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Abstract

Higher-order networks encode the many-body interactions existing in complex systems, such as
the brain, protein complexes, and social interactions. Simplicial complexes are higher-order
networks that allow a comprehensive investigation of the interplay between topology and
dynamics. However, simplicial complexes have the limitation that they only capture undirected
higher-order interactions while in real-world scenarios, often there is a need to introduce the
direction of simplices, extending the popular notion of direction of edges. On graphs and networks
the Magnetic Laplacian, a special case of connection Laplacian, is becoming a popular operator to
address edge directionality. Here we tackle the challenge of handling directionality in simplicial
complexes by formulating higher-order connection Laplacians taking into account the
configurations induced by the simplices’ directions. Specifically, we define all the connection
Laplacians of directed simplicial complexes of dimension two and we discuss the induced
higher-order diffusion dynamics by considering instructive synthetic examples of simplicial
complexes. The proposed higher-order diffusion processes can be adopted in real scenarios when
we want to consider higher-order diffusion displaying non-trivial frustration effects due to
conflicting directionalities of the incident simplices.

1. Introduction

Higher-order networks [1—-4] are attracting increasing attention as they have the ability to encode for the
interactions [5] among two or more nodes of complex systems and to display a rich interplay between
topology and dynamics [6, 7]. Higher-order networks include hypergraphs [8—12] as well as simplicial
complexes. Simplicial complexes are higher-order networks that are amenable to a comprehensive
higher-order topological treatment revealing the topology of data [13—18] leading to applications in
neuroscience [19-21], biology [22-25], sensor networks [26, 27], and computer graphics [28, 29]. Moreover,
the algebraic topology of simplicial complexes is drastically changing our understanding of the dynamical
state of simple and higher-order networks. Until recently the dynamical description of the network has taken
almost exclusively a node (vertex)-centric approach where only the nodes are associated with dynamical
variables. The investigation of the dynamical state of simplicial complexes has instead revealed that this is
only a special case and that in general each simplex (higher-order interaction) can be associated with a
dynamical variable leading to the notion of topological signals. This change of paradigm has lead to novel
understanding of topological synchronization [30-34] and higher-order diffusion dynamics [35-38] and to
novel signal processing [39-41] and topological neural network algorithms [42, 43]. In particular,
higher-order diffusion dynamics is among the most basic topological dynamical processes, describing
diffusion from n-dimensional simplices to n-dimensional simplices going either one dimension up or one
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dimension down. For instance, for n = 1 higher-order diffusion captures diffusion from edges to edges going
either through nodes or through triangles. The main operator driving higher-order diffusion is the Hodge
Laplacian [44-46] which encodes important information about the simplicial complex topology and is a key
player in understanding the interplay between topology and dynamics.

Simplicial complexes have an important limitation as they usually encode only for undirected
higher-order interactions. However, in applications, there is an increasing need to include also directional
simplicial complexes [21, 31, 47]. Additionally, from the perspective of algebraic topology, an important
challenge is related to the definition of the topology of directed simplicial complexes for which several
proposals have been recently suggested [48-50].

While the investigation of directionality on simplicial complexes is only in its infancy, on networks
considering directional edges is a much more widely explored topic. Among many different approaches,
recently it has been shown that the Magnetic Laplacian is a fundamental algebraic operator that captures the
directionalities of the edges while preserving a real and positive spectrum. The Magnetic Laplacian has its
roots in theoretical physics and gauge theory [51-54], but recently has been shown to provide a valuable tool
for node embeddings [55-59] and for the formulation of new neural network architectures [60]. The
Magnetic Laplacian is a Hermitian operator that acts on complex-valued variables associated with the nodes
and enforces a rotation of the complex phase at every edge. Thus the Magnetic Laplacian can be interpreted
as a Laplacian with complex-valued weights on its edges, which is one of the emerging topics in network
theory [59, 61, 62]. Interestingly, the Magnetic Laplacian can be seen as a generalization of the Connection
Laplacian [63—65] acting on a vector field defined on each node of the network and inducing a rotation of
the vector in correspondence of each edge.

In this work, we are motivated by the success of the Magnetic Laplacian in handling directed networks
and we formulate Higher-order Connection Laplacians for the study of directed simplicial complexes of
dimension two. The 1-order Connection Laplacians, for example, rotate complex valued 2-dimensional
vectors associated with edges when transported across a node or a triangle according to rules depending on
the relative directions of the simplicial complex. In particular, we show that in order to take into account all
possible configurations of relative directions of simplices we need to make use of the Pauli matrices as well as
of an additional rotation of the complex phases. The higher-order Connection Laplacians are here adopted in
order to define higher-order diffusion on directed simplicial complexes that can reveal important dynamical
effects induced by the “frustration’ of the relative directions of the simplices as demonstrated from the study
of instructive synthetic examples.

By formulating the higher-order Connection Laplacians this work demonstrates that a much unexplored
yet very promising research direction in higher-order networks is the investigation of the dynamics of
topological signals combined with rich algebraic structures. Other examples of this emerging topic are the
adoption of the Dirac operator [66] and its associated gamma matrices [67] to study for instance Turing and
Dirac-induced patterns of topological signals, higher-order synchronization dynamics [68, 69], the use of
sheaves in opinion dynamics [70], and the extensive literature on physics-inspired neural networks [43, 71].
The mathematical methods that we present may also be used to develop random-walk centrality
measures [72] and embeddings [55] for directed higher-order networks.

2. Combinatorial, connection and magnetic Laplacians on graphs

We consider a graph G = (V, E) with N vertices and N edges. We are interested in the scenario in which this
graph describes a real-world complex system; in this case, it is also referred to as a network. Here we discuss
three definitions of Laplacians: the Combinatorial Graph Laplacian [73-76], the Connection Laplacian [63,
64], and the Magnetic Laplacian [55, 57]. The Laplacians are algebraic topology operators that can be used to
describe diffusion on the graph and have wide applications in network science [57, 77, 78], non-linear
dynamics [35, 36, 79], as well as in signal processing [33, 80—82] and machine learning [73, 83, 84].

2.1. Combinatorial graph Laplacian

The Combinatorial graph Laplacian L() [73, 76] is probably the most widely used Laplacian for undirected
graphs and networks. Let us assume G = (V, E) is simple (unweighted, undirected and without self-loops
and reciprocated edges) and has adjacency matrix A(*); then the Combinatorial Graph Laplacian L% is the
Ny X Ny matrix defined as

L0 — p) _A(O)’ (1)

where D(®) is the diagonal matrix having the degrees of the vertices in the network, i.e. Dgio) = ZjVG"VAij) for

all vertices i of the graph. This Laplacian provides the paradigmatic example of Laplacian operator that
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reflects the graph’s discrete geometry and topology in its spectral properties [76] strongly affecting the
dynamics unfolding on the graph. Therefore L(®) provides a key way to relate the structure and dynamics of
networks and has a key role in Network Science [79] and Machine Learning [85]. However, a limitation of
the Combinatorial Graph Laplacian is the fact that the original definition only applies to undirected
networks. In the following, we will discuss in detail the Magnetic Laplacian, which addresses this limitation
by the adoption of Hermitian matrices.

2.2. Magnetic Laplacian on directed graph

Consider an unweighted directed graph G = (V, E) with vertex set V and directed edge set E connecting pairs
of distinct vertices (no self-loop and no reciprocated edges). Let a indicate the binary directed adjacency
matrix, and let us define A as the adjacency matrix of its corresponding unweighted network, i.e. Ai(jo) =1if

(1,) exists (in any direction) and Al-(jo) = 0 otherwise. The Magnetic Laplacian [51, 55] L®) is a Ny x N
Hermitian matrix defined as

L — DO) _ 7(8) 5 A©) 2)

where o indicates the Hadamard product and Ti(jg) = exp(idjj) assigns a rotation in the complex phase to a
directed link, 6;; = —2m g(a;; — aj;), with g being a constant parameter. Therefore, 0;; = —2mgifi — j;
0;j =2mgifi + j;and d;; = 0 otherwise. Thus a non-zero value of ;; arises from directed (i.e.
unreciprocated) edges and determines the phase change that occurs when crossing a link from node 7 to node
j. Additionally, the definition of the Magnetic Laplacian involves the diagonal degree matrix D(%) is defined as
in the previous paragraph.

For convenience, denote § = 2w g. Then

e 0 ifi ]
TE = qéo,  ifj i (3)
1 otherwise.

)

The Magnetic Laplacian acts on complex-valued cochains that can be represented as the vector v € CMNo,
having complex values on each of the nodes. The Magnetic Laplacian is associated with the quadratic form

1 &), 112
viL®Wy = 3 ZA,,.HVI. - Ty (4)
17]

It is therefore apparent that the Magnetic Laplacian has a real and non-negative spectrum. Its associated
quadratic form can be combined with machine learning algorithms to define efficiently network
embeddings [55-59] that can reveal for instance non-trivial cyclic patterns or connections among clusters or
communities of the network and neural networks [60].

2.3. Connection Laplacian

The Connection Laplacian [63—65] generalizes the definition of the Magnetic Laplacian and can be used to
describe the motion of d-dimensional vectors along edges. The Connection Laplacian, denoted L(()C) ,isa
Ny X Ny matrix defined as

L(()C) _ D(O) ®Id . T[O]’C o (A(O) ® ld) , (5)

where 1, is the d X d matrix having all elements equal to one, and the rotation matrix T1-¢

is given by
Tl[;)]’c = Ojj where O;; € R4*4 is the rotation matrix which represents the orthogonal transformation SO(d)
satisfying O;;0;; = 1.

The Connection Laplacian acts on real-valued cochains v where each element of the cochain associated to
a vertex i is a vector v; € R% Thus the quadratic form associated with the Connection Laplacian is given by

1
VT =23 Al — Oy ©
ijeV

A Connection Laplacian is called consistent if, for every cycle in the graph, the total rotation is equivalent to
the identity matrix. This property ensures that one can always rotate back to the same phase after completing
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any directed cycle [86]. Moreover, when a Connection Laplacian is consistent, there exist exactly d
eigenvalues with a value of 0.

It can be easily shown that the Magnetic Laplacian [55, 57] is a special case of Connection Laplacian for
directed graphs with a U(1) or SO(2) transformation. As we will see in the following, our manuscript
proposes to generalize the notion of Graph Connection Laplacian to directed simplicial complexes with the
goal of capturing in the spectral properties of these operators the information encoded in the directions of
their simplices, in the same spirit as the use of the Magnetic Laplacian to capture the directionalities of edges
in graphs and networks.

3. Simplicial complexes

Simplicial complexes are a class of higher-order networks that encode higher-order interactions in complex
systems. In this work, we will consider 2-dimensional simplicial complexes formed by vertices (0-simplices),
edges (1-simplices) and triangles (2-simplices). More formally, a simplex of dimension k (or k-simplex) is
formed by n + 1 vertices, and the face of a simplex is a simplex of dimension k’ < k formed by a proper
subset of the vertices of the original simplex. A simplicial complex K is a set of simplices closed under the
inclusion of the faces of each of its simplices. The dimension of a simplicial complex is the largest dimension
of its simplices. The use of simplicial complexes [1—4] is becoming popular in Network Science and complex
systems research as it allows us to model complex systems such as the brain, protein assemblies, or social
interactions, where each simplex characterizes a given higher-order interaction among their elements.

Simplicial complexes allow for higher-order extensions of Combinatorial Graph Laplacians called Hodge
Laplacians that can reveal important properties of higher-order diffusion between n-simplices to n-simplices.
In order to define the Hodge Laplacian it is important to associate to each simplex an orientation, typically
chosen to be induced by the node labels. Here and in the following, unless clearly specified, we always adopt
this convention as it has the advantage that the spectral properties of the Hodge Laplacians will be
independent of the vertex labelling. Note most importantly that the notion of orientation is distinct from the
notion of direction. For instance an oriented 1-dimensional simplex (an oriented graph) will attribute to
each edge an orientation and not a direction. The orientation can be used for instance to determine if a flux
through an edge is positive or negative; for instance if the edge [1,2] is oriented positively, a flux going from
vertex 1 to vertex 2 will be positive, and a flux from vertex 2 to vertex 1 will be negative. From this example, it
is clear that the orientation of an edge is a different notion with respect to direction, as a directed link will
allow only flux to go in one direction.

Hodge Laplacians are receiving increased interest because of their ability to encode the topology of
simplicial complexes at the same time as offering the correct algebraic topology operator to define
higher-order diffusion and to model, treat and process higher-order topological signals. In particular, the
k-order Hodge Laplacian acts on k cochains, which can be represented as vectors assigning a dynamical value
to each k-simplex of the simplicial complex. The action of the k-Laplacian on the k-cochain can describe
diffusion from k-simplex to k-simplex passing either though (k — 1) or to (k+ 1) simplices.

Here our intention is to give a brief computational introduction to Hodge Laplacians without giving the
full background of these important algebraic topology operators. For further information we recommend
the following literature, devoted to their spectral properties: [44, 46, 87].

In order to provide an operational definition of Hodge Laplacians let us introduce some notation. We
consider the finite oriented simplicial complex K formed by Ny simplices of dimension k, each denoted as o}
with 1 <i < Ni. Two distinct k-simplices o} and 052 are upper adjacent if they both are faces of a
(k+ 1)-simplex, also known as a co-face. Two simplices that are upper-adjacent and have the same relative
orientation with respect to the common co-face are indicated as o} ~y o7, while otherwise we indicate
oy o/,lc. Two distinct k-simplices are lower adjacent if they share a common face. Two simplices that are
lower-adjacent and have the same relative orientation with respect to the common face are indicated as
a,l ~r U,f, while otherwise, we indicate a}‘( a9 af7k. The k-order Hodge Laplacian is a N x Nj matrix given by

Ly = L7+ Lo, (7)

where we use the convention £5"" = 0 and in all other cases the up and the down Hodge Laplacians cr
and E,C(’down have elements

deg, (of), ifi=j ’ k+1, ifi=j

upl L, ifa;( NUO[;: down] __ 1, ifai ~L O[Ik
(£, = oo (e = o : (8)

1 -1, if ol %y o 4 -1, if af p o

0, otherwise; 0, otherwise.

4
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From this definition, it follows that as long as k = 0 the Hodge Laplacian reduces to the Combinatorial Graph
Laplacian while for k > 0 the Hodge Laplacian has elements

degy (af) +k+1, ifi=j

L), = 1, if ad ~p a/k and they are not upper adjacent 9)
Hii -1, if & 71, o and they are not upper adjacent
0, otherwise.

Hodge Laplacians encode fundamental topological properties of the simplicial complex. In particular, one of
the most celebrated properties of Hodge Laplacians is that the dimension of the kernel of the n-Hodge
Laplacian is given by the nth Betti number. Another crucial property of Hodge Laplacians is that they obey
Hodge decomposition and thus allow, for instance, the decomposition of edge signals into harmonic,
solenoidal, and irrotational components.

4. Higher-order connection Laplacians of 2-dimensional simplicial complexes

Hodge Laplacians constitute a powerful tool to study the topology of higher-order networks, however, they
have the important limitation of only applying to undirected (although oriented) simplicial complexes. This
is a drawback for studying real higher-order networks and represents also a significant challenge in
mathematics in general and applied topology in particular.

Here our goal is to propose the study of Higher-order Connection Laplacians of 2-dimensional simplicial
complexes, in order to capture spectral properties that are induced by introducing the directionality of the
simplices. In doing so we are inspired by the recognized role of the Magnetic Laplacian as the key algebraic
topology operator to handle directionality in the graph setting while preserving a real and non-negative
spectrum. In particular, we will define the k-order Connection Laplacian that will determine how vectors
defined on simplices are transformed when hopping though upper or lower adjacent simplices (see figure 1).
As we will see the 0-Connection Laplacian can be defined trivially as the Combinatorial Graph Laplacian of
the underlying network skeleton of the simplicial complex, i.e. the graph formed only by vertices and edges
of the simplicial complex. Therefore, this operator can be defined on complex-valued 0-cochains assigned to
each vertex of the graph. In order to take into account all possible configurations induced by the directions of
edges and triangles, the 1-Connection Laplacian will however, require us to lift the dimensionality of the
1-cochain to a 2-dimensional complex valued vector defined on each edge of the simplicial complex. The
2-Connection Laplacian will be acting on a 2-cochain taking as well a 2-dimensional complex valued vector
on each triangle of the simplicial complex. However, another difficulty arises, as to define an Hermitian
2-Connection Laplacian we will have to limit our discussion to simplicial complexes that tessellate
2-dimensional orientable manifolds.

4.1. Higher-order connection Laplacian for 2-dimensional simplicial complexes

Consider a simplicial complex K of dimension 2, including three different types of simplices: nodes, edges,
and triangles. We assume that the simplicial complex is unweighted and directed. The undirected version of
this simplicial complex is given by the same simplicial complex that is oriented instead of directed, with
nodes, edges, and triangles having an orientation induced by the vertex labels, and with nodes having a trivial
positive orientation. The directed simplicial complex has both edges and triangles associated with a
direction, either concordant or discordant with their own orientation of its undirected version. Here our goal
is to generalize the notion of the Connection Laplacian to higher-order networks in order to capture the
information encoded in the directionality of the simplices and to define a higher-order diffusion that takes
into account the directions of the simplices on top of their orientation. Note however that we do not intend
here to define the topology of the directed simplicial complexes, and that the Higher-order Connection
Laplacians have significant differences with respect to the Hodge Laplacian of undirected networks. One of
the main differences is that in general the Higher-order Connection Laplacian will not obey Hodge
decomposition, and in addition, the 1-up Connection Laplacian and the 1-down Connection Laplacian
might not even commute.

4.2. 0-up connection Laplacian

For the 0-Connection Laplacian, by adopting a minimal assumption, we propose to use the Magnetic
Laplacian of the directed simplicial complex skeleton formed exclusively by the vertices and the directed
edges of the simplicial complex. The graph Magnetic Laplacian uses complex numbers to encode the
direction of the edges and simultaneously builds a Hermitian operator with real eigenvalues that can be
useful for machine learning applications. Note that the vertices of a network have all the same (trivial)

5
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Figure 1. Higher-order Connection Laplacians rotate vectors along nodes, edges, or triangles. (a) 0-up Connection Laplacian
rotates vectors defined on vertices along edges. (b) 1-down Connection Laplacian rotates vectors defined on edges along nodes.
(c) 1-up Connection Laplacian rotates vectors defined on edges along triangles. (d) 2-down Connection Laplacian rotates vectors
defined on triangles along edges.

direction so that in a network it is sufficient to take into account the two different directions of the edges

(accounted for by the sign of the argument of the corresponding complex number). It follows that the matrix
element Lff) depends only on the direction of the link (4, j) which can be i — j or i <— j. A question that arises
is how to leverage this to define the 1-order Connection Laplacian or even the 2-down Connection Laplacian.

4.3. 1-up connection Laplacian

When one considers the 1-Connection Laplacian, the situation is much richer than at the network level.
Indeed the matrix element Lm U”,S describing higher-order diffusion between edge [i,5] and edge [j, k] will not
only depend on the direction of the triangle [i — j — k] and [k — j — i] but also on the directions of the
edges [i,j] and [}, k]. Taking into account all the possible combinations of the directions of the two edges and
the upper incident triangle leads to eight possible configurations (see figure 1). If follows that it is not
possible to use only the phase of complex numbers to distinguish between these 8 possible configurations.
We therefore consider a complex-valued 1 — cochain v of elements v, € C? defined on each edge ¢ = [i,j] of
the simplicial complex. We then consider a 1-Connection Laplacian that will enforce rotations induced by
the four Pauli matrices in conjunction with rotation of the complex phases of the elements v,. Since the Pauli
matrices, together with the identity matrix, form a set of four, and the complex phase can rotate in two
different directions, we can take into account all eight combinatorial options induced by the direction of the
two incident edges and the shared triangle. This greatly enriches the complexity of the definition of the 1
Connection Laplacian. To construct the 1-up Connection Laplacian, we start by constructing the Bochner
matrix {7 [88] of the 1-up Hodge Laplacian L'E’l']‘p of the undirected version of the simplicial complex whose
elements are given by

c,up :
gy, =4 5 il (10)
S L], | ifl#m.

This Bochner matrix is semi-definite positive and can be written as the difference of a diagonal part D(1):*
and a non-diagonal part A'fp , 1.e.

_ s p
By} =pW " — AT (11)

Here, the diagonal matrix D(V)-* has elements given by [D(V-*]; = 2 deg,,(c}), which are twice the number
of triangles incident to edge I.




10P Publishing

J. Phys. Complex. 5 (2024) 015022 X Gong et al

Table 1. Schematic representation of the eight configurations induced by the directionality of edges and triangles which are
distinguished by the Higher-order Connection Laplacian £5".

J k|J k|J k|2 k
(2) (b) (©) (@)

J k|J k|J k| J k
(e) () (g) (h)

Moreover by indicating with o, o the Ith and the mth oriented edges (1-simplices), we have

0, ifl=m
-1, ifad ~pat
AT = ol o (12)
1, ifo] Ay
0, otherwise.
With these definitions we define the 1-up Connection Laplacian, £, acting on 1-cochains v of
elements 1; € C? associated to the generic edge o} of the directed simplicial complex as:
£ =pWw o, — "o (AP ®1,), (13)

where 1, is the 2 x 2 matrix having all elements equal to one. The rotation matrix T s a 2N, x 2N,

matrix that enforces a different type of rotation depending on the directions of the two incident edges and

the direction of the incident triangle. Specifically, for a given choice of § € [0,27) we define TEJ])"?}]{) as:

e oy, ifi »j,jokisji—k (a)
oy, ifj i k—jicjek (b)
e oy, ifj i k—ji—j—ok (c)
Moy, ifi—jjokicjk (d)
Teyt =3 e o, ifj—ij—ki—jk (e) (14)
oo, ifj—ijorkicjek (f)
e o, ifi sjk—ji—sj—ok ()
Mo, ifi—jk—jicjk (h)
oo, otherwise,

where the letters refer to the labeling of the configurations in table 1. Here, o are the Pauli matrices

oot} (o) =) el h)

Motivated by the Magnetic Laplacian setting, we view ¢§ as a phase rotation, and we aim to study the
simplicial complex for various choices of 4.

From this definition of the 1-up Connection Laplacian it is straightforward to express the associated
quadratic form as

C, U, l \U, N’)
vich Pyzi ST =T vl + Y M+ T vl | (16)
1

1
ayfuad aj~yaf

Therefore it is apparent that £" is Hermitian and semi-definite positive.

7
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Table 2. Schematic representation of the four configurations induced by the directionality of the edges incident to the same nodes,
c,down
T

which are captured by the Higher-order Connection Laplacian L

(a) (b) (¢) (d)

4.4. 1-down connection Laplacian

Now, let us define the 1-down connection Laplacian describing diffusion from edges to edges through
vertices. To this end, we will follow a procedure similar to that employed in formulating the 1-up Connection
Laplacian. However, there is an important difference. Since vertices have only one (trivial) possible direction,
the number of configurations to consider is reduced to four instead of eight. These configurations are
induced by the relative directions of the two edges, as illustrated in table 2. Another difference is that, in this
case, the 1-down Hodge Laplacian of the undirected version of the simplicial complex and its Bochner
matrix coincide. Therefore we first extract the diagonal and the off-diagonal entries of £

E;,down _ Dt]jown _ AtliOWﬂ7 (17)
where
—1, if Ozll ~L O/ln
[Af] =491, ifal ol (18)
0, otherwise,
and D{*"" as the diagonal matrix of elements [D{""]; = " _ |[A%*"],,.|. Finally, the 1-down Connection

Laplacian Ei’down is defined by incorporating information about edge orientation of the undirected version

of the simplicial complex with A{*"" and the edge directions of the actual directed simplicial complex using a
rotation matrix T4

Ei,down _ DtliOWn QL — Tl down (Arliown ® 12) , (19)

1],down

where for a constant § € [0,27) the 1-down rotation matrix T is given by

oy, ifi—jj—=k ()
e oy, ifj =i k—j (b)
[1],down __

). = § T ifj —ij—k (o) (20)
o ifi »j,k—j (d)
oo, otherwise.

Note that the letters in the above equation refer to the label of the configuration in table 2.
From this definition it can be easily shown that £5%"" is Hermitian as both D" and A%"" are real and
symmetric; and T down jg Hermitian.

Assigning a complex vector v; € C* to edge I, and let v = {v1,. .., v, }, we have:
Jd 1 1],d 2 1],d 2
wtpodomy, — 3 Z ”Vl_Tl[m] Ml + Z ||I/l—|—Tl[m] oy, 12 21)
algral al~pal

Therefore we can conclude that £ is positive semi-definite.
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4.5. 2-down connection Laplacian for 2-dimensional orientable manifolds

The extension to Higher-order Connection Laplacians comes with additional challenges. For instance, in
order to extend the above definition to the 2-down Connection Laplacian, relying solely on the definition of
orientation and direction of triangles induced by the node labels is not sufficient to obtain Hermitian
matrices. This implies that we cannot extend the above definition to treat the 2-down diffusion on a general
simplicial complex. What we can do, however, is to consider simplicial complexes forming discrete orientable
surfaces. For triangles, we can adopt the notion of orientation (and direction) induced by the orientation of
the manifold. As for orientable continuous manifolds, for discrete orientable manifolds, we can distinguish
two sides of a surface, with the normal vector to the manifold pointing either to one side or the other side of
the manifold. The orientation of the manifold is determined by the choice of the normal vector direction.
When considering 1,7,k € V such that [i,, k] or any of its permutations form a 2-simplex, we represent its
orientation as A = 1 if, by following the right-hand rule and moving along the flow i — j — k we obtain a
vector pointing in the same direction as the normal vector to the manifold, otherwise we assign to the 2
simplex the orientation A = —1.

In this way, it can be easily checked that the number of configurations induced by the relative directions
of two triangles and their common edges is always eight as in the case in section 4.3. These configurations are
shown schematically in figure 3. As for the 1-down Laplacian, also the 2-down Laplacian and its the Bochner
matrices coincide. Therefore we first we extract the diagonal and the off-diagonal entries of £5%"";

Lgown — pown _ gdown, (22)
where
—1, ifal ~paf
[Agev], =31, ifad 4y af (23)
0, otherwise.
and D" as the diagonal matrix of non zero elements [D3""]; = Y"" _ |[A4*"],,,|. Finally, the 2-down

Connection Laplacian £ is defined by incorporating both the triangle directions A%"" and the edge

directions using a rotation matrix T12hw":
E;down _ Dgown QL — 712l down (Agawn ® 12) 7 (24)
where, considering rotations induced by the four Pauli matrices and the complex phase, we have

67150'0, ifAijk =1, Akjk’ =1, ] —k (a)

ei(;O'(), ifAijk:_L Akjk’ =1, k—>] (b)

e_i(SO'X, ifA,‘jk =1, Akjk’ =1, ] —k (o)

ei‘SO'x, ifAijk =1, Akjk’ =1, k —>] (d)

Ton = € Moy ifAp=1 Agr=1 j=k () (25)
6160'),7 if Ajr =1, Apipr =1, k—j (f)

e_i‘SO'Z7 ifAijk =—1, Akjk/ =—1, j—=k (g

ei‘;crz, ifAijk =—1, Akjk/ =—-1, k—=j (h)

oo, otherwise,

with the letters referring to the labels of the configurations in table 3. The associated quadratic form reads

d _ 1 [2],down 2 [2],down 2
vice own,,_i Z g = T2, 1 + Z v+ To " v ] - (26)

abtal ab~pal

Note that the 2-down Connection Laplacian can be also extended to define the n-down Connection
Laplacian of n-dimensional orientable manifolds, as the definition of this Connection Laplacian will always
entail treating eight different configurations of relative directions of the two n-dimensional simplices and
their incident (n — 1)-dimensional simplex.

As we have seen, our formalism has allowed us to define the 0-up, the 1-up, the 1-down, and the 2-down
Connection Laplacians of orientable, two-dimensional discrete manifolds. These operators allow us to
distinguish between all possible configurations of the directions of the simplices by inducing rotations
enforced through the matrices T{":“?/4°"" Jeveraging on the use of the Pauli matrices, and a rotation of the
phase in the complex plane.
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Table 3. Schematic representation of the eight configurations induced by the directionality of two lower adjacent triangles and their

common lower adjacent edge on 2-dimensional orientable manifolds. These configurations are captured by the Higher-order

Connection Laplacian LE’ZTDW".

1 ) 7 7
J k|J k|J k|2J k
kK K 54 k'
(a) (b) (c) (d)
7 7 7 7
J k|J k|J k| J k
k' kK K k'
(e) (f) (2) (h)

5. Higher-order diffusion on directed simplicial complexes

The Connection Laplacians defined in the previous section can be used to define higher-order diffusion
processes that will reflect the directionality of the simplicial complex extending previous work on
higher-order diffusion over undirected simplicial complexes [35-38]. If we focus on the diffusion induced by
the 1-Connection Laplacian we can define three types of dynamical processes describing diffusion from edge
to edge going exclusively through triangles (upper diffusion), going exclusively through nodes (lower
diffusion), or going either through triangles or nodes (combined diffusion). These three types of diffusion
process describe the evolution of the 1 — cochain v whose elements v; defined on each edge I are complex
valued 2-dimensional vectors, i.e. ; € C2. Specifically, we define three different types of higher-order
dynamics: the upper, lower, and combined diffusion. In upper diffusion dynamics the dynamics of the edge
topological signal v = v(¢) is driven by the process

dv (1)

2 = (). (27)

Similarly, when the edge topological signal v = v/(t) follows the lower diffusion dynamics it obeys

dv (t) _ c,down
dr _£1 V(t)v (28)

Finally if the edge topological signal v = v/(¢) follows combined diffusion, then it will evolve according to

dv (1)
dr

=— (L + 5w (1) (29)

Note that since in general £ and £5%*" do not obey Hodge decomposition, the combined diffusion
process cannot be easily recast into the upper and the lower diffusion dynamics as happens in diffusion
determined by the Hodge Laplacian in undirected simplicial complexes [35, 89].

The properties of the higher-order diffusion (of order 1) on directed simplicial complexes will depend
strongly on the structure of the simplicial complex and the directionality of the edges. Here we provide a
discussion of these higher-order diffusion processes in different cases of directed triangles and on a directed
torus. For each case considered, we will investigate the spectral properties of the 1-up and 1-down
Connection Laplacians as a function of the parameter § and we will computer the commutator

cup pcdown| _ pcup pc,down c,down pc,up
[/:1 L }_ﬁl Lodown _ pedown poup (30)

10
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Table 4. Schematic representation of the 4 distinct types of 2-dimensional directed simplicial complexes formed by one directed
triangles, three directed edges and three vertices.

1 1 1 1

Case 1 Case 2 Case 3 Case 4

While in this paper we mostly focus on these three types of topological diffusion, that define a classical
dynamics, our results on the spectral properties of the Higher-order Connection Laplacian can be applied as
well to the following three distinct types of Schrodinger equations: the upper, the lower and the combined
Schrodinger equations. The upper-Schrodinger equation is driven by the upper Higher-Order Connection
Laplacian

= L5 (1), (31)

the lower-Schroedinger equation is driven by the lower Higher-Order Connection Laplacian,

idl/ (1)
dt

= L9y (1) (32)

and the combined Schroedinger equation is driven by the sum of the upper and the lower Higher-Order
Connection Laplacian, i.e.

idu (1)
dt

- (g;w + cqyd"w") v(b). (33)

In main difference between the classical (topological) dynamics that we describe here in detail and these
Schrodinger equations is that the diffusion dynamics will always relax to the fundamental state, while the
quantum evolution will consist of sustained oscillations. This sustained oscillations include different modes
corresponding to the different eigenvectors of the Higher-order Connection Laplacian, each one oscillating at
a frequency w = A where A is their associated eigenvalue and E = w their associated energy.

5.1. Directed simplicial triangles

Let us now explore some examples of directed triangles formed by three vertices [1],[2], [3], three edges [1,2],
[1,3], [2,3], and one triangle 1,2, 3], where the edges and the triangles have a given direction, leading to the
four distinct scenarios depicted in table 4. In addition to analysing of the spectral properties of these
simplicial triangles, for each considered case, we will also analyse the quadratic form of the Higher-order
Connection Laplacians and determine conditions under which it can be minimized to zero. Finally, we will
provide a numerical investigation of the dynamical properties of the induced higher-order diffusion
processes.

5.1.1. Case 1

We consider the directed 2-simplicial complex denoted as Case 1 in table 4, having edge directions given by
1 —2,2— 3,and 3 — 1; and triangle direction 1 — 2 — 3. This represents the scenario where all edge
directions conform to the direction of the triangle. Hence, if we traverse from one edge to another, we either
align with both the directions of the edge and the triangle, as shown in the first row of (14); or we go against
both the edge and triangle directions, corresponding to the second row in (14). For the 1-up Connection
Laplacian, we obtain the following:

TR
o i —i
» [1,2] 20'045 oye ooe y (34)
L% =11,3] —oye 200 -0 .
[2,3] oo —o,e ¥ 20y

11



10P Publishing

J. Phys. Complex. 5 (2024) 015022 X Gong et al

Spectrum of L

d
Spectrum of L™
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Spectrum of L Commutator
8 , , 1 : :
6 0.5
4 0
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0 /2 T 3 /2 27 0 /2 ™ 3m/2 27
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Figure 2. The complete spectrum of £ (top-left), £ (top-right), and £ (bottom-left), and commutator [£{*, £5%""]
(bottom-right) for Case 1 directed simplicial triangles is plotted as a function of 4.

In the top left panel of figure 2, we display the eigenvalues of £7" in relation to 8. The corresponding
eigenvalues are:

{24+2cos(6),2+2cos(d —27/3),2+2cos(d —47/3)}. (35)

To compute the quadratic form, we denote the components of the 1-cochain as v v = (v;,v,,v3)’ € C®
corresponding to the three edges [1,2], [1,3], and [2, 3] respectively. Here and in the following we
parameterize each component v; of the 1-cochain with three angles (0;,¢; and 1);) by setting

vy = (cos (1) €% sin (1) ei¢’)/ € C?, (36)

where ¢; € [0, 7], and 0}, ¢; € [0,27). Therefore the 1-up Connection Laplacian is associated to the quadratic
form

VH,C?upV = ||l/1 — O'oei&Vsz + ||I/1 + U0€7i61/3||2 + HI/2 — eri6V3||2. (37)

The quadratic form above equals zero when ), = 1, = )3, and

91 592—|—5, ¢1 E¢2+6, (38)
h=0;—0+m, pr=¢s -0+, (39)
92503+5, ¢25¢3+6 (40)

A solution exists only when § = /3, , or 57/3, as shown in the top-left panel of figure 2. When § takes the

. . . . . C.U .
aforementioned values, v, which satisfy the above conditions, becomes an eigenvector of £} P associated

with an eigenvalue of zero.

12
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For the 1-down Connection Laplacian, we have

1,2 [L3] (23]
1,2] 200 ope 0 —oped
) : 0€ 41
L% — 113 0'06'5_ 200 oge 0 (41)
[2,3] \—gpe @  pe 200
Eigenvalues of £, as shown in the top-right plot in figure 2, are:
{2—2cos(6+m/3),2—2cos(d),2—2cos(6 —7/3)}. (42)
The corresponding quadratic form of the 1-down Connection Laplacians are
VLAY — vy + a0e 0 |)> + |1 — 00 vs||2 + || + aoe P us (43)
It becomes zero when ¢, = 1, = 13, and
O=0,—0+7m, 01 =¢p— 0+, (44)
0O=0;—0+7, 91 =3+, (45)
92503—6+7T,¢25¢3—6+7T. (46)

A solution exists only when § = 0,27/3, or 47 /3, as shown in the top-right panel in figure 2.
Upon combining the 1-up and 1-down Connection Laplacians, we obtain the eigenvalues of their sum, as
depicted in the bottom-left panel of figure 2. The corresponding eigenvalues are

{3,3+2\/§sin(5),3—2\Bsin(5)}. (47)

The 1-up and the 1-down Connection Laplacians £5* and £{“"" commute since the commutator is

zero (bottom-right panel in figure 2). Furthermore, it can be shown that £5%"" £5* £ 0, which implies that
the Hodge decomposition does not hold, i.e. £5* LS9 £ 0, £59" £5 o£ 0 for all values of 8.

Figure 3 plots two examples when the dynamics are described by £5* (left), £5"*" (middle), and their
sum (right) for various value of §. For visualization purposes, we only display the phase angles. Setting
§ = /3 (figure 3(a)) and examining the plot for £, we notice that it converges towards an eigenvector of
L5 associated with an eigenvalue of zero, which satisfies conditions (39) and (40). Since £5%°"™ and
L7+ Ei’down only possess positive eigenvalues when § = /3, the vectors converge into their slow
eigenmodes associated with the smallest eigenvalue. We observe similar results when § = 27 /3 (figure 3(b)),
where the equilibrium vector is an eigenvector of £ corresponding to the 0 eigenvalue
satisfying (44)—(46).

5.1.2. Case 2

Now, let us consider Case 2 in table 4, where the edge directions are as follows: 1 — 2,2 — 3, and 3 — 1;and
the triangle direction is 3 — 2 — 2 — 1. This scenario represents a situation where all edge directions are
opposite to the direction of the triangle. Consequently, when traversing from one edge to another, we either
move against the edge direction while aligning with the triangle direction—as shown in the third row

of (14)—or align with the edge direction while moving against the triangle direction, as depicted in the
fourth row of (14). The corresponding 1-up Connection Laplacian is

2 13 23
[1,2] [ 200 —0we @ o€ (48)
L7 =11,3] —axe.i‘s 200 —g.e 0
2,3] \oee ™ —o. 200
Then the quadratic form v £ v can be calculated as
VALY = vy — are O || 4 || + 016003 |2 + |1 — oce s (49)

13
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1
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t t t
(b) & = 27/3

Figure 3. Higher-order diffusion driven by the 1-Connection Laplacians E'fp (Up), E‘f”w” (Down) and £; (Up+Down) on
directed simplicial triangle in Case 1 are plotted for single initial conditions and for § = /3 (upper row) and § = 27 /3 (lower
row). In the upper-left plot, the final state is an eigenvector of £ corresponding to the 0 eigenvalue, while in the lower-middle
plot, the equilibrium vector is an eigenvector of £i’d°W" corresponding to the 0 eigenvalue. In the remaining plots, the final states
converge to the slowest eigenmodes associated with the smallest positive eigenvalue.

We plot its eigenvalues against § in the top left panel of figure (2). The corresponding eigenvalues are:

2
{2+2c0s(6),2+2c05 (6— g) ,2+2cos (5— ;) ,2+2cos(0—),

2—|—2cos<5—437r>,2+2cos<5—537r>}. (50)

It may be shown that VHEi’“pV = 0 when ¢, =1, =3 =7/4, and

91 E¢2—6, ¢1 502—5, (51)
915¢3+5+ﬂ',¢1593+5+ﬂ', (52)
025¢3—5, ¢2503—5. (53)

The equations above have a solution only when ¢ € {0,7/3,27/3, 7,47 /3,57 /3}, as can be seen in the plot.

In Case 2, Ei’d"wn remains the same as in Case 1 since the edge directions stay unchanged. The eigenvalues of
£c,up cc,duwn
1 L are

{4+4cos ((5— g) ,4+4cos (0 —7),4+4cos <5— S;T) ,4}. (54)

The commutator [£59"" £5*] is zero, i.e. [L5%", £5*7] = 0, as shown in the bottom-right of figure 4,
however Hodge decomposition does not hold as in Case 1. Figure 5 displays two examples of vector
diffusion. When § = /3, the vectors in the left plot converge toward an eigenvector of £ corresponding
to eigenvalue zero, satisfying conditions (51)—(53). When & = 27/3, the equilibrium vector for both £7*”
(on the left) and Ef’d"wn (in the middle) are eigenvectors associated with a zero eigenvalue, as specified by

14
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Figure 4. The complete spectra of £5'? (top-left), L™ (top-right), and £ (bottom-left), and commutator [£{", £5%""]
(bottom-right) for Case 2 directed simplicial triangles is plotted as a function of 4.

conditions (51)—(53) and (44)—(46) respectively. In the remaining plots, the final states converge toward the
slowest eigenmodes associated with the smallest positive eigenvalue due to the absence of a zero eigenvalue.

5.1.3. Case 3

Now, let us look at the case of a 2-simplicial complex with triangle and link direction given by 1 — 2 — 3 and
1 — 2,2 — 3and 1 — 3, which is illustrated as Case 3 in table 4. First, we can write the 1-up and 1-down
Connection Laplacian as

(SR )
,2 200 —O'yeié a’oe_i5 (55)
L9 =11,3] —O'ye._ié 200 —0,éd | .
[2,3] oo —o.e ™ 20
Its quadratic form is
VLY = ||y — o'),ei‘51/2||2 +||v + er_iéyg,”z + |l — O'Zei‘sy3||27 (56)

and it becomes zero when ¢, = ¢, = ¢3 = /4 and

elz¢z+6—§,¢lzez+a+§, (57)
0. =0s—5+m,61=¢ds— 6+, (58)
=03+, pr=¢3+ 0+ (59)

15
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Figure 5. Higher-order diffusion driven by the 1-Connection Laplacians E'fp (Up), L‘f"W" (Down) and £, (Up+Down) on
directed simplicial triangle in Case 2 are plotted for single initial conditions and for 6 = 7 /3 (upper row) and § = 27 /3 (lower
row). In the upper-left plot, vectors converge towards an eigenvector of £ with an eigenvalue of zero. In the lower plot, where
§ = 27/3, both equilibrium vectors for £ (on the left) and Li’duw" (in the middle) are eigenvectors associated with a zero
eigenvalue. Across the remaining plots, the final states converge to the slowest eigenmodes linked to the smallest positive
eigenvalue due to the absence of a zero eigenvalue.

The above system has a solution iff 6 € {w/6,7/2,57/6,77/6,37/2,117/6}. This can be confirmed by the
eigenvalue top-left plot in figure 6. Furthermore, the eigenvalues are given by

{24+2cos(6—Z),2+2cos (6 — ),

6
2+2cos (6 —3F) ,2+2cos (6 — ),

6
2+2cos(5—37”),2+2cos(5—“7”)}. (60)

For the 1-down Connection Laplacian, we have

(1,2]  [1,3] [2,3]

_ i6
o [1,2] 209 oy opet 61)
L] =[1,3] o, 209 o, )
2,3] \—ope ™ o, 20
and
VLY = v+ oyl + 1 — o0 v + [[vz + o | (62)
The quadratic form is zero when v, =1, =13 = 7/4 and
T T
6, = — ¢ =0, — —, 63
1= ¢+ 5 ) 273 (63)
0 =0;+9, 01 =¢3+0, (64)
02503-}-71’,(,2525@253. (65)
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Figure 6. The complete spectra of 1-Connection Laplacians £ (top-left), £ (top-right), and £¢ (bottom-left), and
commutator [£5*?, £5%""] (bottom-right) for Case 3 directed simplicial triangles is plotted as a function of 4.

The equation above can be solved iff § € {7 /2,37/2} as shown in the top-right plot in figure 6.
Furthermore, the eigenvalues are given by

proo(it)r i)
2+2cos| = —~—),2—2cos| = —— ],
3 6 3 6
(5 7r> (5 7r>
2+2cos| = ——),2—2cos| s —= |,
3 2 3 2
2+ 2cos §7577r 2 —2cos §7577r (66)
3 6)° 3 6 '

In this case £7"” and £7"" do not commute except for the special case when § = 0 as shown in the
bottom-right panel in figure 6. Two examples of vector diffusion are displayed in figure 7 for 6 = 7/2 and
37 /2. In both scenarios, the vectors for £7" and Ei’d"w", the vectors approach some eigenvectors that
correspond to eigenvalue zero, which satisfies conditions (57)—(59) and (63)—(65) respectively.

5.1.4. Case 4

Finally, we examine the directed 2-simplicial complex with triangle and link direction given by 3 — 2 — 1
and 1 — 2,2 — 3 and 1 — 3 illustrated as Case 4 in figure 4. As the edge directions are precisely the same as
in Case 3, Ki’down in this scenario is identical to the previous case. Therefore, we only need to discuss Ei’up ,
which can be computed as follows:

1,2 [1,3]  [2,3]
[1,2] 200 -0 ol 67)
L7 =1[1,3] | —o,e? 20 —o,e
2,3 axe_M —O'Zei‘s 200
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Up Down Up + Down
2

Up + Down

(b) 6 =3m/2

Figure 7. Higher-order diffusion driven by the 1-Connection Laplacians E;’p (Up), E’f"“’“ (Down) and £, (Up+Down) on
directed simplicial triangle in Case 3 are plotted for single initial conditions and for § = 7/3 (upper row) and § = 27 /3 (lower
row). In both situations, the vectors associated with £5" and £5%*™ converge towards eigenvectors corresponding to a zero
eigenvalue.

This leads to
VH[:i’upV =|n - Gye_i6V2||2 + v+ O'Xei‘su3||2 + v, — aze_i6V3||2. (68)

We can further prove that v/ L7""v = 0 when /2 — 1)) = 1, = 13, and

bi=¢ =02, d1=0—6+3, (69)
h=¢s+0+m, ¢ =0s+0+m, (70)
025¢3—5,¢25¢3—6+ﬂ'. (71)

The solution to the equations exists iff § € {m/2,77/6,117/6} as shown in the top-left plot in figure 8. The
eigenvalues shown in the top-left subplot are:

5
{2+2cos<5+g),2+2cos<5—;r),2+2cos(5—2>}. (72)
Furthermore, we observe that £ and £5"*" only commute when § = 0 or 7. In figure 9, we illustrate two

vector diffusion processes where 6 = 7 and 37 /2. In the top row, the equilibrium vector is the eigenvector
associated with a zero eigenvalue for both £ and £5%*". In the bottom plot, only the vector for £5%""
converges to the eigenvector with a zero eigenvalue. For the remaining cases, the final state corresponds to
the vector with the smallest positive eigenvalue, given the absence of a zero eigenvalue.
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Figure 8. The complete spectra of the 1-Connection Laplacians £ (top-left), L™ (top-right), and £ (bottom-left), and
commutator [£5*?, £5%""] (bottom-right) for Case 4 of directed simplicial triangles is plotted as a function of 4.

5.2. Case study on triangulated torus
In the previous examples, we only considered simplicial complexes with a single triangle. Now, we will
examine examples where the simplicial complexes contain multiple triangles and edges. Specifically, we will
focus on the triangulated torus as our example. The torus is a 2-manifold without boundary. To perform
computations, we triangulate the torus into a simplicial complex and we consider two cases that differ only
in the direction of the triangles (see figures 10 and 11). For each case, we will investigate the spectrum and
the complete spectrum of the 1-up and 1-down Connection Laplacians and we provide a discussion of the
effects of the frustration induced by the directions of the simplices.

We first consider the Type 1 Triangulated Torus illustrated in figure 10. In this case, all edge directions
align with the triangle directions. Therefore the triangles fall under Case 1 of directed triangles in figure 4.

We then reverse the direction of the upper triangles above the diagonal edges to define the Type 2
Triangulated Torus illustrated in figure 11. As a result, these upper triangles align with Case 2 in figure 4
while the lower triangles correspond to Case 1. Note that for both the Type 1 and the Type 2 Torus we adopt
the usual convention for defining the orientations of the edges of their undirected counterpart: instead of
taking the orientations induced by the node labels we consider orientations that are consistent with periodic
boundary conditions that in these cases are aligned to the direction of the edges depicted in figures 10 and 11.

The effect induced by the frustration of the flow direction is apparent from the comparison among the
spectrum of the 1-Connection Laplacians of Type 1 and Type 2 Triangulated Tori (see figures 12 and 13).
Indeed for the Type 1 Triangulated Torus it is clearly noticeable that the spectrum displays eigenvalues with
much more significant degeneracy than for the Type 2 Triangulated Torus case. Hence in the Type 2
Triangulated Torus, the presence of the frustration induced by the triangle directions lifts the degeneracy of
multiple eigenvalues, reflecting a decrease in the symmetries of these directed simplicial complexes.
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Down
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Figure 9. Higher-order diffusion driven by the 1-Connection Laplacians £} (Up), £%*" (Down) and £; (Up+Down) on
directed simplicial triangle in Case 4 are plotted for single initial conditions. When § = 7 /3 (top row), the equilibrium vector
coincides with the eigenvector linked to a zero eigenvalue for both £ and Ei’duwn. Conversely, when § = 27 /3 (bottom row),

1 converges towards the eigenvector with a zero eigenvalue. In the remaining scenarios, the
final state is determined by the vector possessing the smallest positive eigenvalue.
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Figure 11. Example of a Type 2 Triangulated Torus of size 3 X 3 having 25 edges. The flow direction is reversed for all upper
triangles above the diagonal edges, as compared to the Type 1 Triangulated Torus.
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Figure 13. The complete spectra of the 1-Connection Laplacians £ (top-left), £5“*" (top-right), and £¢ (bottom-left), and

commutator [£" Ei’daw"](bottom—right) for the Type 2 Triangulated Torus of size 3 X 3 and 25 edges shown in figure 11 are
plotted as a function of ¢. Note that some eigenvalues are degenerate but many degeneracies observed in the spectrum of the Type

1 Triangulated Torus are lifted due to the presence of the frustration induced by the directions of the triangles.

6. Conclusion

Directed simplicial complexes constitute an important challenge in network theory as the directionality of
interactions is ubiquitous in complex systems. Yet there is not a fully developed mathematical framework for
addressing directionality of simplicial complexes. As a matter of fact, so far there is not even consensus on the
most suitable definition of directed simplicial complexes. Here we tackle this challenge by leveraging the
popular Magnetic Laplacian to address the study of graphs and networks. We show that to formulate
corresponding Hermitian operators that can capture all the possible configurations induced by the relative
directions of simplices we may consider Higher-order Connection Laplacians making use of the Pauli
matrices and of an additional rotation in the complex plane. Specifically, we built the 0-up, 1-up, 1-down,
and 2-up Connection Laplacians of tesselations of 2 dimensional orientable manifolds, where the 1-up and
1-down Connection Laplacians can be defined on arbitrary simplicial complexes of any dimensions. The
higher-order Connection Laplacians are used to formulate higher-order diffusion dynamics that can capture
the frustration induced by incoherent directions of incident simplices. The application of the framework is
investigated on simple and instructive examples of 2-dimensional simplicial complexes. In conclusion this
work provides a framework for defining directional simplicial complexes and higher-order diffusion
dynamics enfolding on them. We build on the increasingly popular idea of adopting complex valued weights
to combine dynamical processes on graphs and networks with non-trivial algebraic operations. We hope that
this work will be useful for network scientists and applied mathematicians focusing on higher-order
networks, complex weights and the interplay between dynamical processes and algebraic operations.
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