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Abstract. 

This work examines the stability of explicit Runge-Kutta methods applied to a certain linear ordinary 
differential equation with periodic coefficients. On this problem naive use of the eigenvalues of the 
Jacobian results in misleading conclusions about stable behaviour. It is shown, however, that a valid 
analogue of the classical absolute stability theory can be developed. Further, using a suitable generalisa- 
tion of the equilibrium theory of Hall [ACM Trans. on Math. Soft. 11 (1985), pp. 289-301], accurate 
predictions are made about the performance of modern, adaptive algorithms. 
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1. Introduction. 

Numerical  analysts have built up a vast body  of knowledge around the initial 

value O D E  

(1.1) y'(t) = Ay(O, A ~  N×N constant,  y(to) given. 

The system (1.1) is sufficiently simple to allow precise statements to be made about  
the behaviour  of  numerical methods.  Further ,  and equally important ly,  (1.1) often 
provides a reasonable model  for more  general ODEs.  Stability results have, of 
course, also been obtained for broader  classes of ODEs ,  but here the properties 

under  investigation, such as B-stability or  algebraic stability [ 1], tend to be extreme- 
ly demanding.  Hence, a l though many  powerful results have been established in the 
realm of non-linear stability, relatively little is known about  the stability properties 
of s tandard explicit methods  on problems outside the class (1.1). 

This work takes a small step away f rom (1.1) and considers the absolute stability 

of  explicit Runge-Kut ta  (ERK) methods on a particular class of  linear test problems 
with periodic coefficients. We ask 
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1. For what range of stepsizes will an explicit Runge-Kutta formula behave accep- 
tably? 

2. Will an adaptive algorithm compute an acceptable solution? 

Question 1 is considered in the next section. After introducing the test problem, we 
show that an analogue of the classical stability region can be defined. The stability 
restriction is different to, and not necessarily more stringent than that which arises 
when the classical definition is applied to the 'frozen' model (1. i). In section 3, we 
address question 2 by developing a suitable generalisation of the equilibrium theory 
of Hall [2]. This allows an accurate prediction of the long term behaviour of 
adaptive Runge-Kutta algorithms. Once again, the results are qualitatively different 
from those that would arise from the use of (1.1). 

2. Abso lute  Stabi l i ty .  

(2.1) 

where 

Kreiss [7, page 24] introduces the initial value problem 

y'(t) = ~- 1 U r ( t ) Z U ( t ) y ( t )  =__ A(t)y(t) ,  y(to) = Yo, 

U(t) 
ksin(at) cos(~t) J '  - - 1  " 

Here ~, ~, q E R are parameters that define a particular ODE. Note that U(t) is 
orthogonal for any t, and that premultiplying a vector by U(t) corresponds to an 
anticlockwise rotation through st radians. (We remark that there is a minor error in 
[7]. This has been fixed by replacing U(t) in 1-7] by ur( t ) . )  It follows from the 
orthogonality of U(t) that the time-dependent Jacobian A(t)  is always similar to 
e - l Z ,  and hence the eigenvalues of A(t) are _ e - i  Applying the transformation 
v(t) = U(t)y(t)  we find 

1 (2.2) v ' ( t )  = ~ - 1  _ ~ v(t) .  __E-1 

Hence v(t) solves a constant coefficient, linear system whose Jacobian has eigen- 

values - e - 1 (1 ___ x/cte(q - ~e)). Since l[ v(t)[I 2 = I[ y(t)112, it follows that for any initial 
value Yo the tong term growth or decay of y(t) is governed by the real part of these 
eigenvalues. Kreiss [7] used this example to illustrate that an ODE could have an 
increasing solution despite the fact that the Jacobian A(t) has eigenvalues with 
negative real parts for any 'frozen' value oft. Here, we are interested in the case where 

9l { - e-  1(1 __ x/~e(q - ~e))} < 0, since we wish to examine the absolute stability of 
ERK methods applied to (2.1). Our interest in problems of the form (2.1) arose out of 
related work on stiffODEs [5]. We mention that (2.1) is a special case of a Floquet 
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problem [6, page 231]; that is, a linear system with periodic coefficients. The 
eigenvalues of the constant Jacobian in (2.2) are the characteristic exponents of (2.1) 
and the long term behaviour of the solution follows from standard Floquet theory. 
We also mention that Sand [9] has analysed the stability of the 0-method on (2.1). 

As an example of an ERK formula, we consider a two-stage, second order scheme. 
Applied to the general system y'(t) = f ( t ,  y(t)) the formula advances from y, ,~ y(t,) 
to Yn+l ,~ y(tn + h,) according to 

kl = f ( t . ,  y.), 

k2 = f ( t .  + h . , y .  + h.kl), 

h, 
(2.3) Yn+I = Y. + ~ - [ k l  + k2]. 

For the problem (2.1) we find 

Y.+I=  I +  [ A ( t . ) + A ( t . + l ) ] +  A(t .+OA(t . )  y.. 

Using the relation U(t.+ l) = U(h.)U(t.) ,  this may be re-arranged as 

U(t.+l)y.+~ = U(h.) + ~-~[U(h.)Z + ZU(h.)] + ~ Z U ( h . ) Z  U(t.)y., 

which we write as 

(2.4) U(t.+ l)y.+ l = S(h. ,e,e,  rl)U(t,,)y.. 

The key point is that the matrix S(h., ~, ~, tl), which we refer to as the absolute stability 
matrix, does not depend upon the location of the meshpoint t.. In particular, if 
h. - h (constant) then we have 

U(t.+~)y.+~ = S(h,e.,~,q)U(t.)y.  

= S(h,e,c~,~l)2U(t.-1)Y. t 

(2.5) = S(h, e, ~, tt)" + l U(to)Yo. 

Hence the long term growth or decay of tt Y. If 2 is governed by p(S(h, e, ~, r/)), where 
p(. ) denotes the spectral radius. 

Moving from (2.3) to the general s-stage ERK formula 

kl = f ( t . , y . ) ,  

( ) ki = f t. + cih. ,y.  + h. aijkj , 2 <_ i <_ s, 
j = t  

(2.6) Y.+ I = Y. + h. ~ blki, 
i=1 
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the following result shows that the form of the recurrence (2.4) is maintained. 

LEMMA 2.1. Applyin9 the formula (2.6) to (2.1) produces 

(2.7) U(t, + 1)Y, + ~ = S(h,, e, ~, q) U(t.)y,. 

Here, the absolute stability matrix S(h,, ~, ~, q) depends on the coefficients of the 
Runge-Kutta formula, but is independent oft , .  

PROOF. We first prove by induction that kj in (2.6) has the form 

(2.8) kj = u'r(t,)Kj(h,, e, ~, it) U(t,)y,, 

where the matrix Kj(h,, e, ct, q) depends upon the Runge-Kutta coefficients, but not 
upon t,. It is trivial to check that (2.8) holds forj  = 1. Now suppose that (2.8) holds 
for a l l l  < j < i -  1. Then 

ki = e lUr(t .  + c~h.)ZU(t. + cih.) y. + h. ~ aijUr(t.)Kj(h.,e, cqq)U(t.)y. 
J = l  

= Ur(t .)Ur(cih.)e-lZ U(cih.) + h. ~. aijU(clh.)Kj(h.,e,~,q) U(t.)y., 
j = l  

which has the required form. So, by induction, (2.8) is true for 1 _<j _< s. Hence, 

Y.+I = Y. + h. ~ b~Ur(t.)K~(h.,e,a, rl)U(t.)y., 
i = l  

-"-- U(tn -l- hn)T ( U(hn) + hn ~i= l biU(hn)Ki(hn'g' ~'rl)} U(tn)y"" 

Multiplying on the left by U(t, + h,) completes the proof. • 

This result leads naturally to the following definition. 

DEFINITION 2.1. Given values ofe, c~,q satisfying 9~{ -e-1(1  +_ x/~-(q - ~ }  < 0, 
the method (2.6) is said to be absolutely stable for a particular stepsize h if the 
absolute stability matrix satisfies p(S(h, ~, c~, q)) < 1. The largest interval (0, hs) such 
that the method is absolutely stable for all h e (0, hs) is called the absolute stability 
interval. • 

It is clear from (2.7) and (2.5) that asking for absolute stability is equivalent to 
requiring that the numerical solution, generated from a fixed stepsize, mimics the 
long term decay of the true solution. 

Our stability criterion is different from the one that arises from the analysis of 
a "frozen" version of (2.1). For example, the two-stage method (2.3) has classical 
stability polynomial p(z) = 1 + z + z2/2. Since A(t) always has eigenvalues - e - 1 ,  



92 DE SMOND J. H I G H A M  

0.25 

0.2 

0.15 

0.1 
0 

i. 

10 20 30 40 50 60 70 80 90 100 

alpha 

Figure 2.1. hs versus e. 
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Figure 2.2 p(S(h, e, c~, r/)) versus h. 

the  classical  tp(-h/e)] < 1 s tabi l i ty  res t r ic t ion  suggests  a s tabi l i ty  in terva l  (0, 2e), 

which  is i n d e p e n d e n t  of a a n d  0. By con t ras t ,  the "correc t"  def in i t ion  above  p roduces  

a s tab i l i ty  in te rva l  tha t  d ep en d s  m a r k e d l y  u p o n  ~ a n d  ~/. As a n  example ,  we fix e = .  1 

a n d  q = 1.5. F igu re  2.1 p lo ts  the va lue  of  hs f rom Def in i t ion  2.1 as ~ varies be tween  
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0 and 100. The hs values were computed with a bisection algorithm. (An explanation 
of the line-types used in the plot will be given in the next section.) We see that hs 
generally falls below the frozen limit of .2 (which is marked by a dotted line), but is 
greater than .2 for small values of~. In the latter case, the frozen Jacobian approach 
actually leads to an over-conservative stability definition. Also, as the figure sug- 
gests, hs is a discontinuous function of c~. To explain this, Figure 2.2 plots 
p(S(h,e,~,q)) versus h for ~ = 22 and ~ = 23. For ~ = 23 the initial hump in 
p(S(h, e, e, t/)) stays below t and hence hs is determined by the later growth. However, 
at e = 22 the initial hump dominates. This illustrates how a small change in the 
problem (2.1) can have a dramatic effect on numerical stability. 

3. Equilibrium Theory. 

In the previous section we derived a stability condition for a fixed stepsize 
implementation of an ERK formula. Here, we look at the performance of modern, 
variable-stepsize algorithms. Our approach is motivated by the work of Hall [2], [ 1, 
page 26], and the results below can be regarded as a generalization of [2] from 
constant coefficients to periodic coefficients. 

Standard error control techniques for Runge-Kutta methods are based on local 
error estimation. After applying the formula (2.6), an error estimation. After ap- 
plying the formula (2.6), an error-per-step estimate has the form 

(3.1) est,+l = Ilh, ~, eikill, 
i=1 

using certain coefficients {ei}. Usually (3.1) is the norm of the difference between two 
Runge-Kutta approximations, and hence can be regarded as an estimate of the local 
error in the lower order approximation. (The error-per-unit-step analogue of(3.1), 
where est,+ 1 = l[~= 1 elkl 1], is also covered by our analysis - equation (3.4) below 
holds with a different function E(h,,, e, ct, q).) A step is deemed acceptable if est, + 1 < 
TOL,  where TOL is a tolerance parameter supplied by the user. After an accepted 
step, the stepsize for the next step is computed from 

(3.2) h.+~ = ( OTO---~L']l/qh n. 
\ est, + 1 / 

Here, the safety factor 0~(0, 1) is included in an attempt to avoid unnecessary 
rejected steps, and the integer q comes from the expansion est, + 1 = O(hq,) • Although 
the treatment of rejected steps is an important practical issue, we do not need to 
consider such details in our analysis. 

We now show that the error estimate for (2.1) satisfies a similar recurrence to the 
numerical solution. 

LEMMA 3.1. Applyino the formulae (2.6) and (3.1) to (2.1) produces 
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(3.3) U(t.+ l)h,  ~ eikl = E(h, ,~,oqq)U(t,)y, ,  

where the error matrix E(h,, e, c~, tl) depends on the coefficients of  the Runge-Kutta 

formula, but is independent of  t,, and hence, usin9 11 " lie in (3.1) 

( 3 . 4 )  e s t .  + 1 = l iE (h , ,  e, ~, q) U( t , )y ,  1t 2. 

PROOF. A proof follows almost immediately from the proof of Lemma 2.1. • 

Henceforth we will assume that It'lt 2 is used in (3.1) so that (3.4) holds. 
We saw in section 2 that a stepsize h s exists that lies on the boundary between 

stability and instability. We show below that ifS(hs, e, ~, r/) has real eigenvalues then 
an equilibrium state exists where the algorithm continues with constant stepsize and 
constant solution norm. 

THEOREM 3.1. Suppose t1" 112 is used in (3.1). I f  the matrix S(hs, e, ~, q) has real 
eigenvalues then let v, with Ilv]12 = 1, be a normalized eigenvector correspondin9 
to an eioenvalue Ix with modulus one. Further, let h, = hs and let y,  be specified 
by U(t,)y,  = fly, where 1ill = 0TOL/IlE(hs, e, ~, q)vll 2. Then the algorithm continues 
with constant stepsize, h , -  hs, and constant solution norm, ]rY.lfa = 0TOL/  
ll E(hs, e, o~, rl)vrl z. The transformed numerical solution U (t,) y, either remains constant 

for all n or oscillates in sign, dependin9 upon whether l x = + 1 or Ix = - 1, respectively. 

PROOF. Suppose first that # = 1. Then using h, and y, as defined above, we find, 
from (2.7), 

U ( t n + l ) Y n +  1 = S(hs, e,o~,q)flv = fly = U(t , )y , ,  

and, from (3.2) and (3.4), 

0TOL ",~ltq 
h.+~ = 1/7111E(h.,~,~,q)vl12) h~ = hs. 

This gives the required result. If #x = -  1 then the recurrence changes to 
U(t.+ l)y,+ x = - U(t , )y ,  and h.+l = hs. • 

It is reasonable to expect a good error control scheme to eventually select 
stepsizes at roughly the level of h s -  smaller stepsizes would be inefficient and larger 
stepsizes would be unstable. Also, from (2.7), a power method-type argument 
suggests that U(t , )y ,  should line up along a dominant eigenvector of S(hs, e, ~, q). 
However, to see whether an exact equilibrium state will arise in practice, one must 
investigate its stability with respect to small perturbations. Regarding the adaptive 
Runge-Kutta algorithm applied to (2.1) as a nonlinear map 
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Theorem 3.1 identifies a fixed point Pl s R3 such that F(pl) = pl in the case/a = 1, 
and a period two point P2 ff ~3 such that F(F(pe)) = Pz in the case kt = - 1. Letting 
J denote the Jacobian of F, these solutions are stable to first order if and only if 
P(J(Pl)) < 1 and p(J(p2)J(F(p2))) < 1, respectively. Although we have no closed- 
form expression for these spectral radii, they are clearly computable. 

At this point it is worth mentioning how these results compare with the original 
equilibrium results of Hall. For  a constant coefficient, linear system y'(t) = Ay(t), 
where A has a real dominant eigenvalue, Hall [2] demonstrated the existence of an 
equilibrium state. The state has h, constant on the absolute stability boundary and 
y, constant or oscillating in sign (depending on the sign of the dominant eigenvalue). 
Further, Hall showed that the stability of the equilibrium state depends only on the 
Runge-Kutta algorithm - a simple algebraic condition determines the equilibrium 
stability for all ODEs of that form. The equilibrium state that we have derived for 
problem (2.1) does not share this feature. Indeed, we saw in section 2 that the 
stability interval (0, hs) is not simply a function of the eigenvalues - e -  1 of A(t), but 
also depends nonlinearly upon e. Hence, as we will see below, for a particular 
algorithm the precise form and overall stability of the equilibrium state can change 
as we alter the paremeters in (2.1). We also mention that the results in [2] have been 
extended to the case where the constant Jacobian A is normal and has complex 
dominant eigenvalues [3, 4]. An analogous extension of Theorem 3.1 to complex 
eigenvalues is not possible. One reason for this is that the stability matrix S(hs, e, ~, tl) 
and the error matrix E(hs, e, ~, 11) no longer share the same eigenvectors. However, it 
is possible to show that the equilibrium stability is independent of TOL. 

THEOREM 3.2. The first order stability of the equilibrium state identified in Theorem 
3.1 is independent of  the tolerance parameter TOL. 

PROOF. Suppressing dependence upon the parameters e, e and t/, it follows from 
(2.7), (3,2) and (3.4) that the map F in (3.5) can be written 

F X 2 

X3 

SII(X3)X1 -~ S12(X3)X2 1 
= S21(x3)x 1 -,}- S22(x3)x2 • 

x3[OTOL/J(Ell(X3)X1 + E12(x3)x2) 2 n t- ( E 2 1 ( x 3 ) x  I -1- E22(X3)X2)2] 1/q 

Hence we have, for example, 

OF1 ~F1 r?F1 
= S11 (X3)  , - -  S12(X3)  , 

~X 1 ~X 2 ['~X 3 
-- Stll(X3)XI -]- St12(x3)x2  . 
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Figure 3.1. Equilibrium stability versus e. 

We are interested in the value of the Jacobian at the equilibrium point defined in 
Theorem 3.1; that is, when [x~, x2] r --/~v and x3 = hs. Note that hs is independent 
of TOL and fly depends linearly upon TOL (through fl). It follows that the 
corresponding values of c~F~/Ox~ and OF1/c~x 2 a r e  independent of TOL whilst 
OF1/t?x3 is linear in TOL. Continuing in this manner we find the following depend- 
encies for the Jacobian matrix 

indep, indep. TOL 1 

indep, indep. TOL t .  
I 'OL-  1 T O L -  1 indep, j 

Hence, letting D = diag (1, 1, TOL), the similarity transformations DJ(p~)D-1 and 
DJ(p2)D- 1 DJ(F(p2))D- ~ show that the relevant Jacobian has eigenvalues that are 
independent of TOL. • 

In Figure 2.1, the line-types used to plot hs are chosen according to the nature of 
the dominant eigenvalue of S(hs, ~, ~, tl). Real negative, real positive, and complex 
eigenvalues correspond to solid, dash-dotted, and dashed lines, respectively. For  
those values of e where the eigenvalues are real, Figure 3.1 plots the size of the 
relevant spectral radius, P(J(Pl)) or p(J(p2)J(F(p2))). Here, we have used an error 
estimate (3.1) that comes from differencing second and third order ERK approxi- 
mations; that is, in addition to (2.3), 

k 3 = f ( t ,  + h , /2 ,y ,  + h,(kx + k2)/4) and e = [1/3, t/3, - 2 / 3 ]  r, 

with q = 3 in (3.2). Finite differences were used to approximate the Jacobian values. 
We see in Figure 3.1 that stable period two equilibrium states exist for two ranges of 
c~; these are 4 _< ~ c~ _< ~ 22 and 58 _< ~ e < ~ 62. For 0 < e < ~ 4 the eigenvalues 
of the stability matrix are complex, and for all other positive e values the equilibrium 
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state is unstable. For e = 0, (2.1) becomes a constant coefficient problem and the 
original analysis of  [2] shows that a stable fixed point equilibrium exists. 

To  illustrate the applicability of  this theory, we present some numerical results 
computed with Matlab [8]. We used an adaptive Runge-Kutta algorithm based on 
Matlab's built-in ode23.m program, which implements a second and third order 
pair of  formulas in a standard way. In order to make the results compatible with our 
Figures 2.1 and 3.1 we made the following minor changes to ode23.m. 

• The second order formula (rather than the third order formula) was used to 
advance the solution. 

• The two-norm was used to measure the error estimate, rather than the max-norm, 
so that (3.4) is valid. 

• The minimum allowable stepsize was reduced in order to allow the initial fast 
transients to be tracked• 

Fixing e = .  1 and q = 1.5, for each integer value ore ~ [0, 100] we solved (2.1) over 
the range t e [0, 100], with the default tolerance o f T O L  = 10- 3. For every e, Figure 
3.2 plots a sequence of dots corresponding to the last 50 stepsizes, with the exception 
that the final stepsize is not plotted since it is generally restricted artificially in order 
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to hit the output  point  t = 100. The mean  of  the stepsizes is plotted with an 'o '  
symbol.  Compar ing  these results with Figures 2.1 and 3.1, we see that  for those 

where a stable equilibrium exists, the stepsize remains exactly constant  (only 

a single point  can be seen) at the hs level. Fur ther  checks showed that  the U(tn)y,  

sequences are period two, having a size that  depends linearly upon  TOL,  as 
predicted by Theorem 3.1. Hence in these tests, wherever a stable equilibrium state 

exists, it is seen in practice. With  those ~ for which the stability matrix has complex 
eigenvalues, or  for which an unstable equilibrium exists, the stepsize oscillates 
a round  the hs limit and does not  settle down to a fixed value. Overall, the theory 
derived in this section gives a full account  of  the long term behaviour  of  the 

algorithm. 
In  conclusion, we ment ion that our  stability analysis could be extended in 

a straightforward way to cover the case where Z is replaced by a general 2 × 2 
matrix in (2.1). Also, the techniques could be applied to other  numerical methods. 
Neither  extension, however, would add to the main point  of our  paper, which is that  
a generalisation of the s tandard model  (1.1) to periodic coefficients can cause 

a significant, but  predictable change in the stability properties of  an O D E  solver. 
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