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Abstract. 

It is argued that even for a linear system of ODEs with constant coefficients, stiffness cannot properly 
be characterized in terms of the eigenvalues of the Jacobian, because stiffness is a transient phenomenon 
whereas the significance of eigenvalues is asymptotic. Recent theory from the numerical solution of PDEs 
is adapted to show that a more appropriate characterization can be based upon pseudospectra instead of 
spectra. Numerical experiments with an adaptive ODE solver illustrate these findings. 
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1. Introduction. 

It is generally agreed that the essence of stiffness is a simple idea, 

Stability is more of a constraint than accuracy, 

with its familiar consequence as expressed in the words of Hairer and Wanner [5, p. 
2], 

Stiff equations are problems for which explicit methods don't work. 

As soon as one tries to turn these ideas into a mathematical criterion for stiffness, 
however, disagreements set in. What makes a stiff problem stiff? N o  single answer 
seems right for all problems. In the face of this confusion some authors propose 
multiple criteria for stiffness, and others, none at all. 

This paper will not give the ultimate stiffness criterion either, but we hope to 
contribute to the discussion. At the most general level our points can be summarized 
as follows: 
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(a) Instability and stiffness are transient phenomena, involving finite time intervals 
[to, tl]. They cannot be characterized by considering only the limits t -} ~ or 
t - } t  o . 

(b) Even linear, constant coefficient problems can be surprising. Not all compli- 
cated effects are due to nonlinearity or variable coefficients; some are due to 
non-normality. 

These rather vague-sounding statements combine to yield some meatier conse- 
quences: 
(c) The eigenvalues of the Jacobian give too liberal a condition for the absence of 

stiffness; they are tied to the limit t -} oo. 
(d) The norm of the Jacobian (in nonlinear parlance the Lipschitz constant) gives 

too conservative a criterion for the absence of stiffness; it is tied to the limit 
t -} to.  

If the Jacobian is a normal matrix (e.g., symmetric or skew-symmetric), then there is 
little difference between transient and asymptotic behavior and these observations 
are unimportant. They come into their own when the Jacobian is highly non- 
normal, a situation that is known to arise, for example, in certain method-of-lines 
calculations for non-self-adjoint partial differential equations [4, 15, 19]. 

The purpose of this paper is to present these observations and, by drawing on 
some recent theory in the literature of the numerical solution of PDEs, to show that 
standard characterizations of instability and stiffness can be made more correct if 
eigenvalues are replaced by pseudospectra. Loosely speaking, our conclusions are 
as follows: 
(I) Numerical instability for t ~ to occurs when the pseudospectra of the lin- 

earized, frozen coefficient approximation fail to fit in the stability region of the 
ODE formula; 

(II) A problem is stiff for t ~ to if the pseudospectra of this linear approximation 
extend far into the left half-plane as compared with the time scale of the solution 
for t ~ to. 

These statements are made precise in Sections 2 and 3, especially Theorems 1 and 2, 
and a summary of our view of stability and stiffness is given in Section 4. 

We illustrate our points by numerical examples in which we solve the problem 
with an adaptive non-stiff ODE solver, then examine the sizes of the adaptively 
determined time steps. Several authors have used this approach to provide a practi- 
cal measure of the degree of stiffness I-5, 6, 7, 8, 14, 23, 24]. We give the greatest 
attention to examples illustrating point (c), because that is the most surprising result: 
sometimes, for purely linear reasons, a problem may be stiffer than eigenvalue 
analysis seems to suggest. 

The Conclusions section comments on how our observations relate to the exten- 
sive literature by non-numerical mathematicians concerning stability of ODEs. 
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2. Reduction of ODEs to model problems. 
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y '  = f ( t , y )  (2.1) 

,L LINEARIZE 

u' = A( t )u  (2.2) 

FREEZE COEFFICIENTS 

u" = A u  (2.3) 

$ D I A G O N A L I Z E  

u' = 2u. (2.4) 

Fig. 1. The standard paradigm: reduction to a collection of scalar model problems, 

Figure 1 summarizes the standard paradigm for the reduction of questions of 
instability and stiffness to scalar model problems. We begin with (2.1), a system of 
N first-order ODEs, and let yo(t) denote a particular solution to (2.1) that we are 
interested in. If we make the substitution y(t) = yo(t) + u(t), then instability and 
stiffness depend on the evolution of u(t). 

The first step is to linearize the equation by assuming u is small. If f is differenti- 
able, let 

A(t) = ~y  (t, yo(t)) 

denote its Jacobian (an N x N matrix) at time t. By neglecting terms of order u 2 and 
using the identity y'o(t) = f( t ,  yo(t)) we pass from (2.1) to (2.2). 

The second step is to freeze coefficients by setting A = A(to) for some to of interest. 
The idea here is that instability and stiffness are fundamentally transient phenom- 
ena, which may appear near some times to and not others. The result is the constant 
coefficient linear problem (2.3). 

Finally, assuming A is diagonalizable, we diagonalize it. This decomposes (2.3) 
into N independent scalar equations (2.4) with 2 e A(A) (the spectrum of A). Accord- 
ing to a standard way of thinking, the model problems (2,4) can now be used to 
estimate instability and stiffness. To determine whether a discrete approximation to 
the ODE is stiff for the particular solution Yo near the time to, one examines all N of 
the problems (2.4) with 2cA(A).  Depending on the author and the application, 
stiffness is then associated with eigenvalues 2 in the left half-plane of widely varying 
moduli or real par ts -  or more precisely, with eigenvalues whose moduli or real parts 
are large compared with the time scale of the underlying solution yo(t) for t ~ to. 

Now it is well known that this reduction to scalar problems sometimes leads to 
incorrect conclusions about instability and stiffness. This brings us to point (b) of the 
Introduction. Three successive approximations are involved in passing from (2.1) to 
(2.4). Nevertheless, only the first two of these, linearizafion and freezing of coeffi- 
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cients, have received much attention in the literature. We wish to argue that the 
diagonalizations (2.3)-o (2.4) is also a process that may change the nature of an 
ODE significantly, and in fact, that some effects which are customarily attributed to 
linearization or freezing of coefficients can with greater justice be blamed on 
diagonalization. 

Consider first the step (2.1) ~ (2.2): linearization. It is clear that important effects 
may be missed by pretending that the perturbations that arise in practice are small 
enough to evolve linearly. Consequently there is a large literature that remains with 
equation (2.1) by considering stiffness, stability and convergence for certain classes 
of nonlinear ODEs [1, 2, 5, 10, 14, 15]. The central theme in this literature is the 
search for methods that can be proved convergent by arguments related to contrac- 
tivity. The idea here, which was made famous by Liapunov, is that if a function can 
be found that decreases locally for all Y0 and to, then global decrease of that function 
is also assured, regardless of nonlinearity. (The function in question is often 
a measure of the difference of two nearby solutions y(t) and yo(t); of course, bounded 
exponential growth rather than strict contractivity is adequate for many purposes.) 
In the numerical analysis of PDEs this idea goes by the name of stron# stability [22]. 

Many powerful results have been established in this nonlinear tradition, but we 
wish to make two remarks concerning their applicability to general questions of 
instability and stiffness. First, because of the emphasis on contractivity, most of 
these results involve rather stringent conditions that are sufficient but not always 
necessary for stability or convergence. Many ODE methods behave well even 
without being contractive, including most of those used in practice, and thus the 
nonlinear theory is too conservative to provide a sharp characterization of the 
phenomenon of stiffness, or an analysis of the time-stepping behavior of practical 
adaptive ODE software. (See the final page of [14].) Second, the "nonlinear" theory 
differs from the "linear" theory even for linear problems with constant coefficients, 
where it amounts to analysis of (2.3) by means of such quantities as the one-sided 
Lipschitz constant of f, the logarithmic norm of A, and the norm of the discrete 
solution operator associated with A. In this linear context it becomes particularly 
apparent that the theory is too conservative to be sharp, as we shall explain at the 
end of the next section. 

Consider next the step (2.2)~ (2.3): freezing of coefficients. This process has 
received considerable attention, and examples have been devised to show that 
freezing coefficients may change the behavior of an ODE significantly. An appreci- 
ation of the importance of this phenomenon goes back to Liapunov and Poincar6 at 
the beginning of this century. Possibly the earliest explicit example is due to Perron 
[18], and three examples that have been studied by numerical analysts are those of 
Vinograd [30], with generalizations by Dekker and Verwer [2, 13, 14], Kreiss [11], 
and Lambert [14, p. 263]. In each of these cases a variable coefficient ODE with 
rapidly growing solutions has Jacobians at each point that appear mildly behaved. 



STIFFNESS OF ODES 289 

Consequently it may be dangerous to make predictions about  stiffness based on 
frozen coefficient approximations. These examples are quite compelling and we 
recommend Kreiss's example in particular for its simplicity; see Example 3 of 
Section 5. 

Finally, consider the step (2 .3 )~  (2.4): diagonalization. In the literature it is 
surprising how often this step receives no comment  whatsoever; equations (2.3) and 
(2.4) are viewed simply as equivalent. As examples of this way of thinking, here are 
extracts from the books by Dekker  and Verwer [2, p. 12] and (slightly edited) 
Lamber t  [14, pp. 76-77]: 

Dekker and Verwer 1984: 

Lambert 's  question is of a fundamental nature. It  in fact illustrates the 
need for a more rigorous numerical stability theory than the established 
linear theory which is based on local linearization and thus assumes 
that the spectrum does determine the error propagation. 

Lambert 1991: 

The flaw in this argument lies in the assumption 

~f 
- ,/, a constant matrix. 

dy 

It is simply not true in general that the eigenvalues of J always correctly 
represent the behavior of the solutions of the nonlinear system. 

The striking thing about  both of these extracts is that they pass wordlessly from 
a matrix to its eigenvalues, unconsciously making the assumption linear =~ scalar. 

This assumption is common in the numerical O D E  literature, though sometimes 
authors are more careful. In fact, the authors of [2] and [14] are themselves 
sometimes more careful, as for example on p. 42 of [2]. Perhaps the fairest summary 
is to say that the experts in the field of numerical analysis of ODEs  are aware in 
principle that a matrix is not the same as a set of scalars, but that this awareness is 
easily overlooked when it comes to applications. 1 

We shall now examine the problem (2.3) and explain why it may be misleading to 
view (2.3) and (2.4) as equivalent. 

i An analogous but more serious situation holds in the century-old field of hydrodynamic stability, 
where the fundamental problem is to understand the mechanism by which the laminar flow of a fluid 
becomes unstable and eventually turbulent. Here the equations are nonlinear but often have constant 
coefficients, so that the standard paradigm of Figure 1 simplifies from three steps to two. Nevertheless the 
significance of the step of diagonalization has been overlooked in this field too, so that when predictions 
based on eigenvalues have failed to match laboratory experiments, as they consistently do, the blame has 
been placed entirely on the first step, linearization. Only recently has it emerged that the operators in 
question are highly non-normal and that linear effects unrelated to eigenvalues are of central importance 
to the physics of hydrodynamic instability; see [28] and the references therein. 
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3. The problem u' = Au. 

Consider the linear, homogeneous, constant coefficient problem (2.3), where A is 
a fixed N x N matrix. Let this ODE be approximated by a fixed discrete formula 
with constant step size A t; to be definite, let it be an explicit Runge-Kutta formula of 
order m. Then the discrete analogue of (2.3) is the one-step recurrence relation 
v~n+ 1) = p (AAt )v~ ,  that is, 

v (.) = p(AAt)n-nOv~O), 

where p(z) denotes (for the m-stage formulas with m < 4) the polynomial of degree 
m obtained by truncating the Taylor series for e ~ (v ~") represents the discrete 
approximation to u(t) at time t = nAt). Another way to write the same result is 

v(t) = p(AAt)<'-'°)/a'V(to), 

if to and t are multiples of At, giving a discrete approximation to the exact solution 

u(t) = e~t-'°~aU(to). 

Since the coefficients are constant, we can simplify these expressions for the purposes 
of analysis by assuming that no = to = 0. 

How then does p(AA t) ~ behave as a function of n? Since u is ultimately a perturba- 
tion of a solution yo(t) to (2.1) that is in principle more or less arbitrary, the right 
quantity to investigate is the norm tlp(AAt) ~ II induced by some vector norm I1 I1. This 
quantity satisfies the following well-known bounds in terms of the norm of p(AAt)  
and its spectral radius: 

(3.1) p(p(aA t)) ~ <_ II p(AA t) ~ II < II p(hA t)I1". 

Unfortunately, when A is not normal the gap between these bounds may be very 
wide. To illustrate this, Figure 2 plots IIp(AAt)~ll for 
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~: ~ 1 6  x 16 

5 
5 

- 1 0  

with At  = 0.175 and p(z) = 1 + z + z2/2. (We take li'l[ = I1"th in all of the examples 
of this paper.) Here p(p(AAt)) = 0.78125 andllp(AAt)[I ~ 2.003, so the bounds (3.1) 
on [[p(aAt)nl[ diverge exponentially as n ~ ~ ,  as indicated by the dashed lines in the 
figure. As for IIp(AA t)n II, it begins by tracking the upper bound IIp(AA t)Hn, growing 
by more than five orders of magnitude, then starts to decrease and eventually decays 
at a rate determined by p(p(AAt)).  At t = 10, for example, Hp(AAt)"[[ lies about 12 
orders of magnitude below I[p(AAt)It" and about 11 orders of magnitude above 
p(p(AAt))". 
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Fig. 2. Unstable transient growth of [[p(AAt)"H in a problem with p(p(AAt)) < 1 < Ifp(AAt)H. 

These phenomena are trivial from the point of view of linear algebra, but their 
implications for stability and stiffness are often overlooked. If the hump in a plot like 
Figure 2 is large, the computation is likely to behave unstably despite seemingly 
favorable eigenvalues. If the hump is small, it is likely to behave stably despite 
a seemingly unfavorable norm. It is the size of the hump that matters: the behavior of 
IIp(AA t)" II = IIp(AA t) tmr II for small but nonzero t. The eigenvalues and the norm, by 
contrast, give sharp information only about the limits t ~ oo or t ~ 0. We can 
summarize these connections as follows: 

(3.2) behavior as t ~ oo: determined by the spectrum of p(AAt) or of AAt  

(3.3) behavior for finite t: determined by the pseudospectra of p(AAt) or of AAt  

(3.4) behavior as t ~ 0: determined by the norm of p(AAt). 

Statements (3.2) and (3.4) can be made precise by the identities 

lim [Ip(adt)"l[ 1/. = p(p(AAt)), 
n - *  oo 

lim [Ip(AAt)"+ lll _ IIp(AAt)[I, 
,-.o IIp(AAt)"II 

of which the first is well-known and the second is trivial. Let us now turn to the less 
familiar statement (3.3) and explain what it means to say that the behavior of 
IIp(AAt)"II for finite n or t is determined by the pseudospectra of p(AAt) or of AAt. 

One way to estimate the size of the hump in a plot like Figure 2 would be to apply 
the Kreiss matrix theorem [3, 11, 22, 31] to the matrix p(AAt). This Would involve 
investigating the resolvent norm ll(zl - p(AAt))- 111 as z approaches the unit disk 
from outside, Alternatively, one can make use of results recently proved in [ 19] and 
[20] that amount  to transplantations of the Kreiss matrix theorem from the unit 
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disk to the stability region S of the ODE formula (see also [3, 15]). Now one must 
investigate the resolvent norm It(zI - AAt)-  111 as z approaches S from outside. Here 
is the essential result: 

THEOREM 1. Let (2.3) be modeled as described above by an explicit Runge-Kutta 
formula with stability region S that satisfies certain technical assumptions described in 
[20]. Then there exist positive constants C1 and C2, depending only on the Runge- 
Kutta formula and on N, such that 

(3.5) C1~ r < sup [Ip(hAt)"ll < C 2 ~ ,  ~ f  = sup dist(z, S)lt(zI - AAO-1H. 
n >_ 0 z ¢ S  

Here dist(z, S) denotes the usual distance ofz  to the set S and J~C might be called the 
"Kreiss constant." The constant C1 is of modest size, depending only on the 
Runge-Kutta formula, while C2 depends on the Runge-Kutta formula and also 
linearly on N. The proof of this theorem is given in [20]. An analogous result is also 
valid for linear multistep formulas; see I19]. 

For  a numerical illustration of Theorem 1, the problem represented in Figure 
2 has 

,~ 2.6 x 104, sup [Ip(AAt)"ll ~ 1.5 x 105. 
n > 0  

The two numbers agree to within an order of magnitude. If the dimension of A is 
increased from 16 to 32 in the same example, the numbers increase to approximately 
2.9 x 101° and 2.5 × 1011, respectively. 

The restatement of these observations in terms of pseudospectra runs as follows. 
For  each e > 0, the ~-pseudospectrum [19, 26, 27] of a matrix A is the compact subset 
of C defined by 

A:(A) = {z+C: II(zl - h) - l l l  >- ~-1}. 

(For z E A(A) we set ll(zI - a ) -  1 II = ~ . )  Equivalently, A:(A) is the set of z ~ C that 
are eigenvalues of some matrix A + E with IIEII < e. Now it is easy to verify the 
identity 

(3.6) sup dist (z, S) lI(zI - AAt)-  111 = sup e-  1 dist (A,( AAt), S), 
z C S  ~ > 0 

where dist(A,B) denotes supz~adist(z,B). Thus Theorem 1 can be restated as 
follows: 

THEOREM 2. An equivalent formulation of(3.5) is 

(3.7) C 1 ~  _< sup IIp(aAt)"ll < C 2 ~ ,  ~ f  = supe -1 dist(A~(AAt),S). 
n > 0  ~ > 0  

In words: the size of the hump in Figure 2 is determined by how far the e-pseudo- 
spectra of AAt are from the stability region. 
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Fig. 3. Boundaries of e-pseudospectra A~(AAt) with e = 10-1, I0 -2  . . . . .  10- lo for the same A and At as 
in Figure 2. The dashed curve marks  the stability region of the 2nd-order Runge-Kut ta  formula. 

Figure 3 illustrates Theorem 2 for the example we have been considering. The 
dashed curve is the boundary of the stability region for the second-order Runge- 
Kut ta  formula. The solid curves are the boundaries of A~(AAt) for e = 10-1, 10- 2, 
. . . .  10 -1° with At = 0.175, and the dot at the center of all of those curves is the 
solitary eigenvalue 2 = - 1.75 (IfA were a normal matrix with the same spectrum, 
all of the curves would lie within the disk of radius 0.1 about 2, well inside the 
stability region.) By counting contours one sees that although Alo-7(AAt) is con- 
tained in S, for example, A 1 o- 6(AA t) is not, and this explains why the size of the hump 
in Figure 2 is of the order of 106. The asterisks in Figure 3 mark the complex 
conjugate pair of points z that achieve the maximum in (3.6). 

Now let us return to the question of stiffness. Our basic point is that instability 
and hence stiffness are transient phenomena, determined locally by the behavior of 
(2.1) over a finite interval [to, t l]  scaled to contain several but not necessarily many 
time steps. On such an interval, (2.3) may be a good approximation to (2.1) even 
though (2.4) is not. In such cases predictions of stable or unstable behavior based on 
eigenvalue analysis, corresponding to (2.4) and to the limit t ~ oo, may be too 
optimistic, whereas pseudospectral analysis, corresponding to an analysis of(2.3) for 
finite t, may be quite accurate. Example 1 of Section 5 provides an illustration of this 
kind. 

In the last section we alluded to the fact that the numerical ODE literature 
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features two rather different styles of analysis. The "linear" theory is the theory that 
emphasizes the eigenvalues of A or of p(AAt) ,  leading to sufficient conditions for 
instability or stiffness. The "nonlinear" theory emphasizes the Lipschitz constant of 
f, which amounts to the norm II A II if f is differentiable, and also the norm IIp(AA t) ll, 
leading to sufficient conditions for stability or non-stiffness. Thus the essence of the 
"nonlinear" theory is analysis by norms rather than eigenvalues. As explained 
above, this normwise analysis is associated with the limit t -4 to, and the predictions 
it leads to may be too conservative because instability is a cumulative phenomenon, 
not a phenomenon of a single time step. Example 2 of Section 5 presents an example 
to illustrate this assertion. 

Finally, it is certainly possible that the interval [to, t l]  over which (2.3) is accurate 
contains too few time steps for constant coefficient linear analysis to be of much use, 
no matter how carefully carried out. In this case neither eigenvalues nor norms nor 
pseudospectra can be expected to provide sharp predictions in general; one must 
abandon (2.3) and use other tools. Example 3 of Section 5 is in this category. 

The observations made in this section can be viewed as translations into the 
language of numerical ODEs of principles that are better appreciated in the litera- 
ture of numerical PDEs, thanks originally to work in the 1950s and 1960s by Lax 
and Richtmyer, Godunov and Ryabenkii, Kreiss, and others [3, 11, 22]. Perhaps the 
PDE literature has been particularly attentive to these points because the presence 
of a second limit process A x  ~ 0 makes it possible to formulate elegant results like 
the Lax equivalence theorem. 

4. Summary of stability and stiffness. 

Here is a summary of our view of stability and stiffness. As stated in the Introduc- 
tion, 
(I) Numerical instability for t ~ to occurs when the pseudospectra of the lin- 

earized, frozen coefficient approximation fail to fit in the stability region of the 
ODE formula; 

(II) A problem is stiff for t ~ to if the pseudospectra of this linear approximation 
extend far into the left half-plane as compared with the time scale of the solution 
for t ~ to. 

What it means for the pseudospectra to "fit in the stability region" was made 
precise in Theorem 2: the e-pseudo-eigenvalues must lie at a distance < Ce from the 
stability region as e --* 0, for some C that is not too large. We believe that these 
statements are appropriate even for nonlinear problems and problems with variable 
coefficients, so long as the variations involved are resolved by a reasonable number 
of time steps. 

Table 1 summarizes how (I) and (II) relate to the more familiar views that we have 
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Table 1. Summary of three theories of stability and stiffness of ODEs. A and S denote 
the closed unit disk and the stability region, respectively, and A is the frozen coefficient 

Jacobian matrix. See the qualifications listed in the text. 

"Linear" theory "Nonlinear" theory Intermediate theory 
(based on eigenvalues) (based on norms) (finite t) 

(t "-} oo) (t "} O) 

Stiffness A has a large spectral A has a large norm but a A has large pseudospectral 
radius but a small spectral small logarithmic norm radii but small pseudo- 

abscissa spectral abscissae 

Stability The eigenvalues of p(AAt) p(AAt) has norm < 1 The pseudospectra of 
(A-plane) lie in A p(AAt) lie close to A 

Stability The eigenvalues of AAt - The pseudospectra of 
(S-plane) lie in S AAt lie close to S 

called the "linear" and "nonlinear" theories, which should more properly be called 
the theories based on eigenvalues and norms. Some qualifications to bear in mind 
are as follows. (1) In the first row of the table, the expressions beginning with "but" 
are convenient approximations but not really right; the proper definition of stiffness 
involves a comparison with the time scale of the exact solution for t ~ to, as stated in 
(II). (2) Terms such as spectral radius, spectral abscissa, and logarithmic norm are 
standard ones discussed in many of the references; analogously, the e-pseudospec- 
tral radius and e-pseudospectral abscissa represent the largest modulus and real part 
of the e-pseudospectrum, respectively. (3) If I1"11 is the 2-norm, the logarithmic norm 
in the middle entry of the first row can be replaced by the numerical abscissa. (4) 
Expressed without the assumption of differentiability, that entry becomes ' f  has 
a large Lipschitz constant but a small one-sided Lipschitz constant." (5) The 
conditions that the eigenvalues of AAt are in A or S or that the norm ofp(AAt) is < 1 
can be relaxed by terms O(At). 

5. Numereical examples. 

We now describe some numerical tests involving ode23, Matlab's adaptive 2nd 
and 3rd order explicit Runge-Kutta code [17]. We changed one line of the code so as 
to advance the solution with the 2nd order rather than the 3rd order formula.2 This 
was done in order to produce a stable equilibrium state in the sense of Hall [6, 7, 8] 
and hence make the step size plots easier to interpret. The default local error 
tolerance of 10- 3 was used. We wish to emphasize that the phenomena illustrated by 

2 The string "h*(sl + 4 . s 3  + s2)/6" was changed to "h.(sl  + s2)/2",. 
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these examples are not peculiar to the Matlab code; the same effects would arise with 
any adaptive ODE solver based on explicit formulas. 

EXAMPLE 1. We begin with a linear constant coefficient problem of the form 

(5.1) y'(t) = Ay( t )  + g(t), t >_ O, 

with y(0) chosen to have random elements from the N(0, 1) distribution. For the 
matrix A we take the dimension to be 32, with either 

A = d i a g ( -  10) "normal" 

o r  

A = b id i ag ( -  10, 10) "non-normal". 

For  the forcing function we choose either 

g(t) = 0 "homogeneous" 

o r  

g(t) = w cos t "inhomogeneous' .  

Here d i ag ( -10 )  denotes the diagonal matrix with a~i = - 1 0 ,  b id iag( -10 ,  10) 
denotes the bidiagonal matrix with a~ = - 1 0 ,  a~.i+ 1 = 10, and w is a fixed vector 
with random elements from N(O, 0.01) (i.e., mean 0 and standard deviation 0.1). All 
together, this gives us four problems, to which we give the names "normal, homo- 
geneous," "normal, inhomogeneous," etc. Note that the eigenvalues of A are the 
same in both the normal and non-normal cases. In the homogeneous cases (2.3) is an 
accurate approximation to (5.1) for all t; in fact the two are identical. The in- 
homogeneities are introduced to model the more realistic situation in which (2.3) 
and (5. t) are compatible only for a finite time. 

Figure 4 plots the step sizes {Atn } selected by ode23 in solving these four problems 
over the interval I'0, 30]. In the normal, homogeneous calculation, A tn settles down 
quickly to the value 0.2, which corresponds to the classical absolute stability limit. 
(The stability polynomial is p(z) = 1 + z + z2/2, and - 10 x At  > --2 is the stabil- 
ity condition.) This behavior is in line with the theory of Hail. The addition of the 
forcing term in the normal, inhomogeneous problem causes oscillations but has 
little effect on the average A t. On the other hand substantial changes occur when we 
switch to the non-normal matrix A = b id i ag ( -  10, 10). For  the non-normal, homo- 
geneous problem, At  is initially much smaller than 0.2, and only for large t does it 
begin to approach that value. With the introduction of the forcing term in the 
non-normal, inhomogeneous problem, At  remains close to 0.1 for all t. 

These results can be explained as follows. With the normal Jacobian 
A = d iag( -10) ,  the classical eigenvalue-based analysis accounts for transient as 
well as asymptotic behavior, but with A = b id i ag ( -  10, 10) the transient is very 
different from the asymptote. Specifically, the N x N matrix AN = b id i ag ( -  10, 10) 
has e-pseudospectra which converge as N-- ,  ~ and e--, 0 to the complex disk 
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Fig. 4. Adaptively selected step sizes as a function of t for Example 1. The step size in the non-normal 
inhomogeneous case is cut in half because the pseudospectra of A extend about twice as far along the 

negative real axis as the spectrum. 
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0 I0 20 30 

Fig. 5. Explanation of Figure 4: I]p(AAt)"H vs. t for various step sizes At. 

B ( -  10, 10) of  center - 10 and radius 10 [21]. In particular, for small e, AN has some 
pseudo-eigenvalues that  are approximately  - 20, and constraining these to lie in the 

stability region requires - 2 0 A t  > - 2 ,  or  At < 0.1. In the non-normal ,  homogene-  
ous calculation this restriction applies to some degree during a rather long transient. 
In  the non-normal ,  inhomogeneous  case, new forcing da ta  are continually being 
in t roduced and it applies forever. The problem never leaves the transient. Over any 

interval [to, t1] of  modera te  size (5.1) can be modeled reasonably well by an 
approximat ion  in the form of  an initial-value problem for the O D E  (2.3), but  the 
behavior  of  one of  those approximat ions  as t ~ ov has no relevance to (5.1). 

Fur ther  explanat ion of  these phenomena  is presented in Figure 5, which plots 
IIp(AAt)"II against t, = nAtwi thA  = b i d i a g ( - 1 0 ,  10)for values At = 0.1,0.125,0.15, 
0.175, 0.2. Al though [Ip(AAt)"II remains bounded  for all t for any At < 0.2, it achieves 
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0"10 t 

0 10 20 3O 

Fig. 6. Adaptively selected step sizes as a function of t for Example 2. The step sizes are far larger than the 
norm of A might suggest, but match predictions based on e-pseudospectra (quite close to the spectrum in 

this case, for small e). 

values in the figure as high as 1043 for At = 0.2 and 10 i3 for At = 0.15. The hump is 
absent only in the lowest curve shown, corresponding to the step size At = 0.1 for 
which the pseudospectra of AAt  as well as the spectrum lie close to the stability 
region. 

EXAMPLE 2. Our next set of tests illustrates the complementary point of this 
paper, that norm-based estimates of stiffness may be too conservative. We consider 
again the equation (5.1), but now with A reduced to the 2 x 2 matrix 

A = [ O 1 0  -10] "normal" 

or  

A n o n n o r m a l  

with analogous forcing functions g to those used earlier. For  small e, the e-pseudo- 
spectra of both of these matrices are not very different from the spectrum. The 
corresponding ode23 step sizes are plotted in Figure 6. As in Example 1, there is 
a reduction in the average step sizes when the Jacobian is non-normal. However, it is 
very slight, far less than the factor of 10 that the large norm of A might suggest. For  
example, with At ~ 0.15 we have At I[AI[ ~ 15 and [Ip(AAt)[[ ~ 5, both of which 
might suggest that the calculation will be unstable, but in fact a calculation with that 
time step is entirely stable because the norms [[p(AAt)"[[ do not continue to grow for 
n > l .  
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Fig.  7. A d a p t i v e l y  se lec ted  s t e p  sizes as  a f u n c t i o n  of t for Example 3. 

EXAMPLE 3, Finally, for our third example we return to the question of the size of 
the interval [to, t ~] on which the linear approximation (2.3) is valid. For a problem 
with rapidly varying coefficients, this interval may be so small that (2.3) fails to 
predict stiffness correctly, even when its transient behavior is analyzed properly. The 
failure may be in either direction; here it is in the direction of excessive optimism. 

We consider the elegant example of Kreiss [t2] 

[ - l r l ]U( t ) y ( t )=A( t ) y ( t ) ,  y'(t) = e- ~Ur(t) 0 --1 

where 

U(t)=fcosat - s i n  a t ]  
L sin at cos a t ]  

is a time-varying orthogonal matrix. (We have transposed U(t) from [12] in order to 
correct a minor error.) Under the transformation v(t) = U(t)y(t), we find that 

_ a-Iv(t). (5.2) v ( t ) '  = 
- - e  - 1  _1 

Note that although the original time-dependent Jacobian A(t) has eigenvalues - e- ' 
for all t, under the norm-Preserving transformation the new, constant coefficient 
Jacobian in (5.2) has eigenvalues " e - ' ( 1  _+ x/(ae(t/-  ae))). Hence, i t  is possible to 
choose a small value of ~/, so that the Jacobian A(t) never appears far from normal, 
whilst fixing a so that the eigenvalues of(5.2) differ markedly from - e- ~. Obviously 
it is these latter eigenvalues that govern the actual behavior of the variable coeffi- 
cient problem. In Floquet theory, which is a general theory of ODEs with periodic 
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F ig .  8. E x p l a n a t i o n  o f  F i g u r e  7: IIp(AAt)nll vs. t = nAt a n d  its  v a r i a b l e  coeff ic ient  a n a l o g u e  for  At = 0.2. 

coefficients, they are called the characteristic exponents of the variable coefficient 
"problem. 

To be specific, we choose e = 0.1, ct = 10, and ~/= 13/9, giving eigenvalues - 50/3 
and - 10/3 in (5.2). The ode23 step sizes, for a random y(0), are plotted in Figure 7. 
For comparison, the step sizes for the corresponding problem with U(t) = I are also 
plotted. In the latter case, where the Jacobian is not time-dependent, we see the 
classical limiting value 0.2, but in the former case an average value of approximately 
0.135 appears, not far from the value 0.12 that one might expect based on the 
eigenvalue -50/3.  (In fact a more careful analysis involving periodic coefficients 
explains the value 0.135 exactly; see [9] for details.) Thus we may regard the variable 
coefficient problem as nearly 5/3 times as stiff as the constant coefficient problem for 
this particular computation. 

Figure 8 explains what is happening. With At = 0.2, any frozen Jacobian gives 
only modest growth of IIp(AA t) n II, shown in the lower curve of the figure. However, 
the actual computation is governed by accumulated products of the time-varying 
Jacobian, 

+ =2 ) 
prod(tn) = H 1 + (A(iAt) + A((i + 1)At)) + - ~ -  A((i + l)At)A(iAt) , 

i=O  

shown in the upper curve. Here the small amount of growth made possible by the 
fact that IIp(AAt)II > 1 for each t is compounded geometrically from step to step by 
the rotations due to the variation in U(t). The frozen approximation is accurate for 
only about one time step and is of no use in predicting stability. 
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6. Conclusions. 

In the preface to his treatise of 1907 Liapunov wrote [16, our translation]: 

The problem I posed myself in undertaking the present study can be 
formulated as follows: to determine the circumstances in which the first 
approximation correctly resolves the question of stability, and those in 
which it does not. 

Liapunov's "first approximation" (a standard term) is the linearized equation (2.2). 
In effect he and many other mathematicians of this century, whose books the reader 
can find under the Library of Congress classifications QA372 and QA871, have been 
concerned with the problem of making precise the "standard paradigm" of Figure 1. 
What then is the need for additional papers on this subject by numerical analysts? 

One answer is that because numerical methods are discrete, the mathematicians' 
left half-plane must be replaced by the stability region of a discrete ODE formula. 
This, however, is a relatively straightforward matter. 

The more interesting and more fundamental answer is point (a) of the Introduc- 
tion. Justifiably or not, mathematicians who study the stability of ODEs have been 
concerned almost exclusively with the limit t--* ~ .  Numerical instability and 
stiffness, by contrast, are transient phenomena that depend on how effects com- 
pound over a dozen or so time steps. Thus local approximations have a special 
relevance to numerical analysis. In particular, provided that the effects of non- 
linearities or variable coefficients unfold on time scales containing many time steps, 
the linear, constant coefficient model (2.3) can be expected to be a good guide to 
instability and stiffness. An analysis of this equation for finite t leads naturally to 
pseudospectra (Theorem 2) and thence to the conclusions summarized as points (I) 
and (II) in the Introduction and Section 4. 

How important is all of this in practice? Do ODEs arise in scientific computing 
whose Jacobian matrices are so far from normal that the distinction between spectra 
and pseudospectra is important? We must be honest and admit that we do not know 
the answer to this question. Our suspicion is that in the majority of cases the 
distinction is not important, but that there is a significant minority for which it does 
matter. 

One situation in which highly non-normal ODEs arise, as mentioned in the 
Introduction, is in method-of-lines computations for the numerical solution of 
non-self-adjoint PDEs. In particular, consider a method of lines discretization by 
a Legendre spectral collocation method of the initial boundary value problem 

u, = ux + g(x, t), u(x, 0) = cos 2 (nx/2), u(1, t) = 0 

on the interval [ - i ,  1]. In [29] and [25] the numerical properties of this example 
have been studied at length, with the conclusion that the Lax-stability limit on A t for 
an explicit method is O (N-2) as compared with O (N-1) for "eigenvalue stability." 
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Fig. 9, Adaptively selected step sizes as a function of t for the method-of-lines example from [29]. 

We close this paper by presenting Figure 9, a plot of adaptively determined time 
steps when this same method-of-lines problem is solved by Matlab's code ode45. 
(The spectrum lies too near the imaginary axis for ode23 to produce interesting 
results.) The grid and hence the size of the system is N = 50 and the forcing function 
for the inhomogeneous calculation is O(x, t) = 0.1 cos t cos 2 (rex/2). The figure shows 
a time step gap of a factor of about 3.5 between the homogeneous and in- 
homogeneous problems. Evidently the stiffness of this system of ODEs is controlled 
in general by pseudospectra, not spectra. 
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