
On the hidden layer-to-layer topology of the representations of reality

realised within neural networks

Oliver Gafvert1, Peter Grindrod CBE1, Heather A. Harrington1, Catherine F. Higham2, Desmond J.
Higham3, and Ka Man Yim4

1Mathematical Institute, University of Oxford, Oxford, United Kingdom
2School of Computing Science, University of Glasgow, Glasgow, United Kingdom.
3School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom.

4School of Mathematics, University of Cardiff, Cardiff, United Kingdom

December 9, 2024

Abstract

Consider an information processing algorithm that is designed to process an input data object onto an
output data object via a number of successive internal layers, and mappings between them. The possible
activation state within each layer can be represented as a cube within Euclidean space of a high dimension
(e.g. equal to the number of artificial neurons at that level). Multiple instances of such input objects
produce a point cloud within each layer’s cube: this is the “representation of the reality” at that layer, as
sampled by the set of input objects.

Most neural networks reduce the dimension of each layer’s cube from layer to successive layer. This
gives the false impression of refining the inner representations of reality, distilling it down to fewer dimen-
sions from which to discriminate or to infer outcomes (whatever is the aim). However the representation
of reality realised within each layer’s cube is a manifold, a curved subset embedded within it and of
much lower dimension. Investigations show that such manifolds may not always be reducing in their local
dimension. Instead the manifold may become folded over and over, filling up further dimensions, and
creating non-realistic (unforeseeable) proximities. This type of feature is likely to be generic (universal).

We discuss some of the likely consequences of these relatively unforeseen characteristics, and, in partic-
ular, the possible vulnerability of such algorithms to non-realistic perturbations. We discuss an appropriate
response.
Keywords: Deep learning networks, topological data analysis, persistent homology

1 Introduction

Consider an information processing algorithm, such as a deep neural network, that is designed to process
an input data object onto an output data object, usually making a discrete classification, via a number of
successive internal layers, and mappings between them. Such algorithms are high-dimensional, often with
millions of real parameters to be calibrated during training; they are non-linear, and the overall mapping
from input space to output space may have some high gradients [1].
Whenever such an algorithm is applied to an input data object, each successive kth layer produces a set
of observable, internal, real values that are usually called the “activations” of the layer’s set of artificial
neurons. These may be realised as a vector within a corresponding Euclidean space of high dimension, mk

say. We will refer to this space as the embedding space, Ek, and to mk as the embedding dimension, which
is also often called the width of the kth layer. The dimensions mk of each Ek will be known. When the
algorithm is applied to a large number, N , of input data objects it yields N vectors forming a point cloud
within Ek. As we increase N we can think of the point cloud within Ek as more and more densely sampling
a manifold Mk ⊂ Ek. Typically Mk will be curved and have a dimension that is much lower than mk: it
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is the image of the input object space held at the kth layer. Of course there is also a (latent) continuous
mapping, ϕk say, that maps the Mk onto the Mk+1, that was set up during the training phase. The ϕk are
nonlinear in general and dependent on a number of internal (learnable) parameters. These are usually called
weights and are calibrated during training. As a result the manifolds Mk at each successive layer may be of
very different dimensions.

2 Actual manifold dimensions

In [2] this exact situation was investigated for a well known image classifier algorithm possessing this type
of layered neural network architecture. The authors estimated the dimension, Dk, of each of the Mk (k =
1, 2, ...,K) using the two-nearest-neighbour (twoNN) algorithm [3] over the sampled points. This yields the
fractal (Hausdorff) dimension of Mk. Importantly it was shown [2] that although the embedding dimensions,
mk, were decreasing from the first layer to the final layer (by architectural design), the dimensions, Dk, were
not always decreasing: for some transitions, from layer k to layer k + 1, it was possible that the dimension
increased. Such a phenomenon occurs when Mk becomes folded over and over by ϕk and thus fills a manifold
Mk+1 of higher dimension (just as when we have familiar examples of space filling curves and volume filling
surfaces).
Of course any over intricate folding, that we will refer to as “pleating”, means that there must be some
points within the image clouds that are not close together in Mk yet are mapped by ϕk onto image points
in Mk+1 which are very close together. The perturbation distance between such points thus becomes much
smaller under ϕk, meaning that the local inverse must have a high gradient. Of course, when mapped back
into input space, these perturbations were not represented and sampled within the input data object set,
where they would be large and very possibly non-realistic deformations (not small data perturbations but
large localised semantic perturbations).

3 Vulnerabilities

There is a possible relationship between this phenomenon and an algorithm’s vulnerability to adversarial
attacks, or spoofing, a growing threat for machine learning research, especially via black box attacks where the
attacker has no access to the model’s internal parameters (see the discussion and references in [2]). Typically
AI classifiers are subject to input perturbations that appear negligible to humans yet cause misclassifications.
Hence the observable, put perhaps un-anticipated, occurrence of dimensional layer-to-layer increases (most
likely due to pleating) is perhaps to be avoided. Ironically, given developers’ full access to the internal
activations it is relatively inexpensive to make such calculations using the method in [3]. This could become
a standard performance check.

4 Related research

There is a very similar approach taken in [4]. There the layer-by-layer activations, within each Ek, are
subject to the “Mapper Algorithm” which decomposes those point clouds into clusters, and then outputs a
skeleton representation of the underlying topology [5]. In particular, when this method is applied to large
language models (and their subsequent specialised fine tuning), calibrated by ensembles of many sentences,
it is shown that (within the later layers) the branched topology uncovered by the skeleton is highly related
to the linguistic and contextual information (distinct semantics and usages) of the words [4]. Furthermore
[4] shows how the skeleton becomes more precise (within certain applications) as the model is fine tuned.
In general terms, the skeletons become more disconnected with many ambiguities (represented by branch
points) resolved during the fine tuning. So we observe that the skeleton’s geometric representation of the
structure of the point clouds within Ek represents the latent structure of meanings, context, and usage
within the language samples. This of course is a highly satisfactory state of affairs, and it encourages us to
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look at further ways that the activation point clouds with various layers might be analysis and exploited or
controlled to improve performance and safety.

5 Topological/geometrical analysis

The estimate of dimension used in [2] is a very blunt tool though. In this paper we will deploy a more
sophisticated method: computational topological data analysis, more specifically persistent homology, and
the calculation of persistence diagrams of different degrees (see [6] and the references therein for a general
introduction). In doing so we hope to gain further insights into the shape of the high dimensional point
clouds, and the manifolds they are sampling, and to suggest a topological loss term that might penalise
undesirable behaviour (pleating and so on) due to the latent layer-to-layer mappings, and thus reduce the
vulnerability of calibrated algorithm to attacks and other misbehaviour.
Most calibration methods set the internal parameters (which in turn define the mappings) by minimising the
loss term over a training data set. The loss term is usually adjusted, or regularised, to prevent over-fitting
(for the training data), so it may be possible to amend this to include a suitable penalty related to the
internal topological structure of the manifolds. This may result in lower risk algorithms.

6 An underview

In this section we consider a specific example before generalising.

6.1 Data

A residual network (ResNet) is a type of directed acyclic network that has residual (or shortcut) connections
that bypass some subsequences, called stacks, of the main network layers. Residual connections enable the
parameter gradients to propagate more easily from the output layer to the earlier layers of the network, which
makes it possible to train deeper networks. The increased network depth can result in higher accuracies on
more difficult tasks.
The architecture of the type of the ResNet that we consider has been designed to ease training in very deep
networks and improve on the earlier VGG and Imagenet models [7]. The architecture comprises stacks,
each containing residual blocks, see Figure 1. The stack’s architecture is based on the idea that if multiple
nonlinear layers within the kth stack can asymptotically approximate a complicated function, ϕk(x) say, then
it is equivalent to assuming they can also asymptotically approximate the residual function ϕk(x) − x. So,
rather than have the layers approximate ϕk(x), we let them approximate a residual function F (x) = ϕk(x)−x,
since the ease of learning might be rather different.
We selected particular observation layers within the whole at the end of the successive stacks, after x is
added back to F (x) (at the layers stack1block4relu3, stack2block3relu3, stack3block2relu3).
The size of the embedding dimensions, mk, at the end of the blocks has to suit both the residual function and
the identity as they are added. Note that a linear projection is used to make shortcut connection match the
nonlinear residual connection in terms of the embedding dimension. For example the embedding dimension
of input into the stack that ends stack1block4relu3 increases from 16384 (32x32x16) to 65536 (32x32x64) in
both routes (see Table 1 below).
We consider a ResNet with 104 layers designed to classify CIFAR colour images (32 x 32 x 3 pixels) into
10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck). More details about the
network and the data can be found in [8]. The point clouds considered at each chosen sequential layer are
based on a sample of N =10,000 test CIFAR-10 images, each of which contains 32-by-32 pixels. The layers’
embedding dimensions, mk, and the corresponding twoNN estimate of dimension, Dk, of each point cloud
are shown in Table 1.
Although the embedding dimensions, the mk, can be very high for our chosen layers within such networks,
the estimation of the manifold dimensions, the Dk, and our implementation of persistent homology (see next
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Figure 1: A single stack within a ResNet.

section) both merely require the pairwise distances between the points within the clouds within the Ek. This
is also true of the Mapper algorithm investigation given in [4].
In estimating the dimensions, Dk, we tested for the size of possible sampling errors (when N =10,000) by
taking 80% random sub-samples, recalculating, and examining the resulting distributions for each Dk. These
were indeed significantly smaller than the layer-to-layer, differences, see Figure 2.

6.2 Persistent Homology

Persistent homology computes the different scales at which topological features, such as connected com-
ponents, cyclic rings around holes, voids surrounded by closed two dimensional surfaces, and so on, are
generated and extinguished within the point cloud (in this case at a single layer). A chosen real valued
filtration, or scale parameter, is used to associate points pairwise within the point cloud. Then the resulting
graph structure is analysed as that scale parameter increases from zero. In particular, the zeroth degree
features, H0, identify the various connected components of the partly connected point cloud; while the first
degree features, H1, identify the cyclic ring sub-structures around holes through the partly connected point
cloud. In this application the scale parameter is always the distance between pairs of points within Ek at
the kth layer. As the scale increases features within the whole cloud, such as a cyclic ring around a hole,
will undergo birth (and first appear as a suitable subset of points become connected up) at some relatively
small scale, b say, and then undergo death and become filled in (as points across the ring’s diameter become
connected) and disappear at some larger death scale, d say. We consider a feature to be prominent if the
ratio d/b is relatively high (relatively to features that might be observed within point clouds of similar size
drawn under some appropriate null model). In measuring the prominence of a single cycle we will take
log(d/b), which is close to zero for non-prominent cycles (that are to be expected from sampling noise).
In Figure 3 we depict the persistence diagrams, plotting d versus b values for the H1 (and H0) persistent
features for the point cloud at each layer. The absolute values of the scale parameter axes for each persistence
diagram (that may be somewhat mk, embedding, dependent) play no role here as we will only use d/b ratios.
We hypothesise that local folding, or pleating, of the manifold Mk would decrease the prominence of noisy
cycles as points in it become bunched up, so the surviving cycles are at a smaller scale and may be even subdi-
vided. In Figure 4 we observe a decrease in the prominence sum over all cycles (weighted by log(death/birth))

4



On the hidden layer-to-layer topology of the representations of reality within neural networks

Activation Embedding Estimated
Layer Name Type Dimension mk Dimension, Dk

Input None 3072 32.4
relu1 relu 16384 51.2
stack1block4relu3 relu 65536 93.5
stack2block3relu3 relu 32768 67.0
stack3block2relu3 relu 16384 44.9
global average pooling pooling 256 16.2
fully connected linear 10 8.1
softmax softmax 10 2.8

Table 1: Eight layers selected from the example Residual Neural Network, showing each layer width (the
embedding dimension) and the estimated dimension for the embedded manifolds, using the twoNN algorithm
[3], sampled by the N = 10, 000 point cloud.

Figure 2: Box plots showing the possible sampling errors on the estimates of the dimension, Dk, by layer,
given in Table 1, see [3]. We took 100 independent 80% random sub-samples in each case.

within each of the first two layers, which is consistent with the observed dimensional increases according to
the above hypothesis. These two measures are highly related and negatively correlated (except for the final
softmax layer).
In fact, the prominences of features (such as the H1 cyclic features considered in Figure 4) have been recently
discussed [9]. The observed cumulative distribution of the log(d/b) values obtained here, as shown layer by
layer in Figure 5, follows the left-skewed Gumbel distribution (after zeroing the mean). This accords with
empirical observations for many data sets [9].

7 Proactive regularisation

7.1 Possible topological regularisation

Our experiments suggest that a new topological regularisation term within the loss function, to be minimised
during training, could be introduced to penalise combinations of weights that generate unwanted topological
features in the data clouds for intermediate layers and the mappings between them. Ideally such a term
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Figure 3: Persistence diagrams for each of eight layers. In each case the orange points indicate the (birth,
death) scale coordinates of the corresponding persistent cyclic ring features (H1), while the blue points
indicate the scale coordinates of the separate persisting connected components of the point cloud (H0).

would reduce the dimensional expansion as measured by an increase in the estimated dimension of the layer
point clouds, under the continuous mapping, ϕk, that maps the Mk onto the Mk+1.
Such a novel topologically-aware approach to network training would contribute to an emerging field. Indeed,
a recent review [10] considers topological machine learning, the intersection of topology-based methods and
machine learning algorithms, and identifies some common threads and future challenges. It discusses intrinsic
topological features that incorporate topological information directly into the design and regularisation of a
machine learning model.
In [11] the authors propose a measure of topological complexity for the classification boundary of a given
classifier that may be used for regularisation in order to force the topological complexity of the decision
boundary to be simpler. That topological information acts as a penalty during classification, whilst dif-
ferentiability, needed to enable minimisation, is obtained through the piece-wise linear approximation the
regularised loss.
Some similar, more recent, work [12] has focused on smoothing the internal mappings by reducing the
curvatures of decision boundaries (in terms of network parameters), and giving conditions for producing
flat, or developable, decision boundaries.

7.2 Possible geometrical regularisation

A more direct regularisation approach is to consider the typical and relevant Jacobean for the continuous
mapping, ϕk , that maps the Mk onto the Mk+1. At any point in the cloud sampling Mk, we have the
mk+1×mk Jacobean (the linearization of ϕk, representing its first derivatives). This has rk = min (mk,mk+1)
singular values in its singular value decomposition. Each represents a scaling factor relevant to suitable
directions within Ek and Ek1 .
Clearly, in this application, each Ek has a natural size, since the kth layer has activations for each of the
mk artificial neurons, with each scaled to be in [0,1]: so Ek = [0, 1]mk . Hence the singular values represent
geometric stretching or shrinking in the various rk orthogonal directions.
During the calibration of ϕk one should penalise large changes in the singular values for the Jacobean as
we move through the point cloud inside Ek, which could represent folding or pleating. Such changes are
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Figure 4: Left: the inferred dimension of the point cloud at successive layers (given by the estimator
log(1−F (µ))/ log(µ), see [3]). Right: the sum of the log-prominences for cyclic (H1) features (note that the
short-lived cycles contribute almost zero).

represented by the mk+1 ×mk ⋊ (mk + 1)/2 second derivatives of ϕk.
Of course any proposed explicit and smooth adjustment to the loss term can be usually dealt with by the
gradient descent optimisation (a point noted in [13]). This factor alone makes a consideration of the Jacobean
and higher derivatives attractive, as opposed to any non differentiable (yet topological) adjustments.

8 Discussion and further work

The main aim of this exploratory work is to illustrate that ideas from topological data analysis can be used
to investigate the shape of the point clouds that pass through an AI system. The resulting insights shed
light on the inner workings of the system; in particular how adversarial perturbations to input data can
lead to misclassification. Building on work from [2], which applied a dimension estimation algorithm to the
layered architecture VGG16, here we studied a more general RESNET architecture and incorporated a more
sophisticated tool: persistent homology. In our tests we found that dimension estimation and persistent
homology produce consistent summaries, with a decrease in the prominence of cycles accompanying an
increase in the intrinsic dimension of the data cloud. It would be of interest to extend these studies to
other network architectures and higher resolution images, and to develop a methodology for comparing and
quantifying the properties of competing systems.
The results also led us to propose that a topological measure could be added to the loss function during
training, as a means of encouraging beneficial properties, such as resilience to adversarial attack. The prac-
tical implementation of this type of topological regularization within real-world scenarios raises a number
of challenges. Such a persistent homology pipeline, producing and analysing persistence diagrams during
iterative training, is inherently non-differentiable and computationally expensive, even for the setting that
we used here with smallish data clouds (N = 104) and parameter space (∼ 107). Indeed, the computational
overhead associated with persistent homology calculation currently renders it exploratory rather than oper-
ational; so it may be viewed as a diagnostic tool. Further work is needed to focus on (i) the development of
simpler surrogate measures, which may be more necessary than sufficient, for pleating and folding behaviour;
and (ii) integrating such topological regularization into the training process.
We also note that studying the properties of feature space along a computational pipeline is currently
an active topic in graph neural networks (GNNS). Here oversmoothing has been observed, where increasing
network depth leads to homogeneous node representations—essentially a collapse of dimension [14]. Similarly,
over-squashing refers to the circumstance where message passing bottlenecks arise, so that information fails
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Figure 5: Left: layer by layer distributions of the log(d/b).

to propagate efficiently through a graph [15]. It would be of great interest to understand how topological
data analysis techniques, of the type studied here, can be used to provide insights into these phenomena.
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