccessful; that is, F'(x+ Ax) might not correspond to class
¢o- Hence, we regard Ax from (3.6) as a direction in which to perturb, and take the smallest increment
that results in class ¢. So, the Scale function in Algorithm 1 is defined as

Scale(F, x, Ax, cy) := x + min{a € R : argmax F(Prune(x + a Ax)); = ¢y} Ax. (3.8)

1

This minimization is carried out by computing arg max; F(Prune(x + a Ax)); over a finely spaced range
of a valuesin (0, ||x||, /]| Ax]|,]. If there is no suitable value of a in this range then we terminate and regard
the attack as unsuccessful. We use this range because for larger a the norm of the perturbation before
pruning exceeds the norm of the image, at which point it is reasonable to assume that the perturbation is
too large to be of interest.

3.3 Iterative algorithm

An alternative approach was also proposed in Beuzeville er al. (2021). This may be motivated by two
ideas.

* Do not exploit the analytical solution of the linearized problem (3.4), and proceed directly with
numerical optimization. This allows us to build in constraints that keep all pixel values in the range
[0, 1].

* Given that we have linearized the problem, take small steps and proceed iteratively.

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

180 L. BEERENS AND D. J. HIGHAM

The algorithm uses a hyperparameter « indicating the step size for each iteration. Again we will
target some class c. We start with the perturbation Ax = 0 and update it with a small multiple of some
new &x in every step. At every step, we also have x, ., = x + Ax and y,.,, = F(x,,)- In each of these
steps, we solve

new

arg min || Ax 4 éx|,, 3.9)
8x

under the misclassification condition y € ., the condition that &/8x =7y — y, ., and the constraint that
pixel values lie in the unit interval. Since we now have constraints on bothy and 8x, we treat them both
as optimization variables. Then we update Ax and x, ., by adding aéx to both. Finally .<¢is recomputed
before moving on to the next iteration.

To see that we still have constrained linear least-squares problems of the form (3.1), note that we
must repeatedly solve (3.9) under the conditions that &/8x =y — y,.,, and y € .. Since both 8x and y

need to be optimized we use z = [?] in (3.1). Thus we use C;| = CEZ] :=[1,0] and k; = kgz] = —Ax.

new

For the inequality constraints we need to consider the misclassification constraint and the pixel value
bound constraint. Keeping in mind that z also includes éx we obtain [O,I — G] z <0, for G in (3.7).
Pixel values must also lie in the unit interval. This constraint may be written as

I 0 . < 1— X,y ’
-1 0|~ — Xnew

where 1 denotes a vector of 1s. Combining the two inequality conditions gives

0 I-G 0
CG=cl=11 0 and ky =k = |1-x

new
-1 0 Xpew

The required equality condition is @8x = — y,.; that is, [~ 1]z = y,,, Therefore we take C; =
2 2
CPli=[~a 1] and ky = kY = ype-

This leads to Algorithm 2, summarized in displayed the pseudocode. Here we have a prescribed
number of iterations, num. In Section 4, we examine the performance in terms of the iteration number.

4. Componentwise backward error attacks: algorithms 3 and 4

The minimum Euclidean norm perturbation in (3.2) was motivated by a normwise concept of backward
error. Based on the alternative componentwise backward error viewpoint in Higham & Higham (1992);
Higham (2002), instead of (3.2) we may consider the problem

argmin{e : F(x + Ax) =75, |Ax| < ¢f},
Ax

for a given tolerance vector f > 0 € R”". Here, the absolute value function | - | is applied to each
component, so | Ax|; is | Ax;|. Unless otherwise indicated, we will use f = |x|. In this case, changes are
measured in a relative componentwise sense, and, in particular, a zero element of x cannot be perturbed.

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

ADVERSARIAL INK 181

Algorithm 2 Iterative normwise attack, returning a perturbed image

1: procedure ATTACK(F, X, ¢y, o, numt)

2 out < F(x)

3 Ax <0

4: newX < x

5: for i = 1 to num do

6 Jjac < Jacobian(F, newX)

7 pi < Pseudolnverse(jac)

8 con <— Constraints(jac, newX, out, c)
9: obj < Objective(Ax)
10 7 <— OptimizationVariable
11: prob < Minimize(z, obj, con)
12: Solve(prob)
13: 8x <« z.value.delta
14: Ax < Ax+«a - 6x
15: newX < newX + o - 6x
16: out < F(newX)
17: end for
18: return Scale(F, x, Ax, ¢y)

19: end procedure

Using this type of constraint in an adversarial attack, after linearizing, a componentwise version of
(3.3) is given by

argmin{e : FAx =y —y, |Ax| <¢€f}. 4.1)
Ax

We now write the constraint in a form that fits into the linear optimization framework (3.1), using an
idea from (Higham & Higham, 1992, Section 2). We set Ax = Dv, where D = diag(f) and v is a vector.
The relevant optimization problem is

min{e : /Dv=y—y, |Dv|<¢f, Dv= Ax}.

Since D = diag(f), we know that the smallest such € will always be equal to |v|,,. Hence the
minimization problem can be written

min{||[v||lo, : &Dv =3 — y}. 4.2)

In the absence of an analytical solution to (4.2), we will proceed with an iterative algorithm, along the
lines of Algorithm 2, using v and v in place of Ax and dx, respectively. Again we use x,.,, and y,..,
to keep track of the perturbed image and output during the iterative process. In each iteration of the
algorithm, we compute

argmin [|[v + 6v|l o,
8v

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

182 L. BEERENS AND D. J. HIGHAM

under the conditions thaty — y, .., = #/Dév andy € .. After each step we update v <— v + adv, where
o is a hyperparameter. Then we assign Ax = Dv and x,,.,, = x + Ax. Finally we recompute 7.
To fit into the least-squares framework (3.1), we introduce a new variable # € R. To minimize the

infinity norm of v 4+ §v, we may solve
min{|u| : |v+ dv| < ul}.

Here, the constraint may be written as two separate linear inequality constraints. We must also include
8v and ¥ in the optimization variable. We will write

IS
I

>

R

We can now specify the required matrices in (3.1). Since the target function is |u|, we use C; = CP] =

[1,0, . ,O] and k| = k?] := 0. There are five inequality constraints. Two are v — ul < —v and
—6&v—ul < vcoming from the infinity norm optimization. A third inequality constraint is y € ., which
we may write as (I — G)y < 0. Finally, to keep the pixel values of the perturbed image within the unit

interval we require
0 oD < 1— X0 .
0 —aD|™ = | Xpew

Combining these five constraints we obtain

-1 0 1
-1 0 -1
CG=Cc¥=01-G 0
2 =0y =)
0 0 aD
0 0 —aD
and
—V
%
=k = 0
1_xnew
X

There is also an equality constraint given by y—.<7ZD§v =
3
and ky = kg = Vnew-
This leads to Algorithm 3, which is summarized in the displayed pseudocode.

Thisresultsin C3 = Cgs] = [O 1 —,Q{D]

ynew'

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

ADVERSARIAL INK 183

Algorithm 3 Iterative componentwise attack, returning a perturbed image

1: procedure ATTACK(F, x, ¢, o, num, f)
2 out < F(x)
3 v<20
4: Ax <0
5: newX < x
6 D <« Diagonal(f)
7 for i = 1 to num do
8 jac < Jacobian(F, newX)
9: pi < Pseudolnverse(jac)
10: con < Constraints(jac, v, out, D, c)
11: obj < Objective(Ax)
12: 7 < OptimizationVariable
13: prob <— Minimize(z, obj, con)
14 Solve(prob)
15: 8v <« z.wvalue.dv
16: Vv<—v+a-dv
17: Ax < Dv
18: newX < x+«a - Ax
19: out < F(newX)
20: end for
21: return Scale(F, x, Ax, c)

22: end procedure

One issue with Algorithm 3 is that the problem (4.2) encourages all components of v to achieve the
maximum ||v|| .. As we will see in section 4, this may lead to perturbations that are very noticeable. We
therefore consider an alternative version where (4.2) is changed to

min{||Dv||, : &/Dv =y — y}. 4.3)

Because Ax = Dv, we retain the masking effect where zero values in the tolerance vector f force
the corresponding pixels to remain unperturbed. We found that minimizing | Dv||, rather than [|v||
produced perturbations that appeared less obvious. We will refer to this version as Algorithm 4. It differs
from Algorithm 3 only in that C}'! is changed to [0,0, D] and k}’! is changed to —Dv.

5. Computational results

We implemented the algorithms in Python using PyTorch Paszke et al. (2019) and tested them in
a deep learning setting. For the constrained least-squares optimization, we used the Splitting Conic
Solver (O’Donoghue et al., 2016) from the CVXPY Python package (Diamond & Boyd, 2016; Agrawal
et al., 2018). To evaluate the Jacobian of the classification map, we used the PyTorch function
torch.autograd.functional.jacobian, which implements an efficient backpropagation process.

We tested on the MNIST dataset of handwritten digits (LeCun & Cortes, 2010). All images are 28 x28
pixels in greyscale. They have a black background, corresponding to a pixel value of zero, with white
writing. Hence, choosing a tolerance vector of f = x in Algorithms 3 and 4 causes the background to

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

184 L. BEERENS AND D. J. HIGHAM

= —
S 0.300 Aloz
2 Alg3
ooy | . 0 e Alg4
5 0.275 9
£
8 0.250
o
°
£ 0225
£
5 0.200
=
[i
So0a7s e
2
g k
2 0.150
0 20 40 60 80 100

Iterations

FiG. 2. Performance per iteration for Algorithms 2—4.

remain unperturbed. After applying the algorithms, we display results in the reverse greyscale, so that
the background appears white and the ‘ink’ appears grey—black, which we believe is a more realistic
view. This dataset consists of 60,000 training images and 10,000 testing images. Following Beuzeville
et al. (2021), the network that we use has 784 input nodes and a hidden layer of 100 nodes followed
by the output layer of 10 nodes. The layers are fully connected and the first one has a tanh activation
function, chosen because it is differentiable. We consider different activation functions and network
architectures in subsection 5.5. All network training is done using the Adam optimizer and a cross-
entropy loss function. The accuracy of the trained network on the test data is 97%.

5.1 [Iterations

First we investigate how Algorithms 2—4 perform with respect to the iteration count. We use o = 0.1.
After each iteration, using the Scale function in (3.8) we take the smallest successful multiple of
the direction produced by the algorithm and record the resulting normwise perturbation size, € =
| Ax|l5/llx]l,. In other words, we record the € arising if we terminate at that iteration. Figure 2 shows
results for a single image. The horizontal axis gives the iteration count and the vertical axis gives €.
The curves, which are similar for other images, indicate that we should use about 30 iterations to get
optimal performance; hence we use this value in subsequent experiments. We also note that Algorithm
1 behaves in a similar way to the first step of Algorithm 2, and hence Figure 2 shows that iterating
can give a significant benefit. Algorithm 3 produces larger relative two-norm perturbations that do not
decrease monotonically with respect to the iteration count. This is to be expected, because the algorithm
is optimizing ||v|| .

Next we show examples of the three iterative algorithms successfully attacking images. We chose
the first image from each digit class, ‘0°,°1°,2’,...,‘9’, arising in the training set and systematically
targeted each incorrect class. Full results can be seen in the Appendix. In Figure 3, we have picked out
one example for attacked images in classes ‘5’ to ‘9’. In each case, we show the perturbed, incorrectly
classified, images from Algorithms 2—4. We also show the size of || Ax||,/||x||,. We see that Algorithm
2 perturbs the background whereas, by construction, Algorithms 3 and 4 do not. This leads to the
background looking dirty or smudgy using Algorithm 2. Whenever Algorithm 3 decides it can perturb
the pixels by some relative amount, due to the use of the infinity-norm it does not matter how many
pixels are perturbed by that relative amount. This leads to large areas where the black is turned to grey,
which is quite noticeable. Algorithm 4 addresses this problem by optimising for the 2-norm, as shown
in (4.3). Overall, we see that Algorithm 4 produces images that may have arisen naturally from a slight
inconsistency in the ink delivery or the pen pressure.

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

ADVERSARIAL INK 185

0.136 0.417

o
=
w
~
&
-b 5
O
~

0.101 0.336 0.262

2l
%

Fic. 3. Comparison of successful attacks created using Algorithms 2—4, from left to right, with the relative 2-norm of the
perturbation indicated. Here the original — target examples are 5 — 9,6 — 1,7 — 5,8 — 7 and 9 — 3. Examples for
digits 0-9 and all possible choices of target are shown in the Appendix.

In Figure 4, we return to the comparison of perturbation sizes. Here the horizontal axis shows the
relative 2-norm of the perturbation. The vertical axis shows the proportion of attacks requiring at least
that relative norm of the perturbation to produce the desired classification. So a lower curve indicates
better performance. The figure is based on 100 images, resulting in 900 attacks. Algorithm 2 performs
best according to this measure. The iterations are seen to significantly improve the performance of these
targeted attacks—recall that Algorithm 1 does not iterate. Algorithm 3 performs quite poorly, as is to
be expected, since it does not directly control the 2-norm. Algorithm 4, which accounts for the 2-norm
while restricting to componentwise attacks shows better performance in this regard.

5.2 Untargeted attacks

We now consider the scenario where it is sufficient for an attack to change the classification to any new
class. We deal with this by targeting all new classes individually and picking the smallest perturbation.
We also compare the algorithms with existing approaches designed for this untargeted case. In Figure 5,
we compare Algorithms 2 and 4 with DeepFool (Moosavi-Dezfooli et al., 2016) and the £, version of

G20z e 6z uo Jasn 1y JO 969]100 uBinquipg Ad 8/G602./S . 1L/L/68/SI0IMEJeWEW/WOoo"dNo"oIWaPEDE//:SARY WOl papeojumod

186 L. BEERENS AND D. J. HIGHAM

=== algl
— alg2
0.8 = = alg3
..... alg4
So6
£
5]
Q
S0.4 \
a \:"
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Relative normwise perturbation

Fic. 4. Comparison between relative 2-norm performances of targeted versions of Algorithms 1-4. The horizontal axis is the
relative 2-norm of the perturbation. The vertical axis is the proportion of attacks requiring at least that relative norm of the
perturbation to produce the desired classification.

alg2
----- alg4
0.8 = GDIE
=== Deep Fool
c
50.6
=
S
Q
004
a.
0.2
a6 L
0.0 0.1 0.2 0.3 0.4 0.5

Relative normwise perturbation

Fic. 5. Comparison between the performances untargeted versions of of Algorithm 2, Algorithm 4, DeepFool and PGD. Axes as
for Figure 4.

projected gradient descent (PGD) (Madry et al., 2018), with the performance measure used for Figure 4.
The perturbations produced by DeepFool and PGD are scaled in the same manner as that described for
Algorithms 1-4. We see that Algorithm 2 gives the best results. We suggest that this slight improvement
over Deepfool and PGD arises from (a) the use of y as an ‘outer’ optimization variable and (b) the
use of an iterative procedure to improve the accuracy of the linearizations. These results confirm that
Algorithms 3 and 4 are building on a state-of-the-art methodology.

5.3 Best targets

Next, we look at the best targets for each class. To do this we attack 1000 images and save both the
original image class and the new class of the successful attack with smallest perturbation. We then record,
for each original class, the proportion of times that each possible new class arose as the best target.
Tables 1 and 2 show the best target proportions for Algorithms 2 and 4, respectively. Corresponding
results for Algorithms 1 and 3 are shown in the Appendix: results for Algorithm 1 are similar to those
for Algorithm 2, and results for Algorithm 3 are similar to those for Algorithm 4. The rows represent
the classes of images that we perturb, and the columns represent the target classes. So, for example,
in Table 1, we see that when images of the digit ‘0’ were attacked with Algorithm 2, in 38% of the
cases the smallest perturbation arose when the class was changed to ‘5’. The highest proportion for
each original class is highlighted in bold. When comparing the results in Tables 1 and 2, we should

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

ADVERSARIAL INK 187

TaBLE 1 Table of best target proportion for attacks made by Algorithm 2. The rows are the original
classes and the columns are the target classes

Alg. 2: Best target class proportion

0 1 2 3 4 5 6 7 8 9

0 0.00 0.00 0.16 0.05 0.00 0.38 0.14 0.13 0.00 0.15
1 0.00 0.00 0.04 0.42 0.00 0.10 0.07 0.28 0.08 0.02
2 0.03 0.03 0.00 0.57 0.00 0.02 0.07 0.09 0.19 0.01
3 0.01 0.02 0.19 0.00 0.00 0.57 0.01 0.04 0.15 0.02
4 0.01 0.00 0.05 0.01 0.00 0.00 0.04 0.15 0.10 0.64
5 0.01 0.00 0.02 0.53 0.02 0.00 0.10 0.13 0.13 0.05
6 0.02 0.01 0.22 0.01 0.02 0.52 0.00 0.09 0.02 0.07
7 0.01 0.02 0.4 0.31 0.01 0.00 0.00 0.00 0.02 0.24
8 0.01 0.01 0.31 0.4 0.01 0.09 0.02 0.08 0.00 0.06
9

000 001 002 009 023 009 000 042 015 000

keep in mind that Algorithm 2 may take away ink from the digits and add ink to the background,
whereas Algorithm 4 may only take away ink. For the digit class ‘3’ it is notable that Algorithm 2
favours the target class ‘5’, with a proportion of 0.57, and the other significant target classes are 2’
and ‘8. Algorithm 4 is less likely to perturb from class “3” into class ‘5’ (the proportion is 0.48) and
target class ‘7’ has become more frequent (0.10 compared with 0.04 in Algorithm 2). It is intuitively
reasonable that convincingly changing a 3 into a 5 or a 2 benefits from both addition and removal of
ink and changing a 3 into a 8 benefits from addition alone, both of which are natural for Algorithm
2. Changing 3 into a 7 is more of a subtractive process, which suits Algorithm 4. We also see that
for class ‘1°, Algorithm 2 favours target classes ‘3’ and ‘7°, which are likely to require addition of
ink, whereas Algorithm 4 has a fairly even spread of proportions—there is no obvious way to remove
ink from a ‘1’ in order to approximate a different digit. Perhaps less obvious are the results for class
‘9’. Here, Algorithm 2 prefers the target class “7°, with proportion 0.42, whereas Algorithm 4 prefers
class ‘4’, with proportion 0.63 and has class ‘7 in second place with proportion 0.24. We believe
that this effect is explained by the fact that there are two widely used versions of the written digit
4. The version illustrated in the Appendix is close to the digit 9 with the upper portion of the loop
removed.

5.4 Condition numbers

The backward error concept discussed in Section 2 is traditionally accompanied by a corresponding
concept of conditioning (or well-posedness). A condition number measures the worst-case sensitivity of
the output to small changes in the input and, by construction, the forward error is approximately bounded
by the product of a condition number and a backward error measure (Higham & Higham, 1992; Higham,
2002; Golub & Van Loan, 2013). It follows that when we use a neural network to classify an image, we
may also compute an appropriate condition number estimate in order to get a feel for the sensitivity of
the output to worst-case perturbations in the input, and hence to adversarial attacks. We note, however,
that in the experiments reported so far, realistic attacks were very likely to exist for any input, and hence
we view the condition number as a possible means to quantify the relative sensitivity.

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

188 L. BEERENS AND D. J. HIGHAM

TaBLE 2 Table of best target proportion for attacks made by Algorithm 4. The rows are the original
classes and the columns are the target classes

Alg. 4: Best target class proportion
0 1 2 3 4 5 6 7 8 9

0.00 0.00 0.08 0.01 0.00 0.49 0.16 0.11 0.01 0.13
0.02 0.00 0.19 0.18 0.00 0.06 0.12 0.15 0.19 0.08
0.06 0.05 0.00 0.52 0.03 0.02 0.09 0.10 0.13 0.00
0.03 0.02 0.14 0.00 0.05 0.48 0.02 0.10 0.12 0.04
0.03 0.01 0.08 0.03 0.00 0.03 0.02 0.20 0.25 0.36
0.06 0.01 0.01 04 0.06 0.00 0.07 0.06 0.26 0.08
0.06 0.02 0.13 0.00 0.29 0.39 0.00 0.02 0.07 0.01
0.01 0.03 0.20 0.38 0.10 0.02 0.00 0.00 0.03 0.24
0.03 0.01 0.14 0.28 0.09 0.24 0.03 0.06 0.00 0.11
0.00 0.01 0.00 0.02 0.63 0.02 0.00 0.24 0.08 0.00

O 0TI ANN AW —=O

In the normwise case, if € = || Ax||,/||x]l, is small then

IF() — Fxe+ Aol Il7Axlly ||~Q7||2|IIIXI|2€ — (e
IF) IF@I, = IF@I, B

Here, 1, (x) may be viewed as a relative normwise condition number.
Similarly, under the constraint |Ax| < €f, where we recall that f is a nonnegative tolerance vector,
we have

IFC) = Fx+ A9l 194X - I<71f 1l
I1F)l oo IF® oo = I1F@) o

€ =t oo (E;

SO [, (x¥) may be viewed as a relative componentwise condition number.

For the normwise case, in Figure 6, we use a collection of 1000 test images that are classified
correctly. For each image we compute the best attack from Algorithm 2. The figure scatter plots the
attack perturbation size against the normwise condition number, ,. We see that a larger value of u,
generally corresponds, albeit weakly, to a smaller perturbation. The correlation coefficient is —0.52.

Figure 7 shows corresponding results for the componentwise condition number 1, with attacks
from Algorithms 3 and 4. We compare this condition number with the performances corresponding
to these two attacks: the relative infinity norm and relative 2-norm respectively. Here, the correlation
coefficients are —0.33 and —0.34, respectively, so the condition number is less useful in this case. A
possible explanation for this difference is that perturbations are larger, and hence the linearizations are
less accurate.

5.5 Architecture

So far we used a two layer network with a tanh activation function. Let us call this Netl. We now
consider two further networks. Net2 denotes the network arising when tanh in Netl is replaced with a
rectified linear unit (ReLu). We note that ReLu is not differentiable at the origin; this did not cause any

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

ADVERSARIAL INK 189

o ©
= -
wv ~
o w

©
i
N
sy

0.075

Relative normwise perturbation
o o o
o o =
N w1 o
w o o

0.000

5 10 15
Normwisewise condition number

FiG. 6. Scatter plot of relative normwise perturbation for Algorithm 2 against normwise condition number p, for 1000 images.

c
S10 [0.6
g 5 d
5 s 205
4,;_') 0.8 o« T 2

5 5
[oN
3 g%
20.6
é 203
2 £

0.4
3 S 0.2
E c
8 0.2 g
e B0
& &
E 0.0 0.0
0.25 050 0.75 1.00 1.25 1.50 0.25 050 0.75 1.00 1.25 1.50
Componentwise condition number Componentwise condition number

(a) Algorithm 3 (b) Algorithm 4

Fic. 7. Scatter plot of relative componentwise perturbation and relative 2-norm respectively from Algorithms 3 and 4 against
componentwise condition number 1o for 1000 images.

issues in our tests. After training, Net2 has an accuracy of 97%. Net3 is a convolutional neural network
(CNN) (Goodfellow et al., 2016) with two convolutional layers that include ReLu and max pool. The first
convolutional layer uses Conv2d(1, 16,5, 1,2) in PyTorch. The parameters correspond to the number of
input channels, number of output channels, the kernel size, the stride and the padding, respectively. This
is followed by ReLu and MaxPool with stride 2. The second layer uses Conv2d(16,32,5,1,2) and is
again followed by ReLu and Maxpool with stride 2. The final layer is a fully connected layer leading to
an output in R!0. Net3 gave an accuracy of 99%.

Figure 8 compares the performance of Algorithms 2 and 4 on these three networks in attacking 100
images without target, using the same measure as Figure 4. We see that for both algorithms changing to a
ReLu has little effect. Algorithm 2 finds it more difficult to attack Net3 than Net1 or Net2. For Algorithm
4, this difference appears only in the tail of the graph; so in moving to a more complex architecture, most
images remain just as vulnerable to componentwise attack.

G20z e 6z uo Jasn 1y JO 969]100 uBinquipg Ad 8/G602./S . 1L/L/68/SI0IMEJeWEW/WOoo"dNo"oIWaPEDE//:SARY WOl papeojumod

190 L. BEERENS AND D. J. HIGHAM

----- Net 1 alg2

Net 2 alg2
= Net 3 alg2
=== Net 1 alg4
=== Net 2 alg4
= = Net 3 alg4

Proportion
=} o
» o

o
]

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative normwise error

FiG. 8. Comparison between the normwise performances of Algorithms 2 and 4 for different networks. Axes as for Figure 4.

5.6 Black box attacks

In a black box setting, the attacker does not have access to the inner workings of the network, and
hence cannot directly evaluate the Jacobian. However, with only input and output information it is, of
course, possible to approximate the Jacobian using finite differences. We tested the simple Jacobian
approximation

[F(x+h~e1)—F(x) . F(x+h‘en)—F(x)i|
h h ’

where e; are the standard unit vectors and & > 0 is a small parameter; we used h = 103, Measuring
the performance of Algorithms 2 and 4 on Netl and Net3, we found that results with the exact and
approximate Jacobian were essentially identical; see the Appendix. We conclude that these attacks work
equally well in a black box setting.

6. Conclusions

Our aim in this work was to show that it is feasible to construct componentwise adversarial attacks on
image classification systems—here each pixel is perturbed relative to a specified tolerance. In particular
this allows us to leave certain pixels unperturbed. We developed algorithms that build on the normwise
approach in Beuzeville e al. (2021) and make use of the concept of componentwise backward error
from Higham & Higham (1992). Compared with state-of-the-art normwise algorithms, when this new
approach is applied to greyscale images with a well-defined background it has the advantage that the
background can be left unchanged. In the context of physical writing or printing, such ‘adversarial ink’
is consistent with a blotchy pen, printer or photocopier.

We illustrated the performance of componentwise attacks on three neural networks and in a black
box setting. We also showed that the corresponding concept of componentwise condition number has
some relevance in signalling vulnerability to attack.

Directions for future work include

e Testing the componentwise algorithms on further data sets, notably those involving monochrome
images of handwritten or printed text,

* Testing the componentwise algorithms on other image classification tools (note that the algorithms
described here do not rely on any specific form for the classification map),

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

ADVERSARIAL INK 191

e The use of object recognition (Srivastava et al., 2021) to identify background pixels, so that the
choice of componentwise tolerance vector can be automated in complex images,

e The construction of universal componentwise attacks, where the same perturbation changes the
classification of many images that have shared ‘non-background’ locations,

e The construction of adversarial ink attacks on signatures, postcodes, dates, cheques or entire
documents.

Funding

MAC-MIGS Centre for Doctoral Training under EPSRC (grant EP/S023291/1 to L.B.); EPSRC (grants
EP/P020720/1 and EP/V046527/1 to D.J.H.). We thank Oliver Sutton for suggesting the phrase
adversarial ink, and an anonymous referee for helpful feedback.

Data Availability

Code for the experiments presented here is available at https://github.com/LucasBeerens/adversarial-ink-
componentwise-attacks.

REFERENCES

AGRAWAL, A., VERSCHUEREN, R., DiamonD, S. & Boyp, S. (2018) A rewriting system for convex optimization
problems. J. Control Decision, 5, 42—60.

AKHTAR, N. & MiaN, A. (2018) Threat of adversarial attacks on deep learning in computer vision: a survey. [EEE
Access, 6, 14410-14430.

Bastounis, A., HANseN, A. C. & VLACIC, V. (2021) The mathematics of adversarial attacks in Al-why deep learning
is unstable despite the existence of stable neural networks. arXiv:2109.06098 [cs.LG].

BEUZEVILLE, T., BOUDIER, P., BUTTARI, A., GRATTON, S., MARY, T. & PrALET, S. (2021) Adversarial attacks via backward
error analysis. hal-03296180, version 3.

CorLEss, R. M. & FiLLioN, N. (2013) A Graduate Introduction to Numerical Methods: From the Viewpoint of
Backward Error Analysis. Berlin: Springer.

Diamonp, S. & Boyp, S. (2016) CVXPY: a python-embedded modeling language for convex optimization. Journal
of Machine Learning Research, 17, 1-5.

Fawzi, A., Fawzi, O. & Frossarp, P. (2018) Analysis of classifiers’ robustness to adversarial perturbations. Machine
Learning, 107, 481-508.

GoLus, G. H. & Van Loan, C. F. (2013) Matrix Computations, 4th edn. The Johns Hopkins University Press.

GoopreLLow 1. J., SHLENs J., and SzeGepy C. (2015) Explaining and harnessing adversarial examples, 3rd
International Conference on Learning Representations, San Diego, CA, Bencio Y. and LECuN Y., eds.

GooDFELLOW, 1., BENGIO, Y. & COURVILLE, A. (2016) Deep learning, Adaptive computation and machine learning.
Boston: The MIT Press.

GoopreELLOW, I. J., McDaNIEL, P. D. & Papernot, N. (2018) Making machine learning robust against adversarial
inputs. Commun. ACM, 61, 56—66.

Harrison, D., Burkes, T. M. & SEIGER, D. P. (2009) Handwriting examination: meeting the challenges of science
and the law. Forensic Sci. Commun., 11.

Hicuam, N. J. (2002) Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied
Mathematics, 2nd edn. Philadelphia, PA, USA.

HicHawm, D. J. & HicHam, N. J. (1992) Backward error and condition of structured linear systems. SIAM J. Matrix
Anal. Appl., 13, 162-175.

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

192 L. BEERENS AND D. J. HIGHAM

Huger, R. A. & Heaprick, A. M. (1999) Handwriting Identification: Facts and Fundamentals. Boca Raton, FA:
CRC Press.

LeCun, Y. & Cortes, C. (2010) MNIST handwritten digit database.

MaDRY A., MakELOV A., ScHMIDT L., Tsipras D., and Viapu A. (2018) Towards deep learning models resistant
to adversarial attacks, 6th International Conference on Learning Representations, Vancouver, BC, OpenRe-
view.net.

Marcus, G. (2018) Deep learning: a critical appraisal. arXiv:1801.00631 [cs.Al].

Moosavi-DezrooLi S., Fawzi A., and FrossarD P. (2016) Deepfool: A simple and accurate method to fool deep neural
networks, 2016 IEEE Conference on Computer Vision and Pattern Recognition, NV, USA, IEEE Computer
Society, pp. 2574-2582.

O’DoNOGHUE, B., CHu, E., ParikH, N. & Boyp, S. (2016) Conic optimization via operator splitting and homogeneous
self-dual embedding. J. Optim. Theory Appl., 169, 1042-1068.

PaperNOT N., McDANIEL P. D., GoobreLLow 1. J., JHA S., CELIK Z. B., and Swami A. (2017) Practical black-box attacks
against machine learning, Proceedings of the ACM Conference on Computer and Communications Security,
Abu Dhabi, UAE, Karri R., SINaNoGLU O., SADEGHI A., and Y1 X., eds, ACM, pp. 506-519.

Paszke A., Gross S., Massa F., LERER A., BRADBURY J., CHANAN G., KiLLEEN T., LIN Z., GIMELSHEIN N., ANTIGA L.,
DEesMaIsoN A., Kopr A., YaNG E., DEVITO Z., RAISON M., TEIANI A., CHILAMKURTHY S., STEINER B., FANG L., Bar
J., and CHINTALA S. (2019) PyTorch: an imperative style, high-performance deep learning library, Advances in
Neural Information Processing Systems 32, Curran Associates, Inc., pp. 8024-8035.

SHAraHI A., Huang W., Stuper C., Feizi S., and GoLpsteIN T. (2019) Are adversarial examples inevitable?,
International Conference on Learning Representations, New Orleans, USA.

SRIVASTAVA, S., DIVEKAR, A. V., ANILKUMAR, C., NaIk, [., KuLkarNi, V. & PartaBiRaMAN, V. (2021) Comparative
analysis of deep learning image detection algorithms. J. Big Data, 8.

SzeGEDY, C., ZAREMBA, W., SUTSKEVER, ., BRUNA, J., ERHAN, D., GooprELLow, 1. & FErGus, R. (2013) Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199.

Tyukin L. Y., Hiciam D. J., and GorBaN A. N., On adversarial examples and stealth attacks in artificial intelligence
systems, 2020 International Joint Conference on Neural Networks, Elasgow: IEEE, 2020, pp. 1-6.

Tyukin, 1. Y., Higham, D. J., Bastounis, A., WOLDEGEORGIS, E. & GorBan, A. N. (2021) The feasibility and
inevitability of stealth attacks. arXiv:2106.13997.

WAaNG, G., WEL Y. & Q140, S. (2018) Generalized Inverses: Theory and Computations. Developments in Mathemat-
ics, 53, 1st edn. 2018. Springer Singapore.

A. Appendix

In Figures A1-A3, we expand on Figure 3 by showing successful attacks produced by Algorithms 2—4,
and the relative 2-norm of the perturbation, on an example from each digit class and for all target classes.
Here, each image attacked is the first of its class arising in the data set.

Tables A1 and A2 are the analogues of Tables 1 and 2 corresponding to Algorithms 1 and 3,
respectively.

Figure A4 shows the performance measures (as described for Figure 4) for exact Jacobian and finite-
difference (black box) versions of Algorithms 2 and 4 on Netl and Net3.

G20z AeN 6z uo Jesn py JO 969|100 ybinquipg Aq 8/G602./G.1L/1/68/2I01EABWEWI/WOD dNO"DIWBPEDE//:SARY WO papeojumoq

ADVERSARIAL INK 193

TaBLE Al Table of best target proportion for attacks made by Algorithm 1. The rows are the original
classes and the columns are the target classes

Alg. 1: Best target class proportion
0 1 2 3 4 5 6 7 8 9

0.00 0.00 0.17 0.05 0.00 0.38 0.14 0.11 0.00 0.15
0.02 0.00 0.04 04 0.00 0.08 0.06 0.29 0.08 0.02
0.03 0.03 0.00 0.51 0.00 0.02 0.09 0.09 0.22 0.01
0.02 0.02 0.22 0.00 0.00 0.54 0.01 0.04 0.13 0.03
0.03 0.00 0.05 0.01 0.00 0.00 0.04 0.15 0.09 0.64
0.02 0.00 0.02 0.49 0.02 0.00 0.13 0.13 0.15 0.03
0.04 0.01 0.20 0.01 0.02 0.52 0.00 0.07 0.01 0.12
0.01 0.02 0.41 0.33 0.02 0.00 0.00 0.00 0.01 0.21
0.02 0.01 0.32 0.37 0.01 0.09 0.02 0.08 0.00 0.07
0.00 0.01 0.02 0.10 0.23 0.10 0.00 041 0.14 0.00

OO0 JIANWN B WN—O

TaBLE A2 Table of best target proportion for attacks made by Algorithm 3. The rows are the original
classes and the columns are the target classes

Alg. 3: Best target class proportion
0 1 2 3 4 5 6 7 8 9

0.00 0.00 0.06 0.02 0.00 0.49 0.18 0.10 0.01 0.13
0.02 0.00 0.14 0.21 0.00 0.08 0.13 0.10 0.18 0.15
0.04 0.07 0.00 0.47 0.03 0.02 0.06 0.17 0.14 0.00
0.03 0.05 0.12 0.00 0.08 0.47 0.02 0.09 0.09 0.05
0.03 0.01 0.05 0.05 0.00 0.04 0.01 0.20 0.37 0.25
0.05 0.02 0.01 0.38 0.08 0.00 0.05 0.06 0.20 0.15
0.06 0.02 0.13 0.01 0.27 0.35 0.00 0.02 0.11 0.02
0.01 0.02 0.18 0.36 0.07 0.07 0.00 0.00 0.05 0.25
0.02 0.01 0.14 0.23 0.11 0.25 0.03 0.06 0.00 0.14
0.00 0.00 0.00 0.05 0.59 0.05 0.00 0.23 0.08 0.00

OO0 INWN P WN—O

G20z e 6z uo Jasn 1y JO 969]100 uBinquipg Ad 8/G602./S . 1L/L/68/SI0IMEJeWEW/WOoo"dNo"oIWaPEDE//:SARY WOl papeojumod

194 L. BEERENS AND D. J. HIGHAM

Original 0.214 0.127 0.207 0.108

o
o
o

0.585 0.341

L 0

0.522 0.282

Original 0.

o0
Ay
1 8

Original

o

.237 Original 0.11 0.132 0.172

[/

0.556 Original 0.446 0.52 0.687
) / II" ll" :’
‘ i i [
0.485 Original 0.358 0.427 0.574
Y T
i i
0.163 0.143 Original 0.106 0.405 0.1 0.149 0387 0.191 0.297
0.43 0.33 Original 0.311 0.72 0.327 0.368 0.719 0.449 0.756
2L 27 L Lt 77
. . .

0.317 0.285 Original 0.24 0.687 0.259 0.746 0.355 0.729
2 222722 % 27
: = - "‘h- ':: u TS
0.134 0.121 0.085 Original 0.167 0.075 0.092 0.163 0.06 0.137

0.29 0.297 0.235 Original 0.308 0.224 0.231 0.33 0.146 0.336

S NN Y

0.241 0.171 Original 0.237 0.159 0.176 0.261 0.102 0.245

DVBBVDBIDBDDBDVRBRAD

Fic. A1. Row one shows the results of adversarial attacks with Algorithm 2 on an image from class 0. The original image is
shown and then, from left to right, we have targets 1,2,3,...,9. The numbers above the images indicate the relative 2-norm of the
perturbation. Rows two and three show this information for Algorithms 3 and 4, respectively. This pattern then repeats for images
from classes 1-3.

G20z e 6z uo Jasn 1y JO 969]100 uBinquipg Ad 8/G602./S . 1L/L/68/SI0IMEJeWEW/WOoo"dNo"oIWaPEDE//:SARY WOl papeojumod

195

ADVERSARIAL INK

44494444yyy
4444444

0.287

0.173

Downloaded from https://academic.oup.com/imamat/article/89/1/175/7209578 by Edinburgh College Of Art user on 29 May 2025

0.366
0.274
0.136

0.383 0.417
; 0.282 0.345
0.082

0.11
0.404
0.319
0.574

.
1
&
0.487

0.172

0.27
0.12
0.204
0.151
0.171
0.606
oy
&
0.534
=y

0.321

0.387
0.291
0.203
0.509
a
oats
0.124
0.362
0.288
Original

7232187717
Vi

1.0

Original
L Original
A“ | 7

0.493
0.176
LY
0.332
0.753
0.762

0.551
n.p-:
Original

Original

bllllllblbldb

Original

bolblblbblbbbib

0.259

Original

5 "‘.-lﬁ
Original .
0.077

Original

5555555555

Original
0.279
0.731

-
0.69

gy gy qy Yy

0.141

Original

0.239
0.161
0.087

0.46
0.394
0.066
0.267
0.189
0.099

7
777

Fic. A2. As in Figure Al, rows corresponds to Algorithms 2—4 in turn and columns indicate target class. In this case, images are

from classes 4-7.

0.363
0.312
0.528
Li‘
h—J
0.525
P
0.087
0.299
0.205
0.132
0.628
L]
&
0.531

0.455
b
0.339
0.191

0.723
0.685
|
0.482
0.389
0.345
0.73
L}
x
0.678
vy
’

i
£

f

0.145

blbllbllbblbbob

0.553
!
*u
v
0.443
0.18
0.561
-
™
¥
0.452
0.129
0.341
0.213
0.67
a4
0.563
|

196 L. BEERENS AND D. J. HIGHAM

0.181 0.273 0.009 0.105 0.164 0.101 Original

S PPE

0.381 0.597 0.03 0.358

&
& X & &F X
&

i

Original

o ©
N =
[1S)
© N

0.285 0.528 0.021 0.256

o
=5
ik
3
2
o
N
[
1 ~

o
HN
»
~
=4
HN
4>
w
o
=
N
[o)]

Original

B
B-

=]
]
©

Original

B

Original

P
B

5N &

Fic. A3. As in Figure A1, rows corresponds to Algorithms 2—4 in turn and columns indicate target class. In this case images are
from classes 8 and 9.

10 —— Net1lal
g2
q.i"\\“ === Net 1 alg2 numerical
0.8 _ ----- Net 1 alg4
\ ‘Q\ === Net 1 alg4 numerical
c N\ ===+ Net 3 alg2
506 \ \ B -
B "\ et 3 alg2 numerical
§. \‘ ‘\\\\ Net 3 alg4
\ . :
£ 0.4 \ N Net 3 alg4 numerical
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Relative normwise error

Fic. A4. Comparison between the normwise performances of white box and black box attacks for Algorithms 2 and 4 on three
different neural networks. Axes as for Figure 4.

G20z e 6z uo Jasn 1y JO 969]100 uBinquipg Ad 8/G602./S . 1L/L/68/SI0IMEJeWEW/WOoo"dNo"oIWaPEDE//:SARY WOl papeojumod

	 Adversarial ink: componentwise backward error attacks on deep learning
	 1.Motivation
	 2.Image classification and backward error
	 3.Normwise backward error attacks: algorithms 1 and 2
	 4.Componentwise backward error attacks: algorithms 3 and 4
	 5.Computational results
	 6.Conclusions
	 A.Appendix

