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The use of implicit formulae in the solution of stiff ODEs gives rise to systems of
nonlinear equations which are usually solved iteratively by a modified Newton
scheme. The linear algebra costs associated with such schemes may form a
substantial part of the overall cost of the solution. The work of W. H. Enright
and M. S. Kamel attempts to reduce the cost of the iteration by automatically
transforming and partitioning the system. We provide new theoretical justification
for this method in the case where the stiff eigenvalues of the Jacobian matrix used
in the modified Newton iteration are small in number and well separated from the
other eigenvalues. The theory of Y. Saad is introduced and adapted to show that
the method uses the projection of the Jacobian onto a Krylov subspace which
virtually contains the dominant subspace. This is shown to have favourable
consequences. Numerical evidence is provided to support the theory.

1. Introduction

GIVEN a stiff system of ordinary differential equations (ODEs)

where/ : IR x R"-» R", many stiff solvers generate approximations yi=*y(t,) using
an implicit linear multistep formula. At each step, it is necessary to solve a
nonlinear equation in the unknown vector yi+l. This equation has the form

G(yl+1)**yl+1 - hpf(ti+l, yi+l) - y, = 0, (1.1)

where yt is a vector of known quantities, 0 is a method-dependent parameter
which may vary between steps, and h (=/i,) = r,+, - 1 , is the current stepsize.
Equation (1.1) is usually solved by an iteration of the form

W(vRr )-yH ) i) = -G(vH)i) 0 = 1,2,...), (1.2)

where yfli is given and W is a fixed iteration matrix. Ostrowski's theorem
[12: p. 300] shows that a sufficient condition for the local convergence of this
scheme to a locally unique solution y* of (1.1) is

))<h (1.3)

where / is assumed differentiable at y*. Here, J(y) denotes the Jacobian of
f(t,+u y) and p(B) denotes the spectral radius of B.

The simple choice W = I in (1.2) gives rise to functional iteration. The
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convergence condition (1.3) then becomes p(hfiJ(y*)) < 1, which, in the case of
stiff systems, may represent a severe constraint on h. Following [17] and [1], an
eigenvalue A of J(y*) for which the condition |/i/3A| < 1 is more restrictive on h
than the local accuracy requirement will be called a stiff eigenvalue. We let k
denote the number of stiff eigenvalues of /(y*). The subspace of C" spanned by
the corresponding stiff eigenvectors will be called the dominant subspace and
denoted D(j(y*)].

Stiff solvers usually employ a modified Newton (MN) iteration scheme. Here,
W = I-hfiA in (1.2), with A— J(y*). Typically, A is a Jacobian matrix (or a
finite difference approximation to one) from a previous step. The linear algebra
costs associated with the MN iteration can form a substantial part of the overall
cost of the solution, particularly for large systems. Recently, considerable
attention has been paid to the problem of reducing these costs [1-4,6-8,
10,14,19]. In this paper, we present an analysis of the partitioning method of
Enright and Kamel [10; for an earlier version see 7]. A short discussion on the
use of partitioning methods is given below. In the next section, we describe the
Enright-Kamel method and compare it briefly with that of Bjorck [1,2]. The
effectiveness of the method on a certain class of stiff problems is investigated in
Sections 3 and 4. Numerical evidence to support the theory is given in Section 5.

In the three partitioning methods described in [1], [10], and [19], the aim is to
replace A by an approximation A which reduces the cost of solving the linear
systems in (1.2) while maintaining a reasonable convergence rate for the
iteration. To isolate the effect of this approximation, we assume that A is the
exact Jacobian J(y*)- In each of the three methods, A is the orthogonal
projection of A onto some subspace. The ideal subspace to use is the dominant
subspace D{A). Suppose that D(A) has full dimension k and that the orthogonal
matrix [Q^QV], with (?„ e Rn><\ is such that span {£>,,} = D{A), where span {£>„}
denotes the space of all complex linear combinations of columns of (2M. Then we
can write

k n-k

and the orthogonal projection of A onto D{A) may be expressed as

,GV]T- (1.5)

Using W = I - hpA in (1.2), the sufficient condition for local convergence (1.3)
becomes

p(Aj8r22)<l. (1.6)

The eigenvalues of T& are precisely the nonstiff eigenvalues of A, and so (1.6) is
the condition which arises when functional iteration is applied to the nonstiff
subsystem. In practice, a condition such as

l < 1 (1.7)
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would be desirable to ensure a reasonable rate of convergence. Here, and
throughout this paper, we use the Frobenius matrix norm and the Euclidean
vector norm,

Ik*II= ( 2 \av\2) anc^ ll*ll:

respectively.
Intuitively one would expect the partitioning methods to be most effective

when k«n and the stiff eiginvalues are well separated from the nonstiff
eigenvalues. A general term for such systems is 'separably stiff (see [2] and [19]).
Separably stiff systems arise, for example, in circuit simulations [11]. The
problems discussed by Robertson [14] are also separable. However, this structure
is not shared by all practical stiff problems; Curtis [5] cites examples from the
field of mass action kinetics where the stiff eigenvalues are neither small in
number nor well separated from the others. For the remainder of this paper, we
will assume that the system is separable. We also assume that A can be stored in
high-speed memory.

2. The Enright-Kamel partitioning method

In the Enright-Kamel method [10], the matrix A is reduced to partial upper
Hessenberg (UH) form by an orthogonal similarity transformation. After an
initial permutation and m — 1 Householder stages, we have

m n—m

where / / e Rmxm is UH and fceR"'m. The approximation A takes the form

Using W = I — hfiA in (1.2), the convergence condition (1.3) becomes

h (2-3)
where

m — 1 n — m + \

D _

10 bSr, in-m'

with H = I - hflH. Now p(B) is the same as the spectral radius of the lower
(n - m + 1) x (n - m + 1) principle submatrix of B. Hence, on taking norms, we
see that (2.3) will certainly hold if

\hP\ (\\S22\\2+\\b\\2+\\x\\2)l<l, (2.4)

where xT is the mth row of the matrix -hfiH~lS^b Sy . Note that (2.4) can be
tested at each stage of the reduction to UH form. In practice, a smaller bound
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than 1 may be desirable to ensure that the scheme converges in a reasonable
number of iterations. Once the condition becomes true, the approximation A in
(2.2) may be considered suitable. This allows an approximation, and in particular
a value of m, to be determined dynamically. (The test used by Kamel [10] is
slightly different to (2.4) and includes the assumption ||//~ !S12 | | < ||-Si2||, which is
difficult to justify in general.) When m«n the resulting iteration scheme can be
considerably cheaper than the standard MN method [7,10].

Enright and Kamel combined the Householder transformations with row and
column interchanges in an attempt to force m to be small. However, owing to the
essential uniqueness of the reduction, this extra effort will almost always be
fruitless [2,9]. Hence, the only freedom in the method is the choice of initial
permutation. Bjorck [2] shows that attention may be restricted to a single row
and column interchange. For example, the row which is largest in norm could be
swapped with the first row.

We mention briefly the partitioning method of Bjorck [1]. A similar method
was proposed independently by Watkins & HansonSmith [19]. In Bjorck's
method, the aim is to use the ideal approximation A given by (1.5). The matrix A
is first reduced by Householder transformations to the partial UH form (2.1) with
m = k. A block QR iteration is then performed which, under mild conditions,
leads to a partitioning of the form (1.4). The convergence of the QR iteration is
linear with rate

I* = |AM|, (2.5)

where A is the largest nonstiff eigenvalue in modulus and X is the smallest stiff
eigenvalue in modulus. Note that \i is a measure of the separation between the
stiff and nonstiff eigenvalues. A cost comparison in [9] shows that, in order for
the Enright-Kamel method to be competitive with Bjorck's method, the number
m — k of extra Householder stages must not be much greater than the number of
QR iterations—typically two or three for a separable system. However, a direct
comparison between the two methods is not strictly valid since Bjorck's method
requires the number k of stiff eigenvalues (or an upper bound for A:) to be known,
while the Enright-Kamel partitioning is obtained dynamically.

In the following two sections, we investigate whether it is reasonable to expect
(2.4) to hold for a small value of m — k.

3. Krylov snbspace theory

The first r - 1 Householder stages of the reduction (2.1) produce the matrix

where W is r X r UH. We write qu q2,. . . , q, for the first r columns of Qr and h,j
for the (i, /)th element of Hr. The superscript r is omitted since these quantities
are unchanged at later stages. Equating the first r - 1 columns in the equation
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gives

(3.3)

AqT-X = hhr_1q1 + ••• + hr_lrr_lqr_1 + hrs-tf,.

We will assume for the moment that hl+u ¥= 0 for i = 1, . . . , r - 1. It then follows
from (3.3) that {qi, . . . ,qr} is a unitary basis for the Krylov subspace
Kr := span {qi, Aqu . . . ,Ar~lq1}. If A has a dominant eigenvalue, then, since
Ar~xqx e Kr, we see that Kr contains a power method type approximation to the
dominant eigenvector. It is mentioned by Gear & Saad [8] that Kr can contain
good approximations to all the stiff eigenvectors for a relatively small value of r.
We give below a careful analysis of this phenomenon for the case where A has a
separable spectrum. To do this, we introduce and adapt the relevant theory of
Saad [15,16]. In the next section, we show that these results help to justify the
Enright-Kamel partitioning method.

In the following analysis, the eigenvalues of A will be denoted {A,}J*Di and
assumed distinct. This implies the existence of n linearly independent eigenvec-
tors {x,}".u which we normalize so that 11̂ 11 = 1. Let jir:(y—*Kr denote the
orthogonal projector onto the subspace Kr. Note that the distance from a vector x
to Kr is given by ||(7 — jrr)jc||. Our aim is to bound this distance when * is a stiff
eigenvector. Any vector in the space Kr may be written p{A)qx, where p is a
member of Pr-\, the set of polynomials of degree not exceeding r — 1. Since the
eigenvectors {x/}7_i form a basis for C , we may write

n

(3-4)

The following result appears in Saad [15].

LEMMA 1 For each x,, if a,=£Q in (3.4), then

where

i £<'>= min max \p(k,)\. (3.5)
\at\j-\

Remarks
1. Examination of a proof of Lemma 1 shows that the bound is unlikely to be

sharp (see [9]).
2. In our case, qx is determined by the choice of initial permutation in (2.1),

and we are interested in applying Lemma 1 when */ is one of the relatively few
stiff eigenvectors. The assumption a, ¥=0 appears reasonable. (A similar situation
arises in the analysis of the power method, where the starting vector is usually
assumed not to be deficient in the component of the dominant eigenvector.)
Furthermore, while §, cannot be bounded a priori, one would imagine that, in
general, its value would not be excessively large.
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The next task is to find an upper bound for e\r). We consider first the case
where A has a real spectrum. In the following theorem, the technique used by
Saad [15: Theorem 2.2; see also 8] is adapted to exploit the separable nature of
the spectrum.

THEOREM 1 Suppose that r > k, and A has real eigenvalues ordered

where the (stiff) eigenvalues An_ i+1, . . . , An are negative, having much larger
moduli than the other (nonstiff) eigenvalues. Then, for each stiff eigenvalue A,,
we have

( n

,-XL
where >*'

and Tr-k is the (r — Jt)th degree Chebyshev polynomial of the first kind.

Proof. Given A/, the first step is to restrict the set over which the minimization in
(3.5) takes place. We constrain p to be zero at the other stiff eigenvalues; that is,
letting

= n fEr«
i+l

so that lePk_i and /(A,) = l, we consider polynomials of the form l(y)h(y),
where h e Pr-k and h(kt) = 1. This gives

e,(r) min max |/(A,)/i(A-)|.

By construction, l(y) is zero at the points {kj}"_n_k+v so the inequality above
reduces to i+i

e\r)^ min max |/(A,)/i(A,)|.
{hmP,-k:h(lk)-l} l«y«n-*

Also, since the maximum in max K y« n . t l'(^y)l is attained a t ; = 1, it follows that

ef r )«|/(A,) | min max \h(k,)\,

which we weaken to

J ) m a x \h(y)\.{hePr-t:h(X,)-l}

The minimax term above is known to equal [ ^^ (y , ) ] " 1 [13: Appendix B], and
the result follows immediately. O
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Remarks
1. When y s» 1, we may write T,(y) as

T,(y) = \{[y + (y2 - i)Jr + [y + (y2 -
Hence, 7)(y) takes large values when v » 1 and s s= 1. Moreover, these values
increase rapidly with s. In Theorem 1, we have y , » l , so the term [^
will be small for r > k and will quickly become negligible as r increases.

2. The term
Ax — A,n

j-n-k+1 A, "Ay

in Theorem 1 may be large in certain cases. Each factor |Aj — Ay| in the numerator
is of the same order as a stiff eigenvalue. The factors |A, — Ay| in the denominator
depend upon the (unknown) separation of the stiff eigenvalues, the worst case
being when other stiff eigenvalues are close to A,. However, the whole term is
independent of r and, as r increases, the [T^^yd]1 term should dominate the
bound.

3. Numerical examples of the upper bound for e\r) given by Theorem 1 are
presented in Tables 2 and 3 of Section 5.

For the more general case where A has a complex spectrum, we refer to the
following theorem of Saad [16: p. 138].

THEOREM 2 Given an eigenvalue of A, which for convenience we label klt there
exist r other eigenvalues of A, which we label Aj, . . . , Ar+1, such that

/ = 2 J = 2 Ay —A, | /
(3.6)

We emphasize that this theorem is not constructive; the members of the set
j l are not determined. Unfortunately when A! is a stiff eigenvalue and r =» k

the right-hand side of (3.6) depends critically on the set {Ay}yl]. To illustrate this,
suppose At is stiff with k = 4 and r = 4. In order to show that e\ is small, it is
sufficient to show that one of the terms

5n
1-2 Ay " A ,

is large. Taking j = 5, we may write this term as

A,-A 2 | IA, —A3I lA. -A,

— A31 U 3 - A 4
(3.7)

Now, if A2, A3, A4, and A3 are nonstiff, then each of the three factors in (3.7) will
be large. However, if A2 is replaced by a stiff eigenvalue, then only the second
and third factors in (3.7) are guaranteed to be large; the first factor has a
numerator which depends on the unknown separation |At — A2I. Similarly, with A2
and A3 stiff, only the third factor in (3.7) is guaranteed to be large, and, if A2, A3,
and A4 are stiff, then the whole term depends upon the separation of the stiff
eigenvalues.
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For the complex spectra used in Section 5, the right-hand side of (3.6) was
evaluated for every possible set {^.jYjtl, and the largest value was recorded (see
Tables 4-6). This, of course, gives an upper bound for e\r\ In every case, the
upper bound occurred when the maximum number of stiff eigenvalues appeared
in {kjYjZl. Also, as the above example indicates, for the upper bound to be small,
it is desirable that the stiff eignenvalues be well separated. However, even if this
is not the case, the number of nonstiff eigenvalues in the set will increase as r
increases, and the corresponding large |(Aj - Ax)|/|(Ay - A,)| factors in (3.6) should
force the bound to become small (see Table 5).

In conclusion, Theorems 1 and 2 suggest that, for a stiff eigenvalue kt, the
quantity e\r) will quickly become small as r increases beyond k. Once this has
happened, it follows from Lemma 1 that the corresponding stiff eigenvector will
almost certainly be close to span {qu . . . , qr}.

Although we assumed that the hi+l%i values in (3.3) were all nonzero, the above
conclusion remains valid in the pathological case when one of the values
h,+i,, (1 *= s =e r — 1) is zero. The space span {qlt . . . , qr) may then be written as
the union of two Krylov subspaces:

span {qu...,qr}= span {qu ... ,q,} Uspan{qJ+u- • •,qr)

= span {qlt Aqu... ,A'~lqi) U span {q,+1, Aqs+U.. .,Ar~'qs+l).

The first of these subspaces is invariant under A, and hence contains s of the
eigenvectors of A. If a stiff eigenvector xt is not contained in this space, then the
results of this section show that, as r increases, the distance between the second
Krylov subspace and xt should become small.

4. Implications for the Enright-Kamel method

The conclusions drawn in the previous section can be used to give insight into
the effectiveness of the Enright-Kamel method. First, we look at the size of br in
(3.1). Partitioning

T n — r

it follows from (3.1) that

l = [0 n (4.1)
Recalling that qr denotes the rth column of Qu we equate the rth columns in
(4.1) to obtain

= br. (4.2)

Next we expand qr in terms of the eigenvectors of A:

(4-3)
/-I

where we assume that xx, . . . , xk are the stiff eigenvectors. Equation (4.2) then
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becomes

and, on taking norms, we find

l|6'|| « 1 \PM \\Qlx,\\. (4.4)
Now

which, from Section 3, should become negligible for j = 1, . . . , k. Hence, in
(4-4),

and, since \\Q\x,\\ =£ \\XJ\\ = 1, we have

2 (4-5)
J-k + l

Although the size of the coefficients /3y cannot be bounded a priori, (4.5) does
suggest that \\br\\ will generally be of roughly the same order as the nonstiff
eigenvalues and consequently much less than ||i4||. A similar argument applies to
the columns of 5 ^ in (3.1), and, under the stronger assumption that the stiff
eigenvectors are contained in span {Gi}» w e may use the following lemma.

LEMMA 2 / /

k n — k r n — r

[ C Gv] and [G, Q2] ir^k),

are orthogonal matrices such that

span {(?„}£ span { g j ,

then

\\QlAQ2\\^\\QlAQv\\-
Proof. The proof is straightforward: see [9].

Now, with the ideal partitioning (1.4), the error in the approximate Jacobian A
of (1.5) is easily seen to be

while the Enright-Kamel partitioning (3.1) would give

Hence, Lemma 2 and inequality (4.5), combined with the results of Section 3,
indicate that, as the value of r in (3.1) begins to increase beyond k, the
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Enright-Kamel method should be able to produce an approximate Jacobian A
such that \\A — A\\ is of the same order as the corresponding value given by the
ideal partitioning. Although this does not guarantee that the convergence
condition (2.4) will be satisfied, it suggests that the method will be successful in
reducing the sizes of HS22II and ||fr||, which are likely to be the dominant terms in
(2.4).

Finally, note that A in (2.2) is the orthogonal projection of A onto
span {qu . . . , qm}. Hence, we may regard the Enright-Kamel method as using
the projection of A onto a space which virtually contains the dominant subspace.

5. Numerical tests

Kamel [10] incorporated the Enright-Kamel method into a stiff solver which
originally used a MN scheme. His results show that, if a suitable partitioning (2.1)
can be found with m «n, then a substantial saving in solution time can be
achieved. Hence, in testing the method, our approach is to generate a matrix
which models a separably stiff Jacobian, perform the reduction, and record the
value of m produced.

The model Jacobians which we use have the general form

A = VTMV,

where V is a random orthogonal matrix generated by the method of Stewart
[18: Theorem 3.3] and M is chosen so that A has a suitable set of eigenvalues. In
all the tests, we have n = 25 with k = 3 stiff eigenvalues.

The first test involves the real spectrum

Rl = {-£/}£,U {-3x10*, -2X103 , -103},

for which fi =* 10~2 in (2.5). M is upper triangular with the stiff eigenvalues
forming the first three diagonal elements of M and the remaining eigenvalues
placed along the diagonal in an arbitrary order. The strictly upper triangular part
of M consists of random numbers (taken from a N(0, 1) distribution) with the first
three rows scaled by 102. The scaling is intended to represent coupling between
the stiff components and between the stiff and nonstiff subsystems. Following
(1.7), we choose hfi so that /i/3 \\M-&\\ = 1, where M^ is the lower 22x22
principle submatrix of M.

In the next test, M is constructed in the manner described above, but using the
spectrum

R2 = {-hj}f-i U {-1-02 x 103, -1-01 x 103, -103},

in which the stiff eigenvalues are clustered together.
To generate complex spectra, the only modification required is the introduction

of 2 x 2 blocks along the diagonal of M. The sets

Cl = {-i/'}}ii U {-2± 2i, - 5 ± 5i} U {-103 ± lO3!, -103}

C2 = {-£/}£, U {-2 ± 2i, - 5 ± 5i} U {-103 ± lOi, -103}
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are used for whch fi =» 10~2. Note that C2 has stiff eigenvalues which are closer
together than those of Cl. The final spectrum considered is

C3 = {-$/}/*! U {-2 ± 2i, - 5 ± 5i} U {-102 ± 102!, -102},

where \JL =» 10" \
The values of m obtained are presented in Table 1. Tables 2-6 record upper

bounds on e(r) (see Lemma 1) for the stiff eigenvalues used. These were found by
applying Theorem 1 in Tables 2 and 3 and Theorem 2 in Tables 4-6. (Note that
bounds for a complex conjugate pair are equal by symmetry.)

TABLE 1
Test results

Spectrum:

m:

r - 3 x 103

Rl R2 Cl

5 6 5

TABLE 2
Spectrum = Rl

Stiff eigenvalue
-2X103

C2

5

C3

5

-103

4 2 x 10"3 8 x 10"3 2 x 10~2

5 2xlO"6 l x lO" 5 4 x l ( T s

6 lx lO" 9 1XKT8 l x lO" 7

7 lxHT 1 2 2XKT11 3x10- '°

TABLE 3
Spectrum = R2

Stiff eigenvalue
r - 1 0 2 xlO3 -1-01 xlO3 -103

4 3 xlO1 5 X101 3x10 '
5 7xlO"2 l x lO" 1 7 xlO"2

6 2x10"" 4X10-" 2x10-"
7 5xlO~7 l x lO" 6 5xlO"7

r

4
5
6
7

TABLE
Spectrum

2x
7x
2x
5x

4
= C1

Stiff eigenvalue
iltfi

10"3

io-6

io-8

io-"

- IO 3

I x
4x
2x
6x

lO"2

10"'
io-7

lo-io
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TABLE 5
Spectrum = C2

Stiff eigenvalue
r - lO ' i lOi -103

4 3 x 10-' 1 x 10°
5 7xlO-2 2x10- '
6 5 x 10"4 1 x 10"3

7 1 x 10~6 3 x 10-6

TABLE 6
Spectrum = C3

Stiff eigenvalue
-102±l02i -102

4
5
6
7

2 x
7 x
2 x
5 x

10"2

10"4

10"5

10"'

1
4
2
7

X
X
X
X

10~'
io-3

10"4

10"6

Comments
1. From Table 1, we see that the method was always able to produce a suitable

partitioning with m — k^3. Also, in each test, the reduction (3.1) halted at a
stage where the £(r) bounds had become small.

2. At each stage of the reduction, the norms of the submatrices were
examined. Their behaviour followed the pattern predicted by the theory of
Sections 3 and 4. For example, Table 7 gives the results for the test with Cl.

We see that | |Sy|2 and \\br\\2 decrease sharply as r increases from 3 to 5. A
similar pattern emerged in all the testing. Table 7 also shows the size of ||JC||2 (see
(2.4)) at each stage. The small value of \\x\\2 at the exit stage r = 5 is typical.

3. More extensive testing, including the case where A has repeated eigen-
values, was performed in [9]. The results were equally encouraging. However, we
mention that it is possible to construct examples where neither the Enright-

TABLE 7
Submatrix norms in the reduction (3.1) using the spectrum Cl

r

1
2
3
4
5

IIWII2

4X104

2X106

6x10 '
l x l O 8

l x l O 8

II C r I I 2

IP12II
2x10'
9x10'
3x10'
lx lO 6

8X1O5

II*
2 x
3 x
5 x
l x
IX

'II2

103

104

10*
103

10'

1155

9x
2x
7 x
l x
8 x

2 | |2

10'
10'
10*
103

102

I I * '
l x
7 x
4 x
l x
3 x

II2

109

10'
10'
102

10-'
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Kamel method nor the block QR method are effective (see, for example, [2]).
In summary, the new insight given by the analysis of Sections 3 and 4 and the

promising numerical results of this section suggest that the Enright-Kamel
method is a useful tool for dealing with separably stiff systems.
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