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ABSTRACT 

Various normwise relative condition numbers that measure the sensitivity of matrix 
inversion and the solution of linear systems are characterized. New results are derived 
for the cases where two common, noninduced matrix norms are used, and where different 
vector norms are used for the domain and range of the matrix. Condition numbers that 
respect the structure of symmetric problems are also analyzed. The sensitivity of the 
condition number itself is then investigated, and we obtain sharp examples of Demmel’s 
general result that for certain problems in numerical analysis “the condition number of 
the condition number is the condition number.” Finally, upper bounds are derived for the 
sensitivity of componentwise condition numbers. 

1. INTRODUCTION 

The classical normwise relative condition number measures the sensitivity of a 
matrix inverse. Given A E IRnxn, which we will always assume to be nonsingular, 
and a matrix norm 11 . I), this condition number may be defined as 

cond(A) := lim 
ll(A + AA)-’ - A-‘[1 

??o+,,AAS;!,,A,, ~IlA-~ll (1.1) 
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[5; 7; 8, p. 80; 1.51. Note that in order to reduce the sensitivity measure to a single 
number, two simplifications have been introduced: 

(1) We look at the largest relative change in A-’ compared with a relative 
change in A of size e. 

(2) We take the limit as E + O+. 

Hence a condition number records the worst-case sensitivity to small pertur- 
bations. When the matrix norm is induced by a vector norm, it is well known that 
cond(A) has the characterization 

cond(A) = K(A):= IIAIlI(A-‘II. (1.2) 

Since matrix inversion is rarely necessary in practice, it is of interest to define the 
corresponding condition number for the linear system Ax = b: 

cond(A, b) := lim 
II(A + AA)-‘(b + Ab) - A-‘bll 

r-O+ ,,L4;i$4,, GIlA-‘WI (1.3) 

IlWl~~llbll 

Here, we measure the sensitivity of the solution x to relative perturbations in A 
and b. For the case where ]I . II in (1.3) denotes any vector norm and the induced 
matrix norm, the characterization 

(1.4) 

was derived by Bartels [2], and is quoted in [ 111. Although terms like the right- 
hand side of (1.4) often appear in perturbation results (see, for example, [8, p. 
79]), the author is not aware of any references before [2] that explicitly derive the 
condition number. Using the inequality ]I A II 2 11 b II / IIx 11, it follows from (1.2) and 
(1.4) that 

cond(A) 5 cond(A, b) 5 2 cond(A), (1.5) 

with the right-hand inequality being attainable for some b. Hence, we see that “the 
condition number,” cond(A), gives a reasonable order-of-magnitude sensitivity 
measure for any linear system Ax = b. 

Condition numbers are useful for two distinct reasons. When the data {A, b) 
contains errors, either experimental or numerical, the condition number bounds 
the level of uncertainty inherent in the solution before a numerical algorithm is 
applied. Also, when combined with a backward error estimate, the condition 
number provides an approximate upper bound on the error in a computed solution. 

This work extends the standard condition-number theory in three ways. First 
we examine the definitions (1.1) and (1.3) in the case of noninduced matrix norms. 
Then we look at the corresponding definitions that arise when A and AA are 
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constrained to be symmetric. Finally, to determine the sensitivity of the problem 
of computing condition numbers, we look at the “condition number of the condition 
number.” Our aim throughout is to obtain neat characterizations or bounds for the 
newly defined quantities, and to relate them to standard sensitivity measures. 

Our notation for vector and matrix norms is as follows. The Holder vector 
p-norms will be written ]I - lip; that is, 

lip<% and Il~lloo := lytyn IXiI. (1.6) 
-- 

Given arbitrary vector norms I] . IL and I] . ]]p, we define the corresponding operator 
norm II . LB by P3, P. 571 

IIAIL~ := ,,‘;t”~~ llAxll,v. 
xa 

Note that, in general, the submultiplicative property IlAB IL, p I II A IL.. B IIB IL.. B 
does not hold, but we do have 

(1.7) 

for any third vector norm 11 . I],,. The choice I] . Ila = II 
produces the max norm, 

. Ill and II . lls = II . llm 

IIAlll,o~ = IlAllmm := max laii 
lsi, jsn 

For simplicity, we write the induced norm I] . [Ia, a as I] . ]lU. The Frobenius norm is 

defined by IlAll~ :=dm, an d we recall that if A = U E VT is a singular 

value decomposition (SVD) of A [8, p. 711, with the singular values ordered so 
that c71 2 a2 2 . . . 2 a, _ z- 0, then the Frobenius and spectral norms satisfy 

IIAIIF = dm and II412 = 01. 
In the next section we give characterizations for the condition numbers cond(A) 

in (1.1) that arise when the Frobenius norm or the max norm is used, and also when 
a general ]I . IIa, p norm is used to measure A with I] . lip, (y measuring A-‘. Section 
3 relates the 1) - II F condition number to the corresponding distance to the nearest 
singular matrix, showing that the two quantities are not reciprocal in general. For 
completeness, we also include the analogous result for the o, p case, which Kahan 
[ 141 attributes to Gastinel. In Section 4 we characterize cond(A, b) in (1.3) when 
11 . 112 is used to measure x and b and ]I . IIF is used for A. We also characterize 
the case where ]I . jla and ]I . ]],g are used to measure x and b respectively, and 
]I . II=, p is used to measure A. We show that a natural generalization of (1.4) arises, 
Section 5 looks at the condition numbers that are obtained when A and AA are 
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symmetric. We find that cond(A) remains unchanged using ]I . (12, 11. )I F or ]I . II mm. 
For linear systems, we show that even when A is not symmetric, forcing AA to 
be symmetric does not alter the ]I . l/2 condition number and reduces the ]I . 11,~ 
condition number by no more than a factor of l/l/z. In Section 6, we prove that 
the condition numbers are approximately as sensitive as the original problems that 
they describe. Finally, in Section 7 we review results on componentwise condition 
numbers and derive upper bounds on their sensitivity. 

2. MATRIX INVERSION 

We begin this section with a characterization of the Frobenius-norm version of 
cond(A) in (1.1). This result was derived by the author and Sven Bartels in 1991 
and appeared in [2]. We include a proof here, since it will be referred to later when 
symmetric perturbations are considered. 

THEOREM 2.1. The condition number 

condr;(A) := lim 
Il(A + AA)-’ - A-’ IIF 

sup 
+‘O+ I~~AIIF~~~~A~~F EIIA-~IIF 

(2.1) 

condr;(A) = ‘]Al~~!~~’ ]I’. 
F 

(2.2) 

Pro08 With ]I AA ]I F 5 E ]I A 11 F, neglecting 0 (c2) terms in a standard ex- 
pansion (see, for example, [8, Lemma 2.3.31) gives 

(A + AA)-’ - A-’ = -A-’ AA A-‘. (2.3) 

Hence, the result is proved if we can show that 

sup IlA-’ GA-’ IIF = IlA-‘II;. _ (2.4) 
II~~IF~~ 

The general inequalities IIBCIIF I llBll2llCll~ ad IIBCIIF 5_lJBIIFIICll2 (see 
[ 13, p. 3131) give “5” in (2.4). Equality is found by taking AA = VeleTU’, 
where A-’ = UEVT is an SVD with ~1 2 ~72 2 . . . > a, > 0, and el is the first 
column of the identity matrix. ??

Writing KF(A) := llAll~llA-‘Il~ for the analogue of (1.2), we see from The- 
orem 2.1 that COndp(A) # KF(A) in general. Using the inequalities llAll2 ( 
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llAll,c I filIAlI:! [13, p. 3141 it follows that 

KF(A) 
- 5 condr;(A) 

n 
5 KF(A). 

Next we characterize the condition number that arises when I( . llrnax is used in 
(1.1). 

THEOREM 2.2. The condition number 

cond,,(A) := lim sup 
II(A + AA)-’ - A-’ llmax 

c+o+ II~Allmax~tllAllmax E/A-’ Ilmm (2.5) 

satisjies 
cond,ax(A) = I141maxllA-111~IIA-1111 

IIA-‘llmax (2.6) 

Pro05 By analogy with the proof of Theorem 2.1, we must prove that 

sup IIA-‘~A-‘llmax = IIA-lllocllA-lIll. (2.7) 
ll~llm~l 

Using (1.7) gives “5” in (2.7). To show that equality is attainable, let r,? and cj 
denote the ith row and jth column of A-‘, respectively. krppose that k and I are 
suchthat ]]rk]]l = llA-‘Ilw and ]]cl ]I 1 = llA_’ II 1. Let E denote the matrix of ones, 
and let DA= diag(sign rk) and D2 = diag(sign cl). Thenchoosing G = D1 ED;! 
gives ]]AA((,, = 1 and 

IIA-‘= A-’ II ,,,= > (A-‘= A-‘)kl = lr#Elcll 

= bkIIlllcrII1 = IIA-111wllA-11119 

as required. a 

Finally, we consider the case where A is regarded as an operator with the norms 
]I . IIQ and I] . )Ip measuring vectors in the domain and range of A respectively. This 
suggests the use of ]I . IIu, p to measure A and I) lip, a to measure A-‘. To analyze 
the corresponding condition number, we require the following lemma, which is 
essentially a simple application of the Hahn-Banach theorem. 

LEMMA 2.1. Given vector norms II . Ila and I( . (16 and vectors x, y E Wn 
such that llxlln = IIy(Ip = 1, there exists a matrix B with IIBI(,,p = 1 such that 
Bx = y. 

Proof: Recall that the dual norm of ]I . !(a is defined by ]]z]]i = 
maxll,,,ll,,r (zru~(. Now from a standard duality result [13, p. 2881 there ex- 
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ists a vector z. E W” such that ]]z]]i = 1 and zrx = (]x]la = 1. Let B = yzr. 
ThenBx=yand 

II~lla,~ = ,,y, IIYZT~ll/J = llYllf3 ,,y=, IA4 = IlYllsll~ll,: = 1, 
W. w. 

as required. ??

We remark that this result is the key to the characterization of many normwise 
condition number and backward error expressions [2, 5, 7, 14, 161. The next 
theorem generalizes the standard condition-number characterization (1.2). 

THEOREM 2.3. The condition number 

cond,, p(A) := lim sup 
II@ + AA)-’ - A-‘1Ip.a 

C+o+ lI~AIl,,~~+Ua,~ 41A-111~.u 
(2.8) 

satisfies 
cond,,B(A) = IIAll~,pllA-lII~,~~ (2.9) 

Proo$ 
result is 

Following the proofs of the previous two theorems, the required 

sup IIA-‘=4-‘ll,~,a = llA-lll;,a, 
ll%%S5t 

(2.10) 

and, once more, “5” can be deduced using (1.7). To show the opposite inequality, 
we have 

JIA-‘~A-‘IIp,a = _max I(A-‘z A-‘$ > ((A-‘Gf(l,(JA-’ IIp,cy, 
IlYllp=l 

(2.11) 
where, for the lower bound, we have chosen 7 so that ljA-l~/lu = I/A-’ l/p, a, 
and hence %is a vector such that I]& = 1. Now, from Lemma 2.1, there exists 
a matrix aA with ]]hA ]lU, p = 1 such that Gj;_ = j? In (2.11) this gives 
HA-' AA A-‘lIp,or L IV-’ II2 B, (y, as required. ??

3. NEARNESS TO SINGULARITY 

It is well known that when I] . 11 denotes a vector norm and the induced matrix 
norm, the reciprocal of cond(A) in (1.1) gives the relative distance from A to the 
set of singular matrices. This idea extends readily to the general ]I . JIa, p norm. 
The result is essentially proved in [14], where it is attributed to Gastinel. More 
precisely, Kahan assumes that ]I . IJa and ]I . ]]b are Holder p-norms, and does not 
explicitly point out that ]I . lip, (y should be used to measure A-‘. 
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THEOREM 3.1. De$ning 

. 
dist,p(A) := WI 

II AAlla. B 
IIAlla,p : A + AA singular , 

I 

we have 

dis&,p(A) := (llAlla,~llA-l II,Y,~>-’ = con&,&W1. 

ProojI See Kahan [ 14, pp. 775-7761. ??

The next result concerns the Frobenius-norm distance to singularity. 

THEOREM 3.2. Dejning 

distp(A) := min 
IIAAIIF I,AIIF : A + AA singular , 

I 

we have 
disk(A) = (IIAIIFIIA-‘~~~-‘. 

Proo$ Using Theorem 3.1 with II . II 2, if A + AA is singular then II AA 11 F ) 
IIAA112 > l/llA-‘ll2. Now, to show that equality is possible, note that (A + 
AA)-’ = (I + A-’ AA)-‘A-‘, so that it is sufficient to find a suitable AA that 
makes Z + A-’ AA singular. Let A-’ = UEVT be an SVD with ol 1: 02 > 
. . . p a, > 0, and let AA = VYUT. Then Z + A-’ AA = U(Z + EY)UT. The 
choice Y = -eleT/crr makes Z + EY singular, with llAA[l~ = jlY(l~ = l/al = 
l/IIA-‘ll2 as required. ??

Comparing cond,,(A) in (2.6) with distr,,(A) in Theorem 3.1, and 
condF(A) in (2.2) with distF(A) in Theorem 3.2, we see that the reciprocal rela- 
tionship in Theorem 3.1 does not hold in general for noninduced matrix norms. 

4. LINEAR SYSTEMS 

In this section we look at condition numbers analogous to (1.3) that arise when 
noninduced matrix norms are used. We begin with a characterization for the case 
where the II . (12 vector norm is combined with the Frobenius norm. 

THEOREM 4.1. For the linear system Ax = b the condition number 

condl;(A, b) := lim sup 
IIU + ““‘,;,b”?b;;’ - A-‘WI2 c4.1j 

‘*O+ I~~AIIF~~~~A~~F 
Il~~ll~~~llbllz 
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satisfies 

(4.2) 

Pro08 Suppose IIAAIIF i EllAllF and IlAb]] 5 6llb112. Let (A+AA)(n+ 
Ax) = b + Ab. Then 

Ax = A-‘(Ab - AAx) + O(E~). (4.3) 

Now 

IIA-‘(Ab - AAx)ll2 5 llA-‘I12ll.hbll2 + IIA-‘Il2ll~AIl2ll4l2 

5 ~IIA-‘ll2(llbll2 + IIAIIF~~~~~~>, 

giving “5” in (4.2). Now suppose ]]7]]2 = 1 and ]]A-‘7]]2 = 11 A" 112. Then let 
Ab = e~llbll:! and AA = -jkT~]]A]]~/]]x]]2, so that ]]AA]]F = r[lAIl~. With 
theseperturbations ]]A-‘(Ab-AAx)]] = ~IIA-~~~2(llbll2+IIAll~~~x~~2).giving 
equality in (4.2). ??

The case where I] . llmaX is used to measure A and ]I . Iloo is used to measure 
x and b is covered by the componentwise analysis of [lo]. For completeness, we 
quote the result below. 

THEOREM 4.2. For the linear system Ax = b the condition number 

cond,,(A, b) := lim 
II(A + AA)-‘(b + Ab) - A-‘b/l, 

sup 
<-+O+ II~Allm,i~llAllmax ElIA-‘blloo 

II~bllm~~llbllm 
(4.4) 

satisfies 
cond,ax(A b) = IIIA-lI~IA-‘bl + IA%lm 

IIA-‘bllm ’ 
(4.5) 

where E^ E RnX” has all components equal to 1) A II max and 3 E R” has all compo- 
nents equal to llblloo. 

Pro05 See the analysis leading up to Equation (3.5) of [lo]. ??

When two possibly different norms are used to measure vectors in the domain 
and range of A, we have the following generalization of (1.4). 
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THEOREM 4.3. For the linear system Ax = b the condition number 

cond,,p(A, b) := lim 
II(A + AA)-‘(b + Ab) - A-‘bll, 

sup 
+‘O+ II~All,,~~~II&.~ ElIA-‘blla 

Il~bllp~~llbll~ 
(4.6) 

satisfies 

con&&L b) = IIAIla,~IIA-lIl~,a + II@ Il~,a II& 
IIA-‘bll, . (4.7) 

Proo$ Suppose IIAAIl,,p 5 ??llAlL,p ad IIWp I ~llbllp As in the 
proof of Theorem 4.1, the key quantity is A-’ (A b - AA x) . We have, using ( 1.7), 

IIA-‘(Ab - AAx)llol I IlA-’ Abll, + IIA-’ AAxlla 

5 IIA-lll~,aIl~bllp + IIA-’ AAIlaIlxllcr 
I IIA-‘ll~,a.lI~bll~ + IV-‘Ils,cxll~&,~II~lla 
I ~IIA-lII~,crWll~ + IIAI~,,~IIx~~~), 

giving “~“in (4.7). Now, suppose that Ilj;lls = 1 with Il A-‘j$ = 1lA-l llp, o1, and 
choose Ab = 6 II b Ilpj? From Lemma 2.1 there exists a matrix B with 11 B [Ia, p = 1 
such that Bx/llx II= = -j? Letting AA = ~11 A IIu, p B, we have 

IIA-‘(Ab - AAx)II = = ~IIA-lII~,dll~llp + IIAII~~~IIx~~~>~ 

showing that equality is possible in (4.7). w ??

Since II~I~,~IIx~~~ 2 Ilbllpv with equality for some b, we see from (2.9) and 
(4.7) that with the II . Ila, II . (Ip measures the inequalities (1.5) still hold. It is also 
clear from the proof of Theorem 4.3 that if we alter the definition of conda, ,g (A, b) 
so that b cannot be perturbed, then conda, p(A) and cond,, B (A, b) becomes equal. 

5. SYMMETRY 

If a matrix A is symmetric, then it is sometimes appropriate to define condition 
numbers that measure sensitivity to symmetric perturbations. For example, when 
a symmetric matrix is stored as a symmetric floating-point matrix, the inherent 
uncertainty in the solution is caused by symmetric, rather than general, pertur- 
bations. The effect of structure, including symmetry, on problem sensitivity was 
investigated in [lo] for componentwise measures. In particular, a computable 
characterisation of the componentwise condition number for Ax = b was derived. 
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The treatment here differs in that we consider normwise sensitivity, and we directly 
compare the structured and unstructured measures. We show that in many cases 
imposing symmetry on AA has little effect on the condition number. 

THEOREM 5.1. Given A = AT and a matrix norm II . IIw, define a symmetry- 
respecting condition number with respect to inversion by 

symmcond(A) := lim 
II(A + AA)-’ - A-‘IIM 

sup 
e+‘+ II~AIIM~~IIAIIM CIA-’ IIM . (5.1) 

AA=AAT 

Then when the matrix is (I.ll2, II . II F, or I(. II mu, the condition number (5.1) is iden- 
tical to the corresponding unstructured condition number; that is, the constraint 
AA = AAT has no effect. 

Proof It is clear that imposing symmetry on AA cannot make the condition 
number bigger. To show equality for the three norms, it is sufficient to show that 
the optimal AA derived in the proofs of Theorems 2.1 and 2.2 can be taken to 
be symmetric. For the Frobenius norm, the result follows from the fact that the 
symmetric matrix A-’ has an SVD of the form A-’ = UCUT. The same AA 
can be used to give the spectral norm result. For the II . [Imax case, when A-’ is 
symmetric the largest row sum also gives the largest column sum. Hence we may 
take k = 1 in the proof of Theorem 2.2, giving Dl = D2, as required. ??

A similar result holds for the distance to singularity using I( . 112 or 11 . 11 F. 

THEOREM 5.2. Given A = AT ana! a matrix norm II . ll~, define a symmetry- 
respecting distance to singularity by 

symmdist(A) := min 
IIAAlliu 
- 
IIAIIM 

: A + AA singular, AA = AAT 
I 

. (5.2) 

Then when the matrix norm is either II . 112 or II . II F, the distance (5.2) is identical 
to the corresponding unstructured distance; that is, the constraint AA = AAT 
has no effect. 

Proof Constraining AA to be symmetric cannot make the distance smaller. 
Equality follows from the fact that we may take U = V in the proof of Theorem 
3.2. ??

The following theorem concerns the spectral-norm condition number for Ax = 
b, and does not require A to be symmetric. 

THEOREM 5.3. For any nonsingular A E lRnx” (not necessarily symmetric) 
the spectral-norm condition number with respect to symmetric perturbations for 
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AX = b, 

symmcond2(A, b) := lixy sup 
+ ll~Allz~~llAll~ AA=AAT 

Il~~ll2s~ll~ll2 

ll(A + AA)-‘(b + Ab) - A-‘blls 

~llA-‘bll2 
, (5.3) 

is identical to the corresponding unstructured condition number; that is, the con- 
straint AA = A AT has no effect. 

ProojI Imposing symmetry on AA cannot increase the condition number. 
Consider the proof of Theorem 4.3 in the case where II . Ila = II . 11~ = 11 . 112. 
Here I@;112 = 1 and I(A-‘7112 = llA-‘ll2. Our result is proved if we can find 
a symmetric matrix B such that llBll2 = 1 and Bx/llxll2 = -j? This can be 
done by taking B as a suitably chosen Householder transformation matrix (see, 
for example, [8, p. 1951). ??

Since the Frobenius norm is always within a factor z/is of the spectral norm, 
Theorem 5.3 can be used to derive a lower bound on the corresponding symmetric 
condition number. However, the bound can be further sharpened by appealing to a 
result of Bunch, Demmel, and Van Loan [4]. The improvement is essentially due 
to the fact that there exists an optimal symmetric perturbation for the II . 112 case 
that has rank two, whereas the Householder matrix used in the proof of Theorem 
5.3 has full rank n. This allows the fi to be reduced to 2/2. 

THEOREM 5.4. For any nonsingular A E Rnxn (not necessarily symmetric) 
the Frobenius norm condition number with respect to symmetric perturbations for 
Ax=b, 

symmcondp(A, b) := ,lG_y sup 
+ I~~AIIF~~IIAIIF, AA=AAT 

IlW2~~llbllz 

II(A + AA)-‘(b + Ab) - A-‘bll2 
ElIA-‘bllz. 9 (5.4) 

satisfies 

symmcondF(A, b) >_ l~A-‘~~2- IIAIIF + lb-lllzllbllz , condF(A, 6) 
z/z IV-‘bll2 - ,h ’ 

Proo$ We areconcerned with llA_‘(Ab - AAx)l(2. Lettingybe such that 
l@j;a, = 1 and llA-‘~;112 = ((A-‘ll2, we may take Ab = ex;llbll2. We know from 
Lemma 2.1 that there exists a matrix B such that II B 112 = 1 and Bx/llnll2 = -7. 
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It follows from Theorem 3 of [4] that there exists a symmetric matrix C with 
]lC]l~ I fi such that Cx/(]xllz = -7. Letting AA = CEIIAIIF/&, we have 
IIAAIIF 5 EIIAIIF and 

IV-‘W - AAx)llz = &‘+I12 

giving the required bound. ??

Theorem 5.1 shows that cond,,(A) in (2.5) is unaffected by symmetry. The re- 
lated linear-system condition numbers cond,,(A, b) in (4.4) and condt, oo(A, b) 
in (4.6), however, do not share this property. A bound on the effect of symmetry 
can be obtained by applying norm inequalities to the 11 . 112 version in Theorem 
5.3, but the result is unlikely to be sharp in general. It is possible, though, to char- 
acterize the symmetry-respecting version of cond,,(A, b)-the (1 . Ijmax, I( . (loo 
measurements overlap with the componentwise measurements used in [lo], and 
Equation (3.4) of [ 101 provides an explicit formula. 

6. CONDITION-NUMBER SENSITIVITY 

In general, condition numbers cannot be computed exactly, and hence it is 
of interest to know the sensitivity of the problem “compute the condition num- 
ber,” that is, the condition number of the condition number. This concept was 
investigated by Demmel [5], who showed that for certain fundamental problems 
in numerical analysis, including matrix inversion, and to within unspecified multi- 
plicative constants, the condition number of the condition number is the condition 
number. Our results below are more specialized, since they apply only to matrix 
inversion and the solution of linear systems, and consequently they are sharper. 
(They involve fixed additive and multiplicative constants rather than unknown 
multiplicative constants). 

To motivate the analysis, we consider a linear system Ax = b. Typically, an 
a priori rounding error analysis or an a posteriori residual check will allow us to 
conclude that a computed solution j;_ satisfies a nearby system (A + AA)3 = b + 
Ab, where IIAAJI and IIAbll are small, say max(IlAAIJ/IIAII, IlAbll/llbll} = qu, 
where ct is close to unity and u is the machine unit roundoff. Using appropriate 
norms for cond(A, b), it is clear that we have the approximate error bound 

lb - RII 
lb II 

5 cond(A, b) qu. 

Now, even when cond(A, b) has a simple characterization, it cannot normally be 
computed exactly. Given that A and b may contain errors before an algorithm 
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to compute cond(A,2 is appgd, perhaps the b=t that we cs hope for is to 
compute cond(A + AA, b + Ab), where max{ljAAIj/IIAll, llAbll/llbll} = czu, 
with c2 close to unity. The error in the computed version of the bound (6.1) may 
be analyzed by considering the level-2 condition number 

cond12’ (A , b) := lim 
(cond(A + AA, b + Ab) - cond(A, b)l 

sup 
++O+ Il~AII~~IIAll E cond(A, b) 

IlW~~llbll 
(6.2) 

We then have the approximate inequality 

Icond(A + G, b + z) qu - cond(A, b) clul 

5 cond(A, b) clu cond12](A, b) czu. 

We conclude that if condl’](A, b) < u-l, then using cond(A + z, b + z) 
instead of cond(A, b) in (6.1) will not affect the order of magnitude of the error 
bound. 

The results below show that for inverting a matrix or solving a linear system 
the sensitivity of the condition number is approximately given by the condition 
number itself. For the Ax = b case described above the result has the following 
implication. If cond(A, b) -C u-l, so that the error bound (6.1) indicates that we 
have some relative accuracy in 2, then cond(A, b) is sufficiently well conditioned 
for the computed error bound to be meaningful. For simplicity, we restrict attention 
to condition numbers based on the (I . lla, II . lip and II . [Ia, ,g norms; similar results 
for other condition numbers studied earlier can be derived. 

The first result concerns matrix inversion, and relies on the following lemma. 

LEMMA 6.1. As E --f o+ 

max 
II~&,p~~lI4l,,~ 

II@ + AA)-’ llp, a - I/A-‘Ilp,ul 

= ~IIA-~ll~.~cond,,~(A) + 0(e2>. (6.3) 

Pro05 Using (1.7), if IIAAIJa,,q 5 EIIAII,,~ then “5” in (6.3) follows by 
taking norms in the expansion (A + AA)-’ = A-’ - A-’ AA A-’ + 0(e2). 

Now let 7 be such that IlFlls = 1 and ljA-‘~lla = IlAm’ lip, oL and let X? = 
A-‘j;l II A-' j$. Then by Lemma 2.1 there exists a matrix B such that I( B Ila, p = 
1 and Bj;_ = -7. Choosing AA = EB IIAlla, 6 gives 

JIA-’ - A-‘AAA-‘11,~ 2 Il(A-’ - A-‘AAA-‘)$I[, 

= IV-‘Ilpd f~Il~II~,~ll~-‘Il~,a>~ (6.4) 

showing that (6.3) is attainable. ??
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THEOREM 6.1. The level-2 condition number 

cond&T]B(A) := lim sup 
Icond,, p (A + AA) - con&, TV (A) I 

E+o+ II~Alle,,&IIAII~,~ E cond,, ,s (A) 

satisfies 
(6.5) 

cond,, p(A) - 1 I condglp(A) 5 cond,, p(A) + 1. 

Proo$ If IIAAlla,~ 5 ~IIAIl~,p,thenusing IIA+AAlL,p 5 IIAlla,p U+E) 
and Lemma 6.1, it follows that 

IIA + WI.,~II(A + AW’llp,a 
5 con&,pWU + econd,,p(A) + E) + 0(e2), (6.6) 

so that 

cond,, p (A + AA) - con&. p(A) 

e cond,, B (A) 
5 cond,,p(A) + 1 + O(e). (6.7) 

Similarly, using I] A + AA ]lo, p 2 II A Ila, ,g (1 - E) and Lemma 6.1, we can derive 
a lower bound of -cond,, p(A) - 1 + O(E) for the right-hand side of (6.7), and 
hence, in (6.5), 

condg]B (A) I con&, p(A) + 1. 

To get a lower bound, we may choose AA as in (6.4), giving 

IIA + AAIla,pll(A + AA)-‘1Ip.a 
2 IIAIL,pU - ~)llA-‘Ilp,a[l + ~conda,p(41 + 0(e2), 

and hence 

conQ,g(A+AA)Zcond,p(A)[l-e+Econd,,,s(A)]+O(e2). (6.8) 

This rearranges to 

con&, p (A + AA) - con&, B (A) 
E cond, p(A) 

2 cond,,p(A) - 1+ O(e). 

So, in (6.5), 
cond&TIB(A) L con&, B(A) - 1. 

Next we consider linear systems. 
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THEOREM 6.2. The level-2 condition number 

condg]s(A, b) := lim sup 
r+O+ IIAAll~,~P~IIAlla,~ 

Il~~ll~~~llbll~ 
Icond,,p(A+AA,b+ Ab) -cond,,~(A,b)l 

E cond,, p (A, b) 

satis$es 

cond,, p (A, b) 1 
-- < 4 2- condglp (A, b) 5 3 cond,, p(A, b) + 2. 

Proo$ First we derive the upper bound. Suppose I( AA IIU, p 5 E II A llol, p and 
IIAbll~ 5 ellbllp. FromLemma6.1, we have 

Also, using the definition of cond ,,B(A, b), 

1 1 

lb + Axllol ’ Ilxlla - IlAxlla 
=&-(l+y$)+o”2’ 

1 < -[l +~cond,,~(A, b)] + O(e2). 
- Iblla 

(6.10) 

Combining (6.9) and (6. lo), we find 

II@ + AA)-‘llp,aIlb + AblIp < IIA-‘IIp,czllbllp 
lb + Axll, - lb IL 

11 + E cond,, p(A) 

+~conda,p(A b) + E] + o(~~), 

from which it follows that 

II@ + W-lIIp,aIlb+ Wplll~ + Axll, - IIA-‘II~,crIlbll~/II~lla 
Qcon&,pW + lIA-llI~,crllbllplII~ll~) 

5 1 +cond,,p(A) +cond,,p(A, b) + O(E). (6.11) 

A similar analysis gives a lower bound of -l-cond,,b (A)-cond,,p (A, b) + 0 (E) 
for the right-hand side of (6.1 l), and hence we have 

IlKA + A4-111p,allb + Abll/dIlx + Axll, - llA-‘Il~.&4lp/ll&~ 
4conk~U) + IIA-lll,x(YIlbll~III~lla) 

i 1+ cond,,p(A) + cond,,p(A, b) + O(E). (6.12) 
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Now, from Theorem 6.1, 

Icond,, b (A + AA) - con&, p (A) I 

+onG,p(A) + II A-’ ll~,crIl~llslll~lla 

< 
Icond,, p (A + AA) - con&, p(A)1 

- 
e cond,, B (A) 

I condglB(A) + O(E) 

i cond,, p(A) + 1+ O(e). (6.13) 

Using the characterization (4.7), it follows from (6.12) and (6.13) that 

For a lower bound, we may choose AA to satisfy (6.8), which rearranges to 

cond,, p (A + AA) - con&, p(A) 

2 r[cond,,B(A) - llcond,,p(A) + 0(E2>. (6.14) 

Choosing Ab = 0 gives 

IlAxll, = IV-’ AAxlL + We2> i con&,p(A) Ilxlk + O(E~), 

so that the expression 

~l~~+~~~-‘ll~.~ll~+~~ll~ IIA-‘lls,cJbllS 
- Ilx + Axll, lb IL 

is guaranteed to be nonnegative, ignoring O(c2) quantities. Combining this with 
(6.14), it follows that - 

condgki(A, b) 2 
[con&, p (4 - 11 con&, p(A) 

con&.,&U + IIA-lII~,allbll~lll~lla 
Icon&. B (4 - 11 con&. B (A) 

2 con&, p (4 
cod,, p (A, b) 1 

4 
- -. 

2 

> - 

> - 

As a final point we return to the question of the relevance of the level-2 
condition numbers. In practice, condition numbers will usually be computed 
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via their characterisations; for example, cond,, p(A) = II A IIu, p llA_’ lip, (y. In 
this case, it could be argued that the best that we can hope to compute is 

IIA + AA1IIa,pII(A + AAd-$~,a, where AA1 and AA2 are different small 
perturbations. (Even asking for II(A + AAz)-’ ]]P,~ is unreasonable, in general. 
However, for the commonly used ]I . llco and ]I . )I 1 matrix norms, condition-number 
estimators compute rows and columns of A-’ by solving linear systems [9,12]. If 
the correct row or column index is found, then a stable solution of the linear system 
will provide the row or column of the inverse of a nearby matrix.) By examining 
the proofs of Theorems 6.1 and 6.2 it is clear that allowing different perturbations 
in this manner does not significantly affect the level-2 condition numbers-in fact, 
as we show below, for the case of matrix inversion the upper bound in Theorem 
6.1 becomes an exact characterization. 

THEOREM 6.3. The alternative level-2 condition number 

cond&:\(A) := lim sup 
‘+O+ II~A~II,,/J~~~~,,~ 

II~Azllct.~i~ll4la.~ 

llA+AA&,~II(A+AA2)-111p,a - IIAII.,BIIA-‘~~B.~ 
~IIAlla,~IIA-lIIp,a! 

satisfies 
condg\(A) = cond,, p(A) + 1. 

Pro05 By allowing different perturbations, we can achieve equality in (6.6). 
The result follows immediately. ??

7. COMPONENTWISE MEASURES 

As an alternative to the normwise measures considered in the previous sec- 
tions, it is possible to treat perturbations in a componentwise manner. This style 
of analysis goes back at least as far as Bauer [3], and is particularly meaningful 
for problems with some structure [ 1, lo]. Further, appropriately chosen compo- 
nentwise measures are insensitive to diagonal scaling, and often lead to sharper 
error bounds. We mention that the related matter of componentwise distance to 
singularity is addressed in [6]. 

Rohn [ 171 introduced the following componentwise relative condition number 
for the (i, j) element of the inverse: 

cij(A) := lim 
sup [(A + AA)-’ - A-‘lij 

F+“+ lAAls~(Al rlA-‘lij ’ (7.1) 
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Here IAl means (]aij]), and A 5 B means Uij 5 bij for 1 5 i, j 5 n. We 
see that cij(A) measures the worst-case relative change in (A-‘)ij under small 
componentwise changes in A. The characterization 

cijcAj = (IA-’ I I All A-‘I)ij 
IA-‘Iii (7.2) 

was derived in [17]. Rohn also defined a componentwise condition number for 
the ith component of Ax = b by 

ci(A, b) := lim 
I(A + AA)-‘(b + Ab) - A-lb/i sup 

++O+ IAA&lAI CIA-‘bli 
3 (7.3) 

Wklbl 

and showed that 

cicA , bj = (lA-lllAllA-l~l + IA-? IWi 
IA-‘bli ’ (7.4) 

The expressions (7.2) and (7.4) are valid when (A-‘)ij#O and (A-‘b)i#O, re- 
spectively, and we assume henceforth that these conditions hold. 

Other componentwise condition numbers for a linear system have been put 
forward in the literature. Skeel [18] uses eIIA-‘blloo rather than EIA-‘bli in 
the right-hand side of (7.3), and in [lo] componentwise perturbations relative to 
general tolerances, I AA] 5 EE and I Ab] < ef, are allowed. Altering the entries in 
E and f allows great flexibility, and in particular it is possible to mimic normwise 
measurements. For example, choosing eij = llAllmax and fi = I] bllm produces 
the normwise condition number cond max(A, b) in (4.4). The measure in (7.3), 
however, is the most appropriate for our analysis. 

Overall componentwise relative condition numbers can be defined as 

cmax (A) := max{cij(A)}, cmax(A, b) := mfx{q(A, b)}. (7.5) 
i.j 

Note that because of the presence of the denominators IA-‘lij and IA-‘bli in 
(7.2) and (7.4), cm=(A) and cmax(A, b) can be arbitrarily larger than any given 
normwise condition number, and it is not possible to relate c,,(A) and c,, (A, b) 
via inequalities like (1 S). 

The theorem below gives an upper bound on the level-2 condition numbers 
that correspond to cij (A) and ci (A, b). Although it is clear from the proof that the 
bounds may be far from sharp, we do have the pleasing result that the level-2 con- 
dition numbers cannot be significantly larger than the level-l condition numbers. 
As in the normwise case, allowing different perturbations AA to different factors 
in the characterizations (7.2) and (7.4) would not affect the results significantly. 
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THEOREM 7.1. The level-2 condition numbers 

c!?(A) .= lim sup lcij(A + AA) - cij(A)l 
‘I ’ +‘O+ IAAljtlAl ECij (A) 

(7.6) 

and 

&‘](A b) := lim I ’ 
sup Ici(A+AA,b+Ab)-ci(A,b)( 

+‘O+ lAA[scIAl ~6% b) 
(7.7) 

Wl<~lbl 

satisfy 

and 

c;;](A) 5 3cmax(A) + 1 

cj2’(A, b) 5 3c,,(A, b) + 2c,,xxx(A) + 2. 

Proo$ If IAAl 5 EIAI then (A + AA)-’ = A-’ - A-‘AAA-’ + 0(e2), 
and it follows that 

IA-‘1 - EIA-‘I IAl IA-‘1 + 0(e2) 5 I(A + AA)-‘1 
5 IA-‘1 + EIA-‘I IAl IA-‘1 + 0(c2). 

Hence, from (7.2), 

IA-‘(ij[l - ECij(A)] + 0(r2) 5 ((A + AA)-’ lij 

i IA-‘lij[l + ECij(A)l + 0(c2), 

which we weaken to 

IA-‘111 - ~cmax(A)l+ O(E’) 5 [(A + AA)-‘1 

I IA-‘111 + w,,ax(A)l + O(e2). (7.8) 

Now from (7.8), and using (A + AAl 5 (Al(1 + E), 

I(A + AA)? IA + AAII(A + AA)-‘1 

I IA-‘1 I4 IA-‘111 + E + 2ccmax(A)] + o(c2). 

Hence, again using (7.8), 

(I(A + AA)-’ I IA + AAl I(A + AA)-’ I)ij 
I(A + AA)-‘(ij 

< (‘A-“‘A”A-“)ii [1 + E + ~Q.,~(A)] + O(c2). - 
IA-‘Iii 

(7.9) 



212 DESMOND J. HIGHAM 

Similarly, using (7.8) and IA + AAl 2 )A](1 - E) it can be shown that 

(I(A + AA)-‘HA + AAII(A + AA)-*I)ij 

I (A + AA)-’ lij 

, (lA-‘llA”A-“)ii (1 _ E _ 3~c~&A)) + O(E~)_ - 
IA-‘1i.j 

(7.10) 

It follows from (7.9) and (7.10) that 

c!?‘(A) 5 1 + 3cmnx(A). ‘J (7.11) 

Now, for the linear system, we have 

IXIi[l - ~~max(Ay b)l + 0(c2> 5 IX + AxIi < Ixli[l + EC~~(A, b)] + G(E*). 

Hence, using the result (7.8) for matrix inversion, 

(I(A+W-‘I lA+AAI IxfAxl). _ (A-II I.4 1.4). 
IX+Axli lxli 

e (IA-‘1 I4 1~1)~ 
IXli 

5 I+ 2cmax(A, b) + cmax(A) + O(E), (7.12) 

and 

(I(A+W’I Ib+Abl). (IA-’ I Ibl), 

IX+Axli - IXli 

E (IA-‘1 lbl>i 
IXli 

5 1+ cmax(A, b) + cmax(A) + O(E). (7.13) 

So, using (7.4) in (7.7), it follows from (7.12) and (7.13) that 

cF2’(A b) 5 lim I ' r+O+ 
sup 

lAAl5~L-U 
IW5~lbl 

(l(A+W’I IA+AAI Ix+Axl). _ (IA? IAl 1x1). 
lx+Axli lxli 

E @-‘I IAl IxI)~ 
IXli 

(I(A+AW’l Ib+Abl). _ (IA-‘1 PI). 
IX+AXli IXli 

+ lim sup 
++O+ IAA(~EIAI 

Wklbl 
E (IA;‘;,lbl)i 

XI 

I 2 + 3cmax(A, b) + 2cmx(A). ??
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