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Abstract.

This work examines the stability of explicit Runge-Kutta methods applied to a certain linear ordinary
differential equation with periodic coefficients. On this problem naive use of the eigenvalues of the
Jacobian results in misleading conclusions about stable behaviour. It is shown, however, that a valid
analogue of the classical absolute stability theory can be developed. Further, using a suitable generalisa-
tion of the equilibrium theory of Hall [ACM Trans. on Math. Soft. 11 (1985), pp. 289-301], accurate
predictions are made about the performance of modern, adaptive algorithms.
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1. Introduction.

Numerical analysts have built up a vast body of knowledge around the initial
value ODE

1.1 y(t) = Ay(t), AeR¥*¥ constant, y(t,) given.

The system (1.1) is sufficiently simple to allow precise statements to be made about
the behaviour of numerical methods. Further, and equally importantly, (1.1} often
provides a reasonable model for more general ODEs. Stability results have, of
course, also been obtained for broader classes of ODEs, but here the properties
under investigation, such as B-stability or algebraic stability [ 1], tend to be extreme-
ly demanding. Hence, although many powerful results have been established in the
realm of non-linear stability, relatively little is known about the stability properties
of standard explicit methods on problems outside the class (1.1).

This work takes a small step away from (1.1) and considers the absolute stability
of explicit Runge-Kutta (ERK) methods on a particular class of linear test problems
with periodic coefficients. We ask
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1. For what range of stepsizes will an explicit Runge-Kutta formula behave accep-
tably?
2. Will an adaptive algorithm compute an acceptable solution?

Question 1 is considered in the next section. After introducing the test problem, we
show that an analogue of the classical stability region can be defined. The stability
restriction is different to, and not necessarily more stringent than that which arises
when the classical definition is applied to the ‘frozen” model (1.1). In section 3, we
address question 2 by developing a suitable generalisation of the equilibrium theory
of Hall [2]. This allows an accurate prediction of the long term behaviour of
adaptive Runge-Kutta algorithms. Once again, the results are qualitatively different
from those that would arise from the use of (1.1).

2. Absolute Stability.

Kreiss [7, page 24] introduces the initial value problem

2.1 Yty ="t UTOZU@ () = AB¥(e),  y(to) = oo

where
cos(at) —sin(at) -1 7
t) = , Z= .

ve [sin (af)  cosf{at) ] [ 0 -1
Here ¢, a, ne R are parameters that define a particular ODE. Note that U(z) is
orthogonal for any ¢, and that premultiplying a vector by U(r) corresponds to an
anticlockwise rotation through ot radians. (We remark that there is a minor error in
[7]. This has been fixed by replacing U(t) in [7] by U”(¢).) It follows from the
orthogonality of U(t) that the time-dependent Jacobian A(t) is always similar to
¢~ 'Z, and hence the eigenvalues of A(t) are —¢~ ! Applying the transformation
v(t) = U()y(t) we find

2.2) v(t) = ["Z‘l ’78:_1 ~ “] o(t).

8—1

Hence o(f) solves a constant coefficient, linear system whose Jacobian has eigen-
values —e ™ '(1 + /ae(n — ag)). Since ||v(t)], = [|¥(2)|,, it follows that for any initial
value y, the long term growth or decay of y(f) is governed by the real part of these
eigenvalues. Kreiss [7] used this example to illustrate that an ODE could have an
increasing solution despite the fact that the Jacobian A(f) has eigenvalues with
negative real parts for any ‘frozen’ value of t. Here, we are interested in the case where
R{—e 1 £ Joeln — ae))} < 0, since we wish to examine the absolute stability of
ERK methods applied to (2.1). Our interest in problems of the form (2. 1) arose out of
related work on stiff ODEs [5]. We mention that (2.1) is a special case of a Floquet
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problem [6, page 231]; that is, a linear system with periodic coefficients. The
eigenvalues of the constant Jacobian in (2.2) are the characteristic exponents of (2.1)
and the long term behaviour of the solution follows from standard Floquet theory.
We also mention that Sand [9] has analysed the stability of the 6-method on (2.1).

As anexample of an ERK formula, we consider a two-stage, second order scheme.
Applied to the general system y'{r) = f{z, y(1)} the formula advances from y, = y(t,)
to yu+1 & y(t, + h,) according to

kl = f(tm yn)s
kZ = f(tn + hnayn + hnkl)a

hy
2.3 Yot = Yo+ 5Tk + k2]

For the problem (2.1) we find
h n2
Yne1 = I+ 7[A(tn) + A(tn+1)] + ~'2_"4(1‘%4- 1)A(ln) Yn-

Using the relation U(t, ) = U(h,)U(t,), this may be re-arranged as
hﬂ hs
U(tn+1)yn+1 = {U(hn) + EE [U(hn)z + ZU(hn)] + ?ZU{hn)Z} U(tn)ym
which we write as
(24) U(tn+1)yn+1 = S(hmsv &, ")U(tn)yn‘

The key point is that the matrix S(h,, ¢, o, ), which we refer to as the absolute stability
matrix, does not depend upon the location of the meshpoint t,. In particular, if
h, = h (constant) then we have

U(tni— I)an*l = S(h, &, ﬂ)U(tn)yn
= S(hagya’n)zU(tn—l)yN*l

(2.5) = S(h,e,0,1)" " Ulto)yo-

Hence the long term growth or decay of |}y, |, is governed by p(S{h, ¢, o, 1)), where
p(-) denotes the spectral radius.
Moving from (2.3) to the general s-stage ERK formula

kl = f(tm yn)y

i-1
ki = f<tn + Cihn,y,‘ + h,, Z aijkj), 2 <i< S,
j=1

j=

(26) yn+1 = Vn + hn Z biki’
i=1
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the following result shows that the form of the recurrence (2.4) is maintained.

LEmMA 2.1. Applying the formula (2.6) to (2.1) produces
2.7 Ultss ) Yn+1 = Shy, 8,0, n) U(t,) Yn
Here, the absolute stability matrix S(h,,&,0o,n) depends on the coefficients of the
Runge-Kutta formula, but is independent of t,,.
ProOOF. We first prove by induction that k; in (2.6) has the form
(2.8) kj = UT(ty) K {hn &, 0 ) U(ty) Yus

where the matrix K {h,, ¢, o, 7) depends upon the Runge-Kutta coeflicients, but not
upon t,,. It is trivial to check that (2.8) holds for j = 1. Now suppose that (2.8) holds
forall1 <j<i-— 1. Then

Il

i—-1
ki g ! UT(tn + Cihn)ZU(tn + Cihn){yn + hn Z aijUT(tn)Kj(hns &, 71) U(tn)yn}
j=1
i—-1

UT(tn)UT(Cihn)g-IZ{U(Cihn) + hn Z aijU(Cihn)Kj(hn’ &, X, rl)} U(tn)yns
j=1

J

I

which has the required form. So, by induction, (2.8) is true for 1 < j < s. Hence,

Yu+1 = Yy + hn }: biUT(tn)Ki(hnyg»aan) U(tn)ym
i=1

= Uty + h)" {U(h,,) +hy Y B K s, m}U(zn}yn.

Multiplying on the left by U{¢, + &,) completes the proof. n

This result leads naturally to the following definition.

DEFINITION 2.1. Given values of ¢, a, 5 satisfying R{ —¢~ (1 + /ae(y — ae))} <0,
the method (2.6) is said to be absolutely stable for a particular stepsize h if the
absolute stability matrix satisfies p(S(h, ¢, a, #)) < 1. The largest interval {0, &) such
that the method is absolutely stable for all he (0, hg) is called the absolute stability
interval. B

It is clear from (2.7) and (2.5) that asking for absolute stability is equivalent to
requiring that the numerical solution, generated from a fixed stepsize, mimics the
long term decay of the true solution.

QOur stability criterion is different from the one that arises from the analysis of
a “frozen” version of (2.1). For example, the two-stage method (2.3) has classical
stability polynomial p(z) = 1 + z + z?/2. Since A(t) always has eigenvalues —&™*

k4
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Figure 2.1. hg versus a.
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Figure 2.2 p(S(h, e, a, 1)) versus h.

the classical |p(—h/e)] < 1 stability restriction suggests a stability interval (0, 2¢),
which is independent of » and . By contrast, the “correct” definition above produces
astability interval that depends markedly upon oz and 5. As an example, we fixe = .1
and n = 1.5. Figure 2.1 plots the value of hs from Definition 2.1 as « varies between
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0and 100. The hg values were computed with a bisection algorithm. (An explanation
of the line-types used in the plot will be given in the next section.) We see that g
generally falls below the frozen limit of .2 (which is marked by a dotted line), but is
greater than .2 for small values of . In the latter case, the frozen Jacobian approach
actually leads to an over-conservative stability definition. Also, as the figure sug-
gests, hg is a discontinuous function of « To explain this, Figure 2.2 plots
p(S(h,&,0,n)) versus h for o =22 and o = 23. For a =23 the initial hump in
p(S{h, &,a, 1)) stays below 1 and hence kg is determined by the later growth. However,
at o = 22 the initial hump dominates. This illustrates how a small change in the
problem (2.1) can have a dramatic effect on numerical stability.

3. Equilibrium Theory.

In the previous section we derived a stability condition for a fixed stepsize
implementation of an ERK formula. Here, we look at the performance of modern,
variable-stepsize algorithms. Qur approach is motivated by the work of Hall [ 2], {1,
page 26], and the results below can be regarded as a generalization of [2] from
constant coefficients to periodic coefficients.

Standard error control techniques for Runge-Kutta methods are based on local
error estimation. After applying the formula (2.6}, an error estimation. After ap-
plying the formula (2.6), an error-per-step estimate has the form

(3.1) estyey = [[hy ) ekl
i=1
using certain coefficients {e;}. Usually (3.1) is the norm of the difference between two
Runge-Kutta approximations, and hence can be regarded as an estimate of the local
error in the lower order approximation. (The error-per-unit-step analogue of (3.1),
whereest, , = HZ;: 1 &:k;1l, is also covered by our analysis — equation (3.4) below
holds with a different function E(h,, &, a,%).) A step is deemed acceptable if est, . | <
TOL, where TOL is a tolerance parameter supplied by the user. After an accepted
step, the stepsize for the next step is computed from

L i/g
(32) hn+1 =<9TO ) hn-

est,v1

Here, the safety factor 8¢(0, 1) is included in an attempt to avoid unnecessary
rejected steps, and the integer g comes from the expansion est, ., = O(hi). Although
the treatment of rejected steps is an important practical issue, we do not need to
consider such details in our analysis.

We now show that the error estimate for (2.1) satisfies a similar recurrence to the
numerical solution.

LemMA 3.1, Applying the formulae (2.6) and (3.1} to (2.1) produces
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(33) U(tn+l)hn Z eiki = E(km &0, W)U({R)ym

i=1

where the error matrix E(h,, &, 0,n) depends on the coefficients of the Runge-Kutta
Jormula, but is independent of t,, and hence, using || * |5 in (3.1)

(34) €St"+ 17 HE(hm £ &, '7) U(tn)yn H 2.

Proof. A prooffollows almost immediately from the proof of Lemma 2.1. n

Henceforth we will assume that || - |, is used in (3.1) so that (3.4) holds.

We saw in section 2 that a stepsize hg exists that lies on the boundary between
stability and instability. We show below that if S(hg, ¢, «, ) has real eigenvalues then
an equilibrium state exists where the algorithm continues with constant stepsize and
constant solution norm.

THEOREM 3.1. Suppose ||, is used in (3.1). If the matrix S(hg, e, o, n) has real
eigenvalues then let v, with \v|, = 1, be a normalized eigenvector corresponding
to an eigenvalue p with modulus one. Further, let h, = hg and let y, be specified
by U(t,)y, = Pv, where || = 8TOL/ | E(hs, ¢, a,n)vl,. Then the algorithm continues
with constant stepsize, h, = hg, and constant solution norm, |y,|l, = 6TOL/
| E(hs, &, o0, )0l 2. The transformed numerical solution U{t,)y, either remains constant
for all n or oscillates in sign, depending upon whether y = + 1 or u = — 1, respectively.

PrOOF. Suppose first that 4 = 1. Then using A, and y, as defined above, we find,
from (2.7),

U(tn+1)yn+1 = S(hsﬁ»“e ’1)18” = ﬂU = U(tn)ym
and, from (3.2) and (3.4),
gTOL tia
hyoy = hg = hq.
! (Iﬁl |Eh, &2, ’7)”“2) o

This gives the required result. If g = —1 then the recurrence changes to
U(tn+ 1)yn+1 = - U(tn)yn and hn+1 = hb |

It is reasonable to expect a good error control scheme to eventually select
stepsizes at roughly the level of hg — smaller stepsizes would be inefficient and larger
stepsizes would be unstable. Also, from (2.7), a power method-type argument
suggests that U{t,)y, should line up along a dominant eigenvector of S(hg, ¢, o, 7).
However, to see whether an exact equilibrium state will arise in practice, one must
investigate its stability with respect to small perturbations. Regarding the adaptive
Runge-Kutta algorithm applied to (2.1) as a nonlinear map

} (U(tn)yn)l (U(tn+1)ya+ 1)1
(35) F (U(tn)yn)Z 3 Rt (U(tn+1)yn+ 1)2 s
hn hn+1
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Theorem 3.1 identifies a fixed point p, € R* such that F(p,) = p, in the case u = 1,
and a period two point p, € R? such that F(F(p,)) = p, in the case u = — 1. Letting
J denote the Jacobian of F, these solutions are stable to first order if and only if
pJ(py)) < 1 and p(J(p2)J(F(py)) < 1, respectively. Although we have no closed-
form expression for these spectral radii, they are clearly computable.

At this point it is worth mentioning how these results compare with the original
equilibrium results of Hall. For a constant coefficient, linear system y'(t) = Ay(t),
where A has a real dominant eigenvalue, Hall [2] demonstrated the existence of an
equilibrium state. The state has h, constant on the absolute stability boundary and
v, constant or oscillating in sign {(depending on the sign of the dominant eigenvalue).
Further, Hall showed that the stability of the equilibrium state depends only on the
Runge-Kutta algorithm — a simple algebraic condition determines the equilibrium
stability for all ODEs of that form. The equilibrium state that we have derived for
problem (2.1) does not share this feature. Indeed, we saw in section 2 that the
stability interval (0, hg) is not simply a function of the eigenvalues —& ™! of A(t), but
also depends nonlinearly upon o. Hence, as we will see below, for a particular
algorithm the precise form and overall stability of the equilibrium state can change
as we alter the paremeters in (2.1). We also mention that the results in [2] have been
extended to the case where the constant Jacobian A4 is normal and has complex
dominant eigenvalues [3, 4]. An analogous extension of Theorem 3.1 to complex
eigenvalues is not possible. One reason for this is that the stability matrix S{hg, &, 0, 1)
and the error matrix E(hg, ¢, o, ) no longer share the same eigenvectors. However, it
is possible to show that the equilibrium stability is independent of TOL.

THEOREM 3.2. The first order stability of the equilibrium state identified in Theorem
3.1 is independent of the tolerance parameter TOL.

Proor. Suppressing dependence upon the parameters ¢, « and g, it follows from
(2.7), (3.2) and (3.4) that the map F in (3.5) can be written

X1
F X

X3
Syi(x3)xy + 812(x3)x;
= Sa1(x3)xy + S22(x3)x,
x3[0TOL/\/(EU(x3)x1 + Eqp(x3)x2)% + (Eaq(x3)X; + E,5(x3)x,)2 1"

Hence we have, for example,

oF,
Ox;

OF,

OF
—— = 81a(x3), —
03(3

0x,

= S11(x3), = 81 (x3)xy + 8)2(x3)x;.
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Figure 3.1. Equilibrium stability versus «.

We are interested in the value of the Jacobian at the equilibrium point defined in
Theorem 3.1; that is, when [x,, x, 17 = fv and x; = hs. Note that kg is independent
of TOL and Bv depends linearly upon TOL (through ). It follows that the
corresponding values of 0F,;/dx, and JF,/dx, are independent of TOL whilst
OF, /0x is linear in TOL. Continuing in this manner we find the following depend-
encies for the Jacobian matrix

indep. indep. TOL
indep. indep. TOL
TOL™' TOL™! indep.

Hence, letting D = diag(1, 1, TOL), the similarity transformations DJ(p,)D ! and
DJ(p,)D 1 DJ(F(p,))D~* show that the relevant Jacobian has eigenvalues that are
independent of TOL. n

In Figure 2.1, the line-types used to plot sy are chosen according to the nature of
the dominant eigenvalue of S(hg, ¢, o, #). Real negative, real positive, and complex
eigenvalues correspond to solid, dash-dotted, and dashed lines, respectively. For
those values of @ where the eigenvalues are real, Figure 3.1 plots the size of the
relevant spectral radius, p(J{py)) or p{(J(p,}J{F(p,))). Here, we have used an error
estimate (3.1) that comes from differencing second and third order ERK approxi-
mations; that is, in addition to (2.3),

ks = f(ty + hy/2,y, + holky + k3)/4) and e =[1/3,1/3, —2/3]7,

with g = 3in (3.2). Finite differences were used to approximate the Jacobian values.
We see in Figure 3.1 that stable period two equilibrium states exist for two ranges of
o;theseared <~ o <~ 22and 58 <~ o < & 62. For 0 < a < =~ 4 the eigenvalues
of the stability matrix are complex, and for all other positive o values the equilibrium
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Figure 3.2 Last 50 stepsizes versus o.

state is unstable. For a = 0, (2.1) becomes a constant coefficient problem and the
original analysis of [2] shows that a stable fixed point equilibrium exists.

To illustrate the applicability of this theory, we present some numerical results
computed with Matlab [8]. We used an adaptive Runge-Kutta algorithm based on
Matlab’s built-in ode23.m program, which implements a second and third order
pair of formulas in a standard way. In order to make the results compatible with our
Figures 2.1 and 3.1 we made the following minor changes to ode23.m.

o The second order formula (rather than the third order formula) was used to
advance the solution.

e The two-norm was used to measure the error estimate, rather than the max-norm,
so that (3.4) is valid.

o The minimum allowable stepsize was reduced in order to allow the initial fast
transients to be tracked.

Fixinge = .1 and n = 1.5, for each integer value of 2 €[ 0, 100] we solved (2.1) over
the range t € [0, 1007, with the default tolerance of TOL = 1073, For every a, Figure
3.2 plots a sequence of dots corresponding to the last 50 stepsizes, with the exception
that the final stepsize is not plotted since it is generally restricted artificially in order
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to hit the output point ¢ = 100. The mean of the stepsizes is plotted with an ‘0’
symbol. Comparing these results with Figures 2.1 and 3.1, we see that for those
o where a stable equilibrium exists, the stepsize remains exactly constant (only
a single point can be seen) at the hg level. Further checks showed that the U(t,)y,
sequences are period two, having a size that depends linearly upon TOL, as
predicted by Theorem 3.1. Hence in these tests, wherever a stable equilibrium state
exists, it is seen in practice. With those o for which the stability matrix has complex
eigenvalues, or for which an unstable equilibrium exists, the stepsize oscillates
around the hg limit and does not settle down to a fixed value. Overall, the theory
derived in this section gives a full account of the long term behaviour of the
algorithm.

In conclusion, we mention that our stability analysis could be extended in
a straightforward way to cover the case where Z is replaced by a general 2 x 2
matrix in (2.1). Also, the techniques could be applied to other numerical methods.
Neither extension, however, would add to the main point of our paper, which is that
a generalisation of the standard model (1.1) to periodic coefficients can cause
a significant, but predictable change in the stability properties of an ODE solver.
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