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ABSTRACT. Stochastic optimization methods have been hugely successful in
making large-scale optimization problems feasible when computing the full
gradient is computationally prohibitive. Using the theory of modified equa-
tions for numerical integrators, we propose a class of stochastic differential
equations that approximate the dynamics of general stochastic optimization
methods more closely than the original gradient flow. Analyzing a modified
stochastic differential equation can reveal qualitative insights about the as-
sociated optimization method. Here, we study mean-square stability of the
modified equation in the case of stochastic coordinate descent.

1. Introduction. The connection between optimization and numerical timestep-
ping has been exploited by several researchers, leading to new insights in both
fields; see, for example, [11, 12, 16, 26]. In this work, we focus on stochastic op-
timization algorithms and their connection with numerical methods for stochastic
ordinary differential equations (SDEs) by using a backward error, or modified equa-
tion, approach. Backward error analysis is a technique that was initially developed
to explain the behaviour of deterministic algorithms in polynomial root finding and
linear algebra [14, 30] as well as the long-time integration of Hamiltonian dynamics
[10, 25]. In the last few years there has been a revised interest in applications of
backward error analysis for studying stochastic algorithms, starting with the works
in [27, 32] for analysing integrators for SDEs with subsequent applications to the
analysis of stochastic optimization methods [19], as well as a range of phenomena in
machine learning [1, 21, 28]. Here, the aim is to derive a new SDE that accurately
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describes the dynamics of the timestepping method, and hence reveals qualitative
properties of the optimization method.
The main contributions of this work are

e Proposition 4.3: a modified SDE for a general class of stochastic optimization
iterations derived by following the framework introduced in [32] and general-
izing the results of [19].

e Theorem 4.8: conditions that guarantee mean-square stable convergence to
the minimizer for the stochastic coordinate descent case.

The rest of the paper is organized as follows. In Section 2 we introduce the
idea of modified equations for numerical integrators, in both the ODE and SDE
settings. We include examples of their application to deterministic Hamiltonian
dynamics, and to the Ornstein-Uhlenbeck process. In Section 3 we discuss the main
idea behind stochastic optimization methods and focus on two cases; stochastic
gradient descent and stochastic coordinate descent. Section 4 presents our main
results: a modified SDE for a general stochastic optimization iteration and mean-
square stability conditions in the case of stochastic coordinate descent. Finally, we
conclude in Section 5 with a brief discussion of possible avenues for future research.

2. Preliminaries.

2.1. Backward Error analysis and Ordinary Differential equations. Con-

sider a smooth ODE UX

E = (X)a X(O) =, (1)
where f : R? — R?. Suppose we apply a numerical method with stepsize h to
produce an approximation x,, &~ X (nh) at time T' = nh. The objective of backward

error analysis [3, 6, 8, 9, 10] in this setting is to find an ODE
X
dt

that is closer than (1) to the numerical approximation. Typically fh(X ) has an

expansion

fh(X)v X(O):JJ, (2)

Fn(X) = F(X) + hfu(X) + R f2(X) + -+, (3)
for some appropriately chosen functions f; that are determined by the numerical
method. We note that the ODE (2) depends on h and is often referred to as a
modified equation. Backward error analysis has proved to be a useful technique
since in many contexts the modified equation (2) is more amenable to analysis than
the underlying numerical method.

The main tool for finding the terms f; in (3) is the Taylor expansion. We denote
by ¢n(z) the true solution of (1) at time h starting from x and by p(z) the
corresponding numerical solution starting from x after one step of length h. We
know [15] that the local error for a numerical method of order p satisfies

() = Pn(z) = O(h"*).
Hence in order to find an ODE that approximates the numerical method more
closely we ask for

n(x) — vn(z) = O(W**),
where ¢j,(z) denotes the true solution of our new ODE after time h starting from ,

and s > 0. Increasing the value of s gives an ODE that approximates more closely
the dynamics of our numerical method. It may be argued that s = 1 is the most
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important case as it characterises the first non-zero term in (3), and hence, for small
h and finite times, captures the main deviation from the original ODE.

2.1.1. An application to Hamiltonian dynamics. We now discuss an example of
backward error analysis in the case of a Hamiltonian problem. What we describe
applies also to non-quadratic Hamiltonians; however, for the purpose of illustra-
tion, we present everything in the quadratic setting as this allows us to calculate
the exact solution of both the original and modified equations. We consider the
ODE

dp dgq
- — 4 -5 — D 4
Z=0 =P (4)
where p and ¢ are scalar. Here, the Hamiltonian function H(p,q) = ip? + 142
remains constant for all time. We will study the Euler method
Pn+1 = Pn + hn, gn+1 = Q4n — hpp, (5)
and the symplectic Euler method
dn+1 = 4n — hpn Pn+1 = Pn + hqn+1~ (6)

We will look at the finite time global error
[z
en(T) = — 7
n(T) [ q(T) an @
for T = nh. Here, and throughout, ||-|| denotes the Euclidean norm. As we can
see in Figure la, by plotting ep(T) versus h, both numerical methods are first

order'. Furthermore, we observe that the error of the symplectic Euler method is
much smaller than that of the standard Euler method. This is further illustrated
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(A) en(T) vs h

(B) en(T) vs h

FIGURE 1. (a) Finite time global error e, (T) versus h where
(p(T),q(T)) is the exact solution of (4). (b) Finite time global
error ey (T) versus h where (p(T),q(T)) is the exact solution of the
modified equation (8) in the case of Euler method and (9) in the
case of the symplectic Euler method.

in Figure 2 where we plot numerical trajectories given by the Euler and symplectic
Euler methods using a stepsize h = 0.0375 up to time T" = 15. We see that the
Euler method fails to reflect the conservative nature of the true solution, unlike the
symplectic Euler method.

IHere we have chosen T = 15,p(0) = 1, ¢(0) = 0.
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FIGURE 2. Comparison of the numerical solution using Euler and
symplectic Euler method for h = 0.0375 against the exact solution
of (4). Here we have taken T = 15.

A modified equation associated with the Euler method is

dp . h_ dg _ h_

% 4t =Pt 56 (8)
while a modified equation associated with the symplectic Euler method is

dp . h_ dg _ h_

P L E——P‘f’aqy (9)

see [8, 10, 25] for derivations. In Figure 1b we plot the global error e, (T) as a
function of the stepsize h, with the true solution based on (8) for the Euler method
and (9) for the symplectic Euler method. The results are consistent with what
is predicted by the theory since the numerical methods approximate the original
equation (4) to order 1 and their corresponding modified equation to order 2.

A closer look at (8) and (9) can shed some light on the discrepancy between the
two numerical solutions observed in Figure 2. Recall that in the original problem
(4) the Hamiltonian function H(p,q) = %p2 + %qQ is preserved. The rate of change
of H(p(t),G(t)) for the modified equation of the Euler method satisfies

dH 1

dt 2
implying that no matter how small the stepsize h is taken, over long periods of
integration time there will be exponential growth in the values of the Hamiltonian;
thus explaining the outward spiraling observed for the Euler method in Figure 2.
Repeating this calculation for the modified equation associated with the symplectic
Euler method we find a rate of change of H equal to zero; implying that up to order
h? symplectic Euler conserves the true Hamiltonian and explaining the very small
differences between the true solution and the symplectic Euler method observed in
Figures la and 2.

hH,
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This example gives an indication of the effectiveness of backward error analysis.
We note that a textbook Gronwall-based numerical analysis would not differenti-
ate between Euler and symplectic Euler, viewing them both as first-order methods.
However, the corresponding modified equations help us to understand their quali-
tative differences. We refer to [3, 6, 9, 10] for much more detail on the insights that
backward error analysis can provide.

2.2. Backward error analysis and Stochastic Differential equations. Con-
sider the SDE

dX = f(X)dt + g(X)dW, X(0) =, (10)

where f : R? s R% g : R*™ s R? z € R is the initial condition, and W () is
the standard m-dimensional Brownian motion. In addition consider the numerical
approximation of (10) by a one-step numerical integrator at time ¢ = nh of the form

Xn+1 = \I’(Xnyhvgn)a (11)

where h denotes the stepsize and &, are independent random vectors. In choosing
an appropriate method (11) to approximate (10), we must first decide how error is
to be measured. For the approximation of individual trajectories one is interested
in strong convergence, while for the approximation of the expectation of functionals
of the solution, one is interested in weak convergence [13, 17, 20].

Following on from the ODE case, the objective of backward error analysis is to
find an SDE of the form

dX = fu(X)dt + gn(X)dW (12)

that the numerical method (11) approximates more closely in a weak or strong
sense. While there has been some work on trying to specify f; and g, in the case of
strong convergence, the majority of the backward error analysis literature for SDEs
concentrates on weak convergence, and this is what we focus on here. Denote the
expectation of functionals ¢(-) of the solution of (10) after one step by

u(z, h) = E(o(X ()| X(0) = z) (13)
and the corresponding numerical one-step expectation by
Uz, h) = E(6(X1)|Xo = 2). (14)
If the numerical method is of weak order p [17, 27] then the local error satisfies
u(z,h) — Uz, h) = O(hPTh).

Hence in order to find an SDE of the form (12) that approximates the numerical
method more closely, we require

a(z,h) — U(z,h) = O(hPT#),

where @(z, h) denotes the one-step expectation of the modified SDE and s > 0. As
with ODEs, the most important value of s is s = 1, but, unlike the ODE setting,
there is not always a solution even for this value of s [32].
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2.2.1. First modified equation (the case s =1). As discussed above we may derive
modified equations for a stochastic numerical integrator by analyzing the one-step
weak local error. We will do this by using an expansion in terms of the stepsize h.
In particular, the following expansion holds for u(z, h)

2
u(x, h) = d(x) + hL + %£2¢+~-- (15)

where )
L:= f(z) - Vo+ iggT : VVo

is the generator of the Markov process associated with the solution of (10). Here
A : B denotes the Frobenius inner product between two matrices. For simplicity
of presentation, we have not specified conditions on f and g that allow (15) to
be made rigorous; these can be found in [29, 4]. We will assume in addition that
U(x,h) admits the expansion

U(Z‘,h) = (b(l‘) +h¢40¢+h2./41¢+"' s

where Ap, A; are partial differential operators that depend on higher order deriva-
tives of f and g. A necessary condition for the numerical integrator to be of weak
order 1 is for the weak local error to be of order 2, which implies Ay = £. We now
want to find an SDE that our numerical integrator approximates with weak order
2. Writing (12) as

dX = (f(X) + hfr(X)dt + (9(X) + hgy (X))daW (16)
and expanding @(z, h), it may be shown [32] that the condition
1 1
Li¢p= A0 — §£2¢, where L;:=f1 -V + 3 (ggf —l—glgT) : VV,

ensures that @(x,h) — U(z,h) = O(h?), which in turn implies that the weak error
between (16) and the numerical integrator is of order 2.

2.2.2. Application to Ornstein—Uhlenbeck process. We now discuss a specific ap-
plication of backward error analysis in the case of the one dimensional Ornstein—
Uhlenbeck process

dX = —yXdt + odW. (17)
We consider two different numerical methods: Euler—-Maruyama
Xnt1 = Xn —yh X, + U\/ﬁfnv (18)
and implicit Euler
Xn+1 = Xn - '7th+1 + O’\/Egn (19)

In both cases the &, are i.i.d. standard Gaussians. In Figure 3a we plot

en(T; ¢) = [E(¢(X(T))) = E(¢(Xn))l,

for T = nh and ¢(x) = 2. As we can see’. both numerical methods are first order
in the weak sense.
The associated first modified equations are
~h

- h N
dX:—(7+272>X+0<1+2) dw, (20)

2Here we have used T = 1,7 = 1,0 = 107! and X(0) = 10
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FIGURE 3. (a) Error ey (T, ¢) versus h, where X (t) is the exact
solution of (17) (b) Error e, (T, ¢) versus h, where (p(T), q(T)) is
the exact solution of (20) (Euler method) or (21) (symplectic Euler
method).

for Euler—-Maruyama and
- h ~ h
dX(7272>X+a<1+72>dW, (21)

for implicit Euler, [32]. In Figure 3b we plot again e (T, ¢) as a function of the
stepsize h, but to form the true solution we use (20) for the Euler-Maruyama method
and (21) for the implicit Euler method. The results are consistent with weak order
equal to 2.

3. Stochastic optimization algorithms. Given an objective function F : R% —
R, we now consider the unconstrained optimization problem

in F'(x).
)

A natural iteration in the case where F is differentiable is gradient descent
Tp41 = Ty, — WV F(zy,), (22)

which can be seen as an Euler discretization of the ODE

dX

— = —VF(X). (23)

In many applications of interest calculating the full gradient of F' can be com-
putationally prohibitive, so in (22) one replaces VF(z) with an unbiased esti-
mator VF (z,w), where w is an appropriately chosen random variable such that
E(VF(z,w)) = VF(z). In this case (22) becomes

Tpt1 = Tp — h@F(a:n, w). (24)

This framework covers a wide class of stochastic optimization algorithms [31]. We
will focus here on stochastic gradient descent and stochastic coordinate descent.
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3.1. Stochastic gradient descent. In most machine learning applications, the
function F' is of the additive form

F(X) ::NZE(X)’ (25)

where F, F; : RY+— R, i =1,..., N, with N representing, for example, the number
of training points in a supervised learning task. Hence calculating the gradient of
F involves a summation of N terms, which can be expensive when N is large. A
typical estimator of VI in this case is

A~ m m
F _m F, (2), 2%
FFe) = 3 VAL (26)
where w = (w1, -+ ,w,,) is a random subset of [N] = {1, -+, N} of size m, gener-

ated for example by sampling with or without replacement from [N]. Intuitively,
this approach replaces the full training set by a randomly chosen subset, using a dif-
ferent subset on each iteration. In this case it is not difficult to show that VF(z, w)
is indeed an unbiased estimator of VF. Using (26) we have the iteration

hm =
Tn+l = Tp — W ZIVFM7 (‘rn)a (27)

which is known as stochastic gradient descent [24]. To analyze the behaviour of
this algorithm, assumptions must be placed on the functions F;. In certain cases,
it is possible to show that with a suitable iteration-dependent diminishing step size
sequence, h = h,, the algorithm will converge to a minimizer of F [24, 2, 7, 31].
Nevertheless, it is also of interest to understand how the algorithm behaves for fixed
step size h, and there is indeed a wide range of literature investigating this question;
see, for example, [5, 18, 19].

3.2. Stochastic coordinate descent and variants. Another case of interest in
large-scale optimization arises when the dimension d is very large. Since
d d
oF
0z, > (ViF)e, (28)

i=1 i=1

VF =

where e; are the standard orthonormal vectors in R?, calculating the gradient in all
directions when d is large can be expensive. A widely used estimator of VF in this
case is

~ d &
F S w. F(2))ew., 29
VE(z,w) = — ;(V F(@))ew, (29)
where w = (wq, -+ ,w,,) is a random subset of [d] = {1, - ,d} of size m generated

for example by sampling with or without replacement from [d]. Intuitively, we
are using gradient information from a randomly chosen subset of the coordinate
directions. Using (29) we have the following iteration

d m
Tpy1l = T — Eh Zl(vwiF(:En))ewi
i=
which is known as stochastic coordinate descent [22].
In practice, one might have more information about the properties of the gradi-
ents in different directions. In particular, one can try to exploit the fact that the
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Lipschitz constant L; of V;F might be different for each ¢. In this scenario, we may
take m = 1 and use the stepsize h = 1/(dL,, ), giving rise to the following iteration
[23]:

L F

vawl (‘T")ewlv
where w; follows the uniform distribution on the set of integers [d]. It is also worth
mentioning that one can group different directions together in (28) and use a similar

estimator to (29) to give rise to what is known as block stochastic coordinate descent
[23].

Tntl = Tp —

4. Backward error analysis for stochastic optimization algorithms. Our
starting point in this section is the general form of stochastic optimization algo-
rithms (24). In particular, it is not difficult to show that if VF(x, w) is an unbiased
estimator of VF then (24) approximates weakly to first order the solution of the
ODE (23). More precisely, expectations of functionals of (24) would be O(h) away
from the corresponding functions of the deterministic solution of (23). Regarding
(24) as a time-stepping method, our objective is to find a modified equation that
it approximates weakly to second-order. We will do this by following the approach
first introduced in [32]. In particular, we will look for an SDE of the form

dX = (—VF(X) YRR (X)) dt + Vh Gy (X)dW (30)

and seek Fy and G1 such that the one-step expansion u(z,h) = E(¢(z1)|zo = )
is O(h?®) from @(z, h)= E(¢(X (h))|xog = ). Since the numerical solution (24) is a
first-order weak approximation to (23) it admits the following expansion®

Uz, h) = ¢(x) + hL(x) + h2Ard(x) + - - -

where

Lo —VF -V, (31a)

Arp = %E(@F(:p, W) F(z,w)T) : VVo. (31b)

Furthermore, similar to the case of backward error analysis for SDEs, we have that
Li¢= A1 — %c%, where £, = F, -V + %Gle :VV,

in order for the local weak error between the stochastic optimization scheme (24)
and the true solution of the modified equation to be O(h?®). By equating V¢ terms
we find that

1 1
Fy = —5(VVF)VEF = -V IVF|?.
By equating VV¢ terms we find that

Gy = \/EWF — VF)(VF - VF)T],

where /- denotes the principal matrix square root. We hence have the following
proposition.

3details of this calculation can be found in the Appendix.
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Proposition 4.1. Let x,, be the iterates from a stochastic optimization scheme of

the form (24), where E(@F(x,w)) = VF(z). In addition, consider the solution to

the equation
df(v( 4HVF H >dt+\ﬂ/ X)dw, (32)

S(X) = E[(VF(X,w) — VF(X))(VF(X,w) — VF(X)T]. (33)

where

Then .
E(6(X(T))) — E(¢(xn)) = O(h?).

Remark 1. Equation (32) coincides with the modified equation that appeared in
[19] in the case of stochastic gradient descent, i.e., when (26) holds.

4.1. Application to stochastic coordinate descent. We now study the prop-
erties of stochastic coordinate descent in the case where m =1 in (29). In this case,
the iteration becomes

Tn+4+l = Tp — dh (V’unF(xTL))ewl’
which can also be rewritten using the full gradient of F' in the following way
Tpt1 = Ty, — dh Uy, VF(xy,), (34)

where w; is a random variable following the uniform distribution on the set of
integers [d] and Uy, is a matrix that has with column given by e,, and is zero

elsewhere. We may then state a proposition about the form of the matrix E(X' ) in
(33).

Proposition 4.2. For the stochastic estimator (29) with m = 1, the matriz $(X)
in (33) may be written

d
X) = d > U(VFX)(VF(X)TUT - (VE(X))(VF(X))",

Proof. We have
S(X) = E[(VF(X,w) = VF(X))(VF(X,w) - VF(X))"]
= E[(V (5( w))(VF(X,w))"] = (VE(X)(VF(X))"
= I’E[U,, (VF(X, )))(VF(X w))TUy, ] = (VE(X))(VF(X))"

- dZ U/(VF(X)(VF(X)"UF ~ (VE(X)(VF(X))",

where in the last line we have used the fact the wq is random variable with a uniform
distribution on [d] (since the random index ¢ is chosen uniformly at random from
the set [d]). O

Having calculated an expression for 3(X) we may now study the mean square
stability properties of the modified equation (32). To proceed, we make the following
assumptions.

Assumption 4.3. There exists a constant L > 0 such that
IVF(z) = VF(y)ll < Lllz —yll. Vz.y € R"
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Assumption 4.4. There exists a constant > 0 such that
(¢ =y, VF(z) = VF(y)) 2 pllz — y|*, o,y € R%
Assumption 4.5. There exists a constant K > 0 such that
(& —y, VVF(2)VF(z) - VVF(y)VF(y)) > K|z — y|*, Vz,y € R%

Remark 2. Assumption 4.5 is equivalent to strong convexity and hence implies
that the function F'(x) has a unique minimizer. In addition, in the quadratic case
F(z) = %:cTA:c + bTz, where A is a positive definite matrix, Assumptions 4.4-4.6
are satisfied; we may take L = A\ 40, # = Amin and K = )\Qmin, where Amin, Amax
are the smallest and largest eigenvalues of the matrix A. Furthermore, the first
two assumptions are automatically satisfied if f € F,  the set of L-smooth and

u-strongly convex functions.
We then have the following theorem.
Theorem 4.6. Consider the modified SDE (32) for the stochastic estimator (29),

hence with ¥(X) given in Proposition 4.3. Under Assumptions 4.4—/.0, and assum-
ing that X (0) is deterministic, the solution X (t) of (32) satisfies

E[X(t) = X.|?] < e (| X(0) — X.||? (35)
with o = 2u + hK — h(d — 1)L? and X, is the unique minimizer of F. Hence, if
the stepsize satisfies h < 2u/((d — 1)L? — K) we have

. 2]
Jim E [ X(t) - X.[*] =0. (36)
Proof. Applying the Ito formula to the function ¢(X(t)) = || X(¢) — X,||?, where
X (t) solves (32) and X, is the minimizer of F, we get

AIX(0) = X = | = 20X() = X, VFX@) - 5 (X(0) - X, VIVFEO)),

+ hTr (2(X(1))) ] dt + My,
where M, is a Martingale. Since
VIVE(X)|? = 2VVF(X)VF(X),
Tr(2(X)) = (d-D|VFX)|?
we have
d|X(t) — X, || = | —2(X(t) — X,, VF(X(t)) +;VVF(X(t))VF(X(t))>

+ h(d—1) |[VF(z(t)]? } dt + M,.
Now using the fact that VF(X,) = 0 along with Assumptions 4.4-4.6, we obtain
d|X(t) - X.|* < —al X(t) = X.|* + My,

where o := 2u — h((d —1)L? - K) Taking an expectation and using the Gronwall
inequality then gives us the desired result. O



12 S. DI GIOVACCHINO, D. J. HIGHAM AND K. C. ZYGALAKIS

Remark 3. For d = 1, the iteration (34) becomes deterministic and corresponds
to gradient descent for a univariate function. In this case, Theorem 4.8 implies
deterministic convergence to the minimizer X, with rate —2u — hK. When h =0
this rate coincides with the rate of convergence that we expect for the gradient flow
(23) under Assumption 4.5. Furthermore, when h > 0 we see that the modified
equation bound for gradient descent convergences more rapidly than the original
gradient flow bound.

Remark 4. In Theorem 4.8, if one were to use a different stochastic gradient
method, the only change in (37) involves the term associated with the trace of
¥(X), which in turn directly relates to the covariance of the stochastic estimator
VF (X, w). In the case of the stochastic gradient method in particular, it would no
longer be true that Tr (X(X,)) = 0 or that this term could be directly bounded by a
function of VF(X), and hence one cannot conclude that the solution to the modified
equation (32) is mean-square stable. Nevertheless, under Assumptions 4.5-4.6 there
would be a period of time for which the dynamics of the modified equation would
be contractive before driven by the properties of %(X). This coincides precisely
with the behaviour of the stochastic gradient descent method discussed in [19].

Remark 5. In [19] a first-order modified equation was also proposed which does
not have the h-dependent term in the drift in (32). In this case the constant «
in Theorem 4.8 weakens to o = 2u — h(d — 1)L?, failing to capture the potential
benefits of the extra gradient term.

5. Discussion. Modified equations provide a useful approach for creating continuous-
time models that can be more straightforward to analyze than an underlying discrete
iteration. In this work, following on from [19], the modified equations take the form
of stepsize-dependent diffusion equations that accurately describe the dynamics of
a stochastic optimization algorithm.

There are many avenues for future work in this area. The general setting ana-
lyzed in Proposition 4.3 raises the possibility of comparing the modified equations
associated with a range of stochastic optimization algorithms in order to gain new
insights into their relative strengths and weaknesses. It would also be of interest
to derive and study modified equations that approximate stochastic optimization
algorithms to higher order. Further, incorporating a variable stepsize, or “adaptive
learning rate,” regime into the modified equation framework would greatly expand
the scope of these results.

Appendix A. Useful calculations. We now report on the calculations used to
achieve (31a)—(31b). Given xg = z, the single-step iteration of the stochastic
method (24) reads

z1 =2 — hVF(z,w).

For any test function ¢ : R? — R, Taylor expansion of ¢(z1) around z gives

¢(z1) = ¢(x) — hV¢(z) - VF(z,w) + %fﬂ@F(x, w) - VV () VF(z,w) + O (h%) .
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Using Einstein’s repeated index notation, we have

3

VF(z,w) - VV¢(x)VF(z,w) = VF(z,w); (vw(z)@F(gg,w))

y < <

F(z, w)iVqu(m)ij@F(% w);j
F(z,w);VF(z,w);VV6(x),i

~

= VF(z,w)VF(z,w)" : VV¢,

where we have used the symmetry of the matrix VV¢. Hence, we obtain
. 1 .~ ~ )
d(x1) = gb(x)thqS(x)-VF(z,w)+§h2VF(z,w)VF(x,w)T 1 VVo+0 (h?). (37)

By taking the expectation in (37) and considering that ]E(@F(ac7 w)) = VF(z), we
obtain the desired expansion for E(¢(z1)|zo = x) = u(z,h), with the differential
operators £ and A; given in (31a) and (31Db), respectively. We next derive an
expansion for 4(x,h) = ]E(gb(f((h))DN((O) = z), where X (h) is the solution to the
modified SDE (38) at time ¢ = h. For such a process, the generator is given by

~ 1
Eh:—VF~V+hF1~V+§hGlG1T:VV:£+h121 (38)
and a stochastic Taylor expansion gives
- ~ 1,55
iz, h) = 6(x) + hLag(x) + Sh*Lid(w) + - . (39)
Substituting (38) into (39) and neglecting higher order terms, we obtain
1
W(x,h) = ¢p(x) + h (L + hLy) o) + 5}12 (L+hLy) pla)+---
1
= () + hL(z) + h*Lro(w) + Sh*L2G() + -+ (40)

= ¢(z) + hLp(z) + h* (L1¢(z) + %ﬁ%(x)) 4o
From (40), we see that @(z,h) — U(xz, h) = O(h?) if

L16(a) = Arpla) — 3 L0(a).
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