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Abstract

Higham, D.J., Error control for initial value problems with discontinuities and delays, Applied Numerical
Mathematics 12 (1993) 315-330.

When using software for ordinary differential equation (ODE} inifial value problems, it is not unreasonable to
expect the global error to decrease linearly with the user-supplied error tolerance. For standard ODFs,
conditions on an algorithm that guarantee such “tolerance proportionality” asymptotically {(as the error
tolerance tends to zere) were derived by Stetter. Here we extend the analysis to cover a certain class of ODEs
with low-order derivative discontinuities, and the class of ODEs with constant delays. We show that standard
error ¢ontrol technigues will be successful if discontinuities are handled correctly and delay terms are
calculated with sufficiently accurate interpolants. It is perhaps surprising that several delay ODE algorithms
that have been proposed do not use sufficiently accurate interpolants to guarantee asymptotic proportionality,
QOur theoretical results are illustrated numerically.

Keywords. Delay ordinary differential equations; discontinuity; global error; interpolation; local error; defect;
residual; tolerance proportionality; Runge-Kutta.

1. Intreduction

A typical user of ordinary differential equation (ODE) initial value software will define a
problem, specify one or more output points, and choose an error tolerance. Hence, despite the
fact that the stepsize plays a central role in the design and analysis of ODE solvers, the
meshpoints selected by the algorithm are normally transparent to the user. For this reason it is
pertinent to ask how the error in the numerical approximation behaves as a function of the
error tolerance. This question was addressed by Stetter [18,20], who derived sufficient condi-
tions for an algorithm to exhibit “tolerance proportionality”, that is, an approximately linear
relationship between error and tolerance. Tolerance proportionality (TP) is widely regarded as
an extremely desirable property (indeed it is often, and sometimes erroneously, taken for
granted by users). The perest package [8], for example, uses a linear least squares fit of error
versus tolerance as one criterion for evaluating the performance of an initial value solver.
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Further analysis directed at explicit Runge—Kutta (RK) methods with continuous extensions
was given in [11]. This work is a sequel to [11] and its aim is to extend the existing analysis to
allow for ODIs with low-order derivative discontinuitics and ODEs with constant delays.

In the rest of this section, we very briefly outhne the results that will be used later; for more
details, and numerical examples, see [11].

We consider the solution of the nonstiff initial value problem

y(t) = f{1, y(£)), y(fo)ﬁyoERNs Lysi<iyy, (1.1)

where the range of integration [7,,7,,,] is finite, using a pth-order RK method. When such a
method advances from y, , =y(t,_,) to y,=y(z,) over a step of length A =t _—1t, |, the
local error for the step is defined as

n—12

len = y!‘? - Z?i(tﬂ)’

where the local solution, z,(t), satisfies z,(¢) = f(¢, z,(¢)) and z,(z,_,) =y, ,. Unless other-
wise stated, we assume that the problem (1.1) is sufficiently smooth for the local error
eXpansion

1(’)”#;154‘11#(}7”_1,In_1)+0(hf:+2) (12)

to hold, where the continuous function ¢ is independent of A,. We further assume that a
locally-based measure of the error, [le(y,_,, f,_;, 2, )|, is computed in the course of the step,
where

e(ynw? 2 tn—-l ? hf’l) = hﬁ‘p(yn—l’ rn—]) + O(hf“l)’ (13)
and 47 is continuous and independent of #,. Typically, e(y,_,, ¢,_,, h,) will involve the
difference of two approximations to v(z,). Also, the norm |- || may incorporate component-

wise absolute and relative weights specified by the user.

The step is accepted if |le(y,_,, .1, A,) 1 <8, where & is the user-supplied error toler-
ance, otherwise the step is retaken from 7, , with a smaller stepsize 4,. The usual method for
selecting the next stepsize is to take a fixed portion of the asymptotically optimal stepsize, A
that is,

opt?

1
5 /P

h. .. =0h

o = R (1.4)

new opt?

” e(yn—lb tn—l-' hn)El

with 8 (0, 1) constant.
We will use n(#) to denote any continuous interpolant that takes the value v, at ¢, for

n=0,1,.... In particular 7,(¢) denotes the ideal interpolant from [19], which spreads the local
error uniformly over each step:
(E Rl P )
Tll(r):mzn([)_i_ h ieﬂ’ fe(t”7“ tn:]' (15)

n

We point out that »,(#) is not necessarily computable, and that n(¢) generally has a jump
discontinuity at each meshpoint ¢,

In the following theorem, which is taken from [11, Theorem 2.1], we use the convention that
“piecewise continuous” means continuous except possibly at the meshpoints {z,}, and “piece-
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wise C'” means continuous with a first derivative which is continuous except possibly at the
meshpoints. We also point out that the theorem does not require the function n(¢) to be
related to a numerical solution——this fact will be exploited i Section 3.

Theorems 1.5, Given the initial value problem (1.1) suppose n(t) is piecewise C* and satisfies
gy =v,. Let i) = nl1) —y(1) denote the global error in w(t). Then the conditions (A) and
(B) below are equivalent:
(A) e(t) = v(1)8 + g(1), ty<1 <ty where v(t) is C' and independent of 8, and g(1) is
piecewise C with zeroth and first derivatives of o(35).
(B) n'(¢) = ft, n(1)) = y(£)8 + 5(t), ty < t <tona, where ¥(1) is continuous and independent of
8, and s(t) is piecewise continuous and o 8).

Condition {A) is a formalization of the concept of tolerance proportionality. For any fixed
point 1, <1 < {4, it ensures that the global error is asymptotically linear in 8. The condition is
strong in the sense that it also requires the global error in #'(¢) to be asymptotically linear in 8.
The equivalent condition (B) provides a more useful characterization from the point of view of
analysis.

We will make the following assumptions regarding the numerical solutions:

(1) The stepsizes satisfy max {4} = o(1) as § — 0.
(2) The initial stepsize is chosen so that

ey, g, 1)1l =0778+ 0(5), (1.6)
(3) The function || ¢{y(¢), r}|| from (1.3) is non-vanishing.

Note that assumption (1) implies convergence of the Runge-Kutta solution; that is, (¢} — 0 as
& -0 (see, for example, [10, Theorem 3.4]). Also, from assumption (3) the error control
criterion |l e(y,_;, ¢,_y, #,) Il <& implies that a function that is O(h?) is also O(8). It is shown
in [11] that under assumptions (1), (2), and (3) the ideal interpolant satisfies condition (A), and
hence the algorithm exhibits tolerance proportionality.

In recent years it has become common to augment the discrete RK approximation with a
computable interpolant, or continuous extension, g(t) = y(r), satisfying g(z,) =y, and g'(t ) =
ft,, y,). Computable interpolants can be used to provide graphical output, off-meshpoint
approximations, and approximate roots of the solution; see, for example, [3,5.6]. It was shown
in [11] that such interpolants will not satisfy condition (A) of Theorem 1.1, although they may
satisty a weaker condition. To be more specific, the RK interpolants that have been proposed

in the literature can be split into two groups; if / is the largest integer such that, for every fixed
T€[0, 1],

then g is higher order if = p + 1 and lower order if I =p. Higher-order interpolants satisfy
a(t) —y(£) =v(1)8 +0(8), 1<t <oy, (L.7)
where v(s) is C' and independent of &, but not q'(t) —y'(f) = v'(r)5 + o(8). Hence they
preserve the TP in the solution approximation, but not in the first derivative approximation.
For lower-order interpolants we have g(¢) — y(¢) = O(8), but the leading term in the global

error does not, in general, depend linearly upon 8. This difference in behaviour between the
two classes of interpolants plays a key role in our analysis for delay ODFs.
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In the next section we look at the effect of overriding the usual stepsize selection mechanism
in order to hit an output point exactly or to integrate across a discontinuity. As well as being of
interest in their own right, the results of Section 2 are used in Section 3 where error control
methods for constant delay ODE systems are analysed. In both sections we test our predictions
numerically. We give our conclusions in Section 4.

2. Output points and discontinuities

Suppose that the RK method described above reaches the point ¢,_, and uses (1.4) to
compute the “natural” stepsize ki, with which to continue the integration. There are certain
circumstances under which a method will artificially restrict the stepsize to 2* <h___ in order

to hit the point +*:=1¢__, + h™ exactly. This may happen, for example, if 1 * has be;‘lﬁ specified
as an output point, or if a low-order derivative of the solution is known to have a discontinuity
at ¢* 1In this case, we have z (¢, ) —ylt,_)=0(t, )8+ o(8). A standard differential
inequality [10, Theorem 10.2] then gives

2ty =y{(t)=0(8) fors, ,<t<t*.
Assuming that f is Lipschitzian, it follows that

(1) =y (t)=0(8) fors, ,<t<t?*,
and hence

(1) =¥ (1) =2,(1, ) =¥, 1) + O(h*5)

=v(t,.1)}6 +o(5).

Since v(z) is €', we have

z,(t*y = y(t*) =v(t*)8 + o8). (2.1)
Now the numerical approximation y* =y(s*) satisfies y* —z (+*)=0(h*?*"), and hence
y* -z (t*) = o(8), so that, from (2.1),

yE—y(t*y=0(t*)8 + 0o(8), (2.2
showing that TP in the solution is maintained at ¢ *,

To examine the first derivative approximation n{¢) we note from (1.5) that
*

le
{tF) =y (tFy=z,(t*) + e -y'(t%),

where le™ denotes the local error over the last step, le® ==y * —z (¢*). Hence
fe*
milt) =y () =S {07, 2, (1))~ F(0F, y(1F)) +

le
=f,(t*, y(t*))v(r*)8+~}:;+o(6), (2.3)

using (2.1). Now the quantity le* /2* behaves like O(h*?) as A* — 0, and hence will not
necessarily be negligible compared with the first term in (2.3). The key point to note is that, as
8—0, h* will follow a decaying sawtooth pattern, changing discontinuously each time a
meshpoint coincides with ¢*. Hence le™ /h* will not behave like a linear function of 8, and it
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Fig. 1. Logistic equation. (Line type becomes more solid as § decreases.)

follows that TP in 5{{t*) cannot be guaranteed. However, the computable interpolants, g(1),
for which q'(¢+*) =f(1*, y*), satisfy

g(%) =y (%) = F(17, y*) = f(1%, Y1) = £, (0%, (Y o(t*) +o(8),  (24)

using (2.2). The function f (¢, y(¢+))u(r} is independent of 8, and hence we have a proportional-
ity result for g'(t™*). '

To summarise, in the case where the final stepsize is reduced to hit t* exactly, TP in the
solution approximation is retained at all points, TP in n(¢) is lost at ¢*, and TP in ¢'(¢) is
introduced at t*. A rather surprising consequence is that, for to<tst¥,

e ni{t) gives TP at all ¢ except ¢ =t *,
e g'(¢) gives TP at no t except t =1*,

We illustrate these phenomena using the logistic equation (problem A4, unscaled, from
pETEST [8]) .

()=t —5y(0)), y(O) =1, (2.5)

which has solution y(¢) = 20/(1 + 19 exp(— 11)). We implemented the fourth- and fifth-order
pair RKS(4)7FM of Dormand and Prince [4] in extrapolated error-per-step mode; that is, with
the fifth-order formula advancing the solution and the difference between the fourth- and
fifth-order values giving the error estimate. Mixed relative—absolute weights were used in the
error measure. The code was made to reduce the final stepsize, if necessary, so as to hit the
output point ¢* =1, exactly. The problem was solved repeatedly using 100 equally spaced
values of 1* in [5,20], and after each integration we recorded the norm of the global error in
v, f(r*, y*), and vlg(r *). Since mi(r*) is not computable in general, we used the approxima-
tion f(¢+*, a(+*)) +1e*/h*. Here a(+*) is the result of a step from {r, ,, y,_,} of length A*
using an eighth-order RK formula, and le* =y* — fi(t *). The tests were performed for error
tolerances of &= 107", 1077, 10~°. The results are plotted in Figs. 1-3. {In these, and all
subsequent figures, discrete values are joined by straight lines for clarity, and the line type
changes from dashed /dotted to dashed to solid as the tolerance decreases.)
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Fig. 2. Logistic equation.

We see from Fig. 1 that the global error to tolerance ratio for y* appears to be converging to
a discernible limit function as 6 decreases, (The limit function is not the same as that in [11] for
the same method and test problem, since here we are using mixed, rather than absolute,
weights in the error measure.) The TP behaviour of f(¢*, y*), given in Fig. 2, is also
reasonably good. For n{{¢*), however, the ratio does not settle down to a limit. Comparing
Figs. 2 and 3 we see that the n[{(+*) ratios seem to correspond to those for f(f*, y*) with
“random” oscillations added. This is what we would expect from equations (2.3} and (2.4); the
nonsmooth le* /A* term in {2.3) is clearly making its presence felt.

Next, we must consider what happens when the integration is re-started from the point 1*.
This is essentially the same as applying the method to a new initial value problem, except that
the initial value y* is not exact, but satisfies (2.2). It can be shown that Theorem 1.1 extends to
the case where the initial value has an error that is asymptotically linear in §—a more general
version of this result is proved in the next section. It follows that TP is maintained after
crossing ¥, and, by induction, when a finite number of discontinuities are encountered.

[mp{Eoa) = ¥ (o I/ 6

Fig. 3. Logistic equation.
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Fig. 4. Problem 2.

We illustrate this behaviour using problem F2 from prrest, which is also used in [7],
y(1)= 55-1.5y(t) for [t} even,
55—0.5y(¢) for |t} odd,

v{0) = 110.

(Here | 1] denotes the integer part of 1.) We see that there are discontinuities at * € {i}?°,. The
problem was solved with the RK algorithm described earlier, except that the stepsize selection
was altered so that rather than including the points of discontinuity in the mesh, we crossed
them with stepsizes of o(8}). (This was done in attempt to model the more realistic situation
where the discontinuities are not known exactly {7].) Figure 4 records the global error to
tolerance ratios at the meshpoints for § =107 1077, 107", In Fig. 5 we present the
corresponding picture when the standard stepsize selection strategy was not changed. In the

former case the ratios appear to be approaching a limit, whereas in the latter case the errors
are much larger and do not settle down.

0 < <20,

K104

(8 — 9(ta2)/6

Fig. 5. Problem F2,




322 D.J. Higham / [VPs with discontinuities and delays
3. ODEs with constant delays

One of the simplest examples of a delay differential equation is given by
y{ty=y{t 1), 120, (3.1)
yity=1, t€[~-1,0].
Here we see that y(¢) =1¢ + 1 over [0, 1], and in general y(¢) is a polynomial of degree i over
[i—1, I]. Also, notice that y’(t)_ has a jump discontinuity at ¢ =0 and this discontinuity is
propagated in such a way that yU¢} is discontinuous at ¢ =i — 1.

The general problem considered here is a system of ODEs with & constant delays, which we
write as

y(y=F(t, y(t), vt —7), (i —713),. ..,y — 7)) €RY, 0<t<toa (3.2)
y(t)=d(1), re|~7.,0].
We assume that the delays are ordered so that 0 <r, <7,< --- <7,, and that the initial

function, @(1), has p + 1 continuous derivatives. As we noted in the example (3.1), if @(¢) does
not match y(#) smoothly at ¢ = (), then derivative discontinuities will be propagated throughout
the solution. It can be shown that y'(¢) is generally discontinuous at r=0 and that a
discontinuity in y*“(¢) at r=1¢* leads to a possible discontinuity in y“*'1) at 1 =¥ -+ 7, for
j=1,2,..., k. (For an analysis of the location and order of discontinuities in more general
classes of delay ODEs, see [14,21,221)

We assume that F in (3.2) is a smooth function of each of its arguments, and in particular
that if r(¢} is a given function with p + | continuous derivatives, then the standard initial value
problem (IVP) y'(1) =F(¢, y(¢), r(t — 7)), r(t —1,),..., (e = 7.)), ¥(0)=y,, is sufficiently
smooth for the expansions (1.2) and (1.3) to hold for any initial value y,,.

Now due to the discontmulty propagation m (3.2), it follows that there exist a finite number
of points {£,}, such that 0 <f, <fy< --- <i,and y(¢) has p + 1 continuous derivatives over
each subinterval (7, {,.,), and also over (f, 00). Moreover, the discontinuity points 7, can be
computed a priori.

The most natural approach for solving (3.2) numerically is to use an interpolation procedure
to approximate the retarded values, y(r — 7,), and then to apply a standard ODE method to the
resulting TVP (see [1,10,12,13,15-17] for examples). Here, we assume that an explicit RK
method is used, with error control and stepsize selection as described in Section 1, and with a
corresponding interpolant. In other words, we apply the RK method to the ODE

y(e) = P(L, y(1), a(t = 73), G(t = 72 erd(t = 7)) 0L <Ly, (33)

y4(0) = (0),
where g(¢) = @(t) for t €[—7,, 0}, and for ¢ > 0, g(¢) denotes either a higher- or lower-order
interpolant to the discrete approximation, as described in Section 1. (The superscript g
emphasises that y? depends upon g, and therefore upon the error tolerance 8.) Note that since
we are concerned with an A, — 0 analysis, we may assume that on a general step from ¢, ;| to
t,, the retarded values needed by the RK scheme lie to the left of ¢, _;, and hence interpolation
(rather than exirapolation) can be used. We will suppose that the discontinuity points fi are
located a priori and incorporated into the mesh. Our aim is to examine what conditions on the
interpolation process are necessary/ sufficient to guarantee tolerance proportionality.

me
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We note immediately that the first smooth subinterval will be (0, r,) and that on this
subinterval we are, in effect, solving the standard IVP

y(£)=F(t, y(£), Pt~ 7)), Pt —7,),...,P(1 — 7)),
y(0) = @(0).
Since this ODE does not depend upon 8, the results mentioned in Section 1 apply directly, and
in particular we conclude that higher-order interpolants will satisfy (1.7) over (0, £,) while
lower-order interpolants give g(¢) —y(#) = O(8), but do not give (1.7) in general.

Now suppose that we re-start at 7,{=7,). To proceed with the analysis we define the local
solution over a general step from ¢, | to ¢, by

() =F(1, z}(1), q(t —7,), q(t —73),-- . q(t~ 7)),

Z.g(tn—l) myn-wl
and the local error at ¢, by

133 =V¥Ye— Zg(tn)‘
The corresponding ideal interpolant can then be defined by

a g (t - tnf 1) g

ni(t) :";Zn(f)+ h 1en= IG(IH—.i.’tn]‘
Our approach is to examine the global error #7(¢) — y(¢) over (¢, {,) by splitting it into two
components, y?(¢) —y(¢) and n#(¢) — y%z). First we look at y¥(¢) — y(s), and show that with
higher-order interpolation if we regard y%(r) as an approximation to y(¢) then condition (B) of
Theorem 1.1, and hence also condition (A), is satisfied.

Using (¢, r(#)) to denote F(t, r(z), y(t —7,), y(r = 7,),..., y(t = 7,)), for a given function
r{#), we have

yO(e) (e yU)) = F(t, yi(1), qlt = 1y), q(t = 73),..., q(t 1))
= F(t, y2(t), y(t —7.), y(t —73), ., v(t — 1)) (3.6)
Hence y?'(t) — f7(¢, y41)) = Olmax, || g(r — 7,) — y(t — 7)1). Since we solved a standard IVP
(3.4) over the first subinterval, we know that O(max; || g{t — 7,) = y(t — 7)) = O(8) for either
higher- or lower-order interpolants. Using this in (3.6) it follows from a standard differential
inequality (sce, for example, [10, Theorem 10.2, p. 56]) that | y7(¢) ~ y(£) | = O(8). Further,

writing y#(¢) = y(6) + (y9(t) —y(¢)) and q(r — 1) =yt —7) +{glt = 7) —y(t — 7)) in (3.6)
and expanding, we find that

yie) =2 (¢, yo(8))
K OF
= ; 5 (v, y(-m)sy(t=r et =) —y(t =)

(3.4)

: (3.5)

n

+O(max llg(r =) =y(t =) 1)
+O(lly (1) =y max g (t =) = (s = 7)1
+O(lly(e) =y (1) 1I1%),
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where dF /dz, denotes the partial derivative of F(¢, y, 2, z,,...,z,) with respect to z,. It
follows that

y"’(ﬂ-fy(t y4(1))
&
§ (f (1), v =71}y (= m))a(t = ) —y(t = 7)) + O(6%).  (3.7)

Now, with a higher-order interpolant we have ¢(t — 7.} — y(t — 7,) = v{2)§ + 0(8), where
vt} = vt — 7,) is continuous and independent of 8, and hence from (3.7)

yI(e) = (e, yi(2)) =T(2)8 + o(8),

where I'(#) is continuous and independent of 8, and the o(8) remainder is clearly continuous.
We may thus apply the equivalence resuit of Theorem 1.1 to deduce that

vy —y(t) =V{() + G(1), (3.8)
where V(¢) is C! and independent of 8, and G{(t) is piecewise C' with zeroth and first
derivatives of o 8).

For the lower-order interpolant, however, we know that, in general, g(¢ — 7.} — y{(¢ — 7;) does
not behave linearly (asymptotically) as a function of 8, and hence (3.8) does not hold in general.
Next we show that the error control method causes the ideal interpolant n¥(¢) to give TP

relative to the “approximate” true solution y?(¢). To do this we generalise Theorem 1.1 to
allow for the fact that y“(t) depends upon 8.

3] l

Theorem 3.1. Recall that y(t) is the solution to (3.2), and let y3(t) be the solution to (3.3). Let
7(t) be a piecewise C* approximation to y9(t), and let e(t) = n{(t) — y9(t) denote the correspond-
ing error. Suppose that

&(7,) = K8 +o(3), (3.9)

where K is a constant vector. Then the following conditions are equivalent.
(A) elt) =v(0)8 +g(1), te(l, 1,), where v(t) is C' and independent of 8, and g(t) is
piecewise C' with zeroth and first derivatives of o(8).
(BY n'(£) = F(t, n(t), q(t — 7)), qlt —712),...,q(t =7, =v(£)8 + 5(1), t€(F,, 1,), where
y(t) is continuous and independent of 8, and s(t) is piecewise continuous and o).

Proof. The proof is based on the proof of [11, Theorem 2.1]. We introduce a third condition,
(C), and then prove that (A) = (B}, (B) = (C), and (C) = (A).

Q) e'(1) = F (e, yit), gt = 1), qlt —7,),...,qlt — 7, Delr) = y(£)8 + uls), where y(r)
is the function appearing in condition (B), and wu(t) is piecewise continuous and
o(8) + O(e()?). (Here F(t, y, z,, z,,...,2;) denotes the partial derivative of
F(t, y, z4, 2,,..., 2,) with respect to y.)

(A) = (B): Writing n{¢) =y?(¢} + e(¢) we have
77’("‘) ”F(t> 'n(t), q(t—Tl)w":q(f _Tk))
=e'(t) = F (t,y9(t), g(t —ry),...,q(t — v })ele) +w(t),
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where w(t) = O(e(r)?). Hence, since g(t — 7,) — y(t — 7,) = O(8) and y*(¢) — y(1) = O(§),
(1) —=F(t, n(t), q(t —7,),...,q(t — 7))
=g'(t) —F,(¢, y(¢), v(t =71}, v(t = 7,))e(2) + (1),
where w(1) = O(e(t)8 + &(¢)?). Finally, using (A),
(1)~ F(t, n{t), gt —7),...,q(t — 7))
=8[v" (1) = B {1, y(1), y(r = 7)), w(t = 7))o (t)]
+g' (1) = F(t, v(1), y(t —7)s. . oyt — 7)) e (1) + w(1),

which has the required form.
(B) = (C): This follows as in the proof of [11, Theorem 2.1].
(C) = (A): Let v(t) denote the unique solution to the linear initial value problem
v'(t) = E(t, y(1), y(t = 71), y(t = 1), vt = 7))o(t) =y (1),
A . (3.10)
v(t,) =K.

From (C), we have

£(1) = F (1, y(1), y(t =)y y(t = 7)o p(E =7 ))e(1) = 9 (N8 <B(),  (3.11)
where u(f) is piecewise continuous and o(8) + O(e(#)?). From (3.10) and (3.11), &(¢) — §0v(¢)
satisfies

(e(e) = 80(0)) = F(t, (1), y(t = 7)o y(1 = 7))((t) ~ 80(1)) = (¢).

Standard theory (see, for example, [2, p. 86]) shows that this initial value problem has a solution
of the form

e(t) ~du(t) = Y(f){g(r}) —au(f)) + EY”(M(M) dp |, (3.12)

where the fundamental solution matrix Y(¢) is defined by
Y ) =F (e, (2}, vt =m1), y(t = ma)s ey (E = 7)Y (1),
Y(i) =1

Note that ¥(¢) is independent of 8, and that &(7,) — 80(f)) =&(f,) — 8K = o(8). It follows that
(1)~ su(t) =g (1),

where g(1) is o(8) + O(e(r)?) and continuous, and g'(¢) is o(8) + O(&(r)?) and piecewise

continuous, giving the desired result. O

Now the “approximate” problem y?(z) =F(z, y¥(¢t), q(t — 7)), glt —7,), ..., qt —7,)) is
the one that the RK method is actually being asked to solve. We would like to apply the
standard ODE analysis in [11] in order to conclude that the error control causes condition (B)
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to hold. There is, however, one complication—the (higher- or lower-order) interpolant g(z) is
typically only a C' function, and hence the approximate problem is not smooth enough for (1.2)
and (1.3) to hold. We can sidestep this difficulty by noting that the RK process samples F at a
discrete set of points. For each 8, we could replace g{f} by a smoother function that
interpolates g(7) at these discrete points and the numerical solution would remain unchanged.
Hence we may “pretend” that g{t) is globally C?**. It follows that condition (B) in Theorem
3.1 is satisfied, allowing us to deduce the desired result.

Corellary 3.2. Suppose that we solve (3.2) over [1,, 1,1 in the manner described above, using either
a higher- or lower-order interpolant. Then, provided that given y(t) for t <t,, | y(y(t), DIl #0
over 1., t,] in (1.3), the ideal interpolant sarisfies

n(t) —yU(t) = V(£)6 + G{1), (3.13)

where V(t) is continuous and independent of 8, V(1) € C Wi, 1), and G(1) is piecewise C* with
zeroth and first derivatives of of8).

When a higher-order interpolant is used we may thus combine (3.8} and (3.13) to give
(1) ~y(1) =V(£)6 + G(1), (3.14)

where V() is continuous and independent of 8, V(1) € C'(i,, 1,), and G(t) is piecewise
with zeroth and first derivatives of o(8). On the other hand, with a lower-order interpolant we
see that since (3.8) does not hold, in general the leading term in n‘f (¢) — y(r) will not be linear.
Now on a general step from f,_, to ¢, in the integration over [f,, f,] we have 7¥(¢) — z9(1)
= O(h?*) and, for a higher-order mterpoiant glt) —z3(¢) = O(h2+"). Hence q(t) - (t) =
O(h"””l) so that ¢(#) — n%(¢) = o(8) and, using (3.14),
q(t)—y(t)=V{t)d + o(8). (3.15)
This shows that a higher-order interpolant maintains TP in the y(7) approximation across
[7,, £,]. By induction, (3.14) and (3.15) remain true when a finite number of smooth subintervals
are crossed. The induction is valid provided that the tail of backvalues never crosses into the
current subinterval; that is, f,,, —f, <t,. There are two cases where this condition does not
hold. First, if the coupling in (3.2) is weak, we may be able to take smooth subintervals with
width bigger than 7,. Second, the integration may proceed into the final smooth region (tm, ),
We will show how to deal with the second case. (The first case can be handled smmidr y.} Given
any fixed point ¢ >7 , let ty, be the furthermost meshpoint such that 1, - i, <7, and in
general let ¢, be the furthermost meshpoint such that 7,y —¢,, <7,.In this manner the range
[fm, t] can be divided into a finite number of subintervals of width <7, Now we can
inductively obtain (3.14) and (3.15) over each subinterval, so that eventually

q(t) ~y(2) = V(1)d +o(3) (3.16)
at the given point .

To verify the analysis, we implemented a three-stage, second- and third-order RK pair of
Fehlberg [10, p. 170] in extrapolated error-per-step mode, so that p = 3. Two alternatives were
used for the interpolant g. First, a piecewise quadratic interpolant defined over [z,_,, ¢,] by
glt;_ ) =vy,_q, @',y =fl,_, y;,_), and g(+) =y, was implemented. Here g(¢} has local
order /=3 =p, so we have a lower-order interpolation scheme. The resulting method will be
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Fig. 6. Delay logistic equation: P3L4 method.

denoted P3L3. Second, we used the standard two-point cubic Hermite interpolant which
satisfies g(;_,) =y, _, q'(¢,_ ) =f(t;_1, v, ), q(t) =y, and ¢'(¢,) = f(¢,, y,). In this case the
local order of g is [ =4 =p + 1, and the interpolant is of higher order. This method will be
denoted P3L4. We also implemented a p =4, /=4 method, which we refer to as P4L4,
consisting of the third- and fourth-order RK pair from [6], in extrapolated error-per-step mode,
along with the cubic interpolant above. We mention that the p =4, | =4 combination has
proved to be a popular choice {12,13].
The algorithms were tested on the logistic equation

V(O ==y =D), 120,
yty=1, re{-1,0],

which is a delayed analogue of (2.5). Equations of this type arise in the study of population
dynamics [10, p. 292]. The global error to tolerance behaviour of the three methods for

0.5

(g(2) = wt) )16

20 25 30 3% 40

ol 5 i0 i

t
Fig. 7. Delay logistic equation: P3L3 method,
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Fig. 8. Delay logistic—equation: P4L4 method.

8=10"% 107%, 107% is plotted in Figs. 6~8. Here the global error in g(¢) was computed at 101
equally spaced points in the range [0, 40]. The numerical solution with § = 107'® was taken to
be the “true” solution in each case. We see in Fig. 6 that the ratios for the P3L4 method
behave smoothly and appear to approach a limit function. For P3L3, in Fig. 7, although the
behaviour is similar, the ratios do not seem to converge to a limit, but rather oscillate about a
fixed curve. This illustrates the potential difference in behaviour between higher- and lower-
order interpolants that our analysis predicted. The P4L4 method in Fig. 8 also exhibits
nonlinear variation of global error to tolerance.

The methods were also tested on a disease propagation model [10, p. 295]. Here, all three
methods displaved good tolerance proportionality—Tfor P3L3 and P4L4 the nonlinear effects,
although O(8), were not sufficiently large to be visible. (Similar behaviour on certain ODEs was
observed in [11}.)

We mention that Bellen and Zennaro {23] investigated higher- and lower-order interpolation
in a slightly different context. Those authors also found that higher-order interpolants give
significant advantages.

4. Discussion

The main conclusion of this work is that when a pth-order Runge—Kutta formula is used to
solve a constant delay system of ODEs, higher-order (locally O(k7*1)) interpolation is neces-
sary and sufficient to guarantee asymptotic tolerance proportionality. It is perhaps surprising,
therefore, that several of the algorithms that have been put forward in the literature use
lower-order (locally O(A?)) interpolants (see, for example, [10,12,13]). A possible explanation
for this is that lower-order interpolation can be justified via a classical fixed stepsize analysis.
Oppelstrup [16] and Roth [17] state that with a fixed stepsize and lower-order interpolant, the
global error behaves like O(A7), which is, of course, the best order that can be achieved. For
the variable stepsize case analysed here, this corresponds {o the fact that lower-order inter-
polants allow the global error to be bounded lincarly with 8. To convert the bound into an
equality, higher-order interpolation must be performed.
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