JOURNAL OF
COMPUTATIONAL AND
APPLIED MATHEMATICS

ELSEVIER Journal of Computational and Applied Mathematics 58 (1995) 151--169

Equilibrium states of adaptive algorithms for delay
differential equations

Desmond J. Higham*, loannis Th. Famelis®
Depariment of Mathematics and Computer Science, University of Dundee, Dundee, DD 4AN, United Kingdom
Received 24 February 1993; revised 17 November 1993

Abstract

equations. The results of Hall (1985) for ordinary differential equation {ODE) solvers are extended by adding a constant-
delay term to the test equation. It is shown that by regarding an algorithm as a discrete nonlinear map, fixed points or
equilibrium states can be identified and their stability can be determined numerically, Specific results are derived for a low
order Runge-Kutta pair coupled with either a Hnear or cubic interpolant. The qualitative performance is shown to
depend upon the interpolation process, in addition to the ODE formula and the error control mechanism. Furthermore,
and in contrast to the case for standard ODEs, it is found that the parameters in the test equation also influence the
behaviour. This phenomenon has important implications for the design of robust algorithms, The choice of error
tolerance, however, is shown not to affect the stability of the equilibrium states. Numerical tests are used Lo ilustrate the
analysis. Finally, a general result is given which guarantees the existence of equilibrium states for a large class of
algorithms.

Keywords: Runge-Kutta methed; Error control; Fixed point; Delay

i, Introduction

Using a standard ordinary differential equation (ODE) solver as the basis of a delay differential
equation (IDIDE) algorithm is, conceptually, a straightforward matter. It is known, however, that
great care must be taken in order to preserve desirable convergence and stability properties (see, for
example, [8, 11}). In this work we examine explict Runge-Kutta (RK) formulae when adapted to
solve a DDE test equation. A key feature of our analysis is that it takes account of the whole
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algorithm -- the ODE formula, the interpolation process and the error control strategy. Our
results enable us to make detailed predictions about the performance of the algorithm. The work is
based on the equilibrium theory that Hall [5] developed to analyse ODE solvers. We outline below
our basic notation and definitions.

Given an initial value ODE

Vi) =S pe)), y(0) = yo. (1.1)

an s-stage explicit RK formula advances the approximation y, = p{i,) €0 Y41 = ¥ (¢, +1) according
{o

kl :f(lns ,Vn),

i—1
ki :f(tn + Cihnz Vn “+ hn Z ar’jkj>n 2 “<- i ‘-<- 8y
i=1

Var1 = Vo + Iy Z bik;. (1.2)
i=1

Here, h, is the current stepsize and the coefficients {a;;, by, ¢;} define a particular formula. The
stepsize h, is usually varied from step to step, in order to control some estimate of the error.
Typically, the error estimate has the form

5
est, . = |err, ., whereerr,. = h, Z e;k;. (1.3)

The quantity err,.; may be an estimate of the local error in y,., or, in the case of local
extrapolation, of the local error in some other approximation. The form (1.3) also covers defect
control [1]. The result (1.2) is accepted if est, +; < TOL, where TOL 1sa user-supplied tolerance. if
est, ;> TOL, then the procedure is repeated with a smaller stepsize. An asymptotically-based
formula for choosing the next stepsize is

(] L 1ig
hncw = (OTO "m> hn- (E‘é)

CSl" +1

Here, g is the largest integer such that est,; ; = O(h]}, and g~ tap s the optimal stepsize in the
sense that, asymptotically, it is the largest stepsize with which the next attempted step will be
accepted. The constant safety factor 8 e (0, 1) is included to reduce the possibility of a step rejection.
Formuia (1.4) can be used after acceplance or rejection. Other alternatives, such as simply halving
the stepsize, are sometimes used following a rejected step. In our analysis and testing we assume
that (1.4) always determines the next stepsize; however, the qualitative predictions that we make do
not depend upon the precise details of the step rejection process.

The algorithm above simplifies considerably when (L.1) is taken to be the standard, scalar, linear
test equation

V() = Ap(t), AeR, 4 <0, y(0) = yy. (1.5)
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In this case one successful step of the algorithm may be written (see, for example, {57)

(1.6)

) gTOL 1
Vper = S(hn/L)yna hn+1 == ( I) e

|E(hu ) yy

where S is the well-known stability polynomial of the RK formula, and E is the error polynomial.
We may convert (1.1} into a DDE by allowing the right-hand side to depend upon the solution at
some t{ime t — 7, where 7 is a fixed positive constant; that is,

Yty = F(t, y(1), yit — 1)), y{t) = @(t}) fortef —1,0]. (L.7)

A standard approach for solving (1.7} is to apply an ODE solver to a problem of the form

i) =Fley(t), gt —7),  p(0) = 2(0)

Forre[ — 7,0], we can take g(t) = ®(t), and for £ > 0, ¢(t) is found by interpolating previously
computed data. In this work we concentrate on two widely-used interpolants. Suppose that the
pomnt { lies in the interval [f,_,, fyo o) With t =1, + 6h,_,,, s0 that 6 < ¢ < 1, and suppose
approximations Yo-m = y(ln—m)s Yoeme1 & y(tn*m”f- 1)» f:n-—m & y{(tn”m) and ﬁz*m%-! ~ }/' (tn—m+l)
are available. Then the linear Lagrange interpolant is defined by interpolating {y, -, Vu-m+1 )

gy =01 =) Yy-m+ Yn-mr1. (1.8)

The cubic Hermite interpolant is defined by interpolating { Vu—m, fucms Ya-ms > fomms1 b

40 = di(O)Yn-m + d2(0) Yuoms1 + Hu- @1 (@) fomy + Rumm@2(0) fu s 1 (1.9)
where

di{o)= 20" — 3a” + 1, do(o)= — 2¢° + 362,

e (0)= 0 — 20 + 0, e, ()= o — o2

We mention that under certain circumstances, suitable approximations { y,— s 1, fi—m+ 1 may not
be readily available — this issue is addressed later.
A DDE analogue of (1.5} is the test equation

vty = Ay() + pyit — 1), yit) =) fortel[ —1, 0], (1.10)

where A, pe R, 7 > Oand @(7) is presumed to be continuous. A great deal of research has been done
on the fong term behaviour of constant stepsize methods applied to (1.10); see, for example, [12]
and the references therein. Typically, assumptions are made about the parameters {4, 1,1} to
ensure that y{#) =0 as t — oo, and the question addressed is: what restriction (if any) must be
placed on the stepsize to ensure that y, — 0 as n — oo ? In particular, delay-independent stability is
often considered. It is known (see, for example, [16]) that 2 < — {u/ and 2 < — || are necessary
and sufficient, respectively, to guarantee that y{r} — 0 ast — o for all choices of 7. It is, therefore,
natural to ask whether y, - 0 as n — oo for all choices of 1, and important results in this area have
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been derived in [16, 12]. We also point out that these references allow 4 and p in (1.10) to be
compiex. Our work has a different emphasis. Here, we lake a particular problem of the form
(1.10) and seek to determine how a modern, adaptive algorithm is likely to behave. We will
asume that 2 < —lu], so that y(r) —0 is guaranteed. We mention that Baker and Paul [14]
recently considered a related issue concerning the behaviour of fixed stepsize algorithms
on (1.10).

It is worth noting that DIDEs generally have solutions with low order derivative discontinuities.
These are propagated forward in time, eventually becoming of sufficiently high order that they can
be ignored. Hence, efficient handling of discontinuities is an important issue at the start of an
integration. We do not discuss this aspect further, however, since we are concerned with the long
term behaviour of adaptive algorithms.

In the next section, we review the equilibrium theory of Hall, as applied to {1.5). The following
three sections extend this approach to the DDE (L.10), each section dealing with a different
algorithm. We find conditions under which equilibrium states exist and then investigate numer-
ically how the stability of an equilibrium state depends on the test equation parameters. In cach
case we are able to prove that the stability is independent of the error tolerance, TOL. Numerical
results are presented to illustrate the applicability of the theory. The final section summarises the
key differences that arise on moving from the ODE (1.5) to the DDE (1.10). We also give a general
result that guarantees the existence of an equilibrium state for a large class of algorithms.

2. Eguilibrium theory for ODEs

fgnoring step rejections, the adaptive RK recurrence {1.6) may be regarded as a discrete
nonlinear iteration of the form

B:]z(}([ﬂ) 2.1)

Hall [5] identified a fixed point, or equilibrium state, of this iteration. To define this state, first we let
h, be the stepsize that corresponds to the absolute stability boundary; that is, by is the smallest
(positive) stepsize such that {S (hoA)| = 1. Now let yy. satisfy [E(he Ay yi| = GTOL. Then it follows
from (1.6) that with y, = y and h, =y,

OTOL tig
bt = |S{h = =y, and 4 = = hy = h,.
ot = | (he Yyl =Tyl =1y ! +1 (!E(hnﬂt)yLJ L

Hence, we see that |y,| and h, remain constant. If S{h A) = 1, then y, is constant and we have
a period one fixed point of (2.1). Otherwise, S{h; A) = — 1 so that y, oscillates in sign, giving a fixed
point of (2.1) with period two.

Note that the fixed point identified by Hall is a reasonable solution to the ODE — it uses the
Jargest stable stepsize and it produces a global error that is O(TOL). Hall argued that the fixed
point may arise in practice if it is stable with respect to small perturbations. This stability is
governed by the Jacobian, G'. For S(hp.4) = 1, first order stability of the period one fixed point is
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equivalent to

(o([3])

where p{-) denotes the spectral radius, and for Sthy 4) = — I, first order stability of the period two
fixed point is equivalent to

(oo )= &

Hall showed that conditions {2.2) and (2.3) can both be reduced to
hi A E'(h2) 1

<1 24
I AS" (e )

S(hi4) !
The key point about {2.4) is that the condition is independent of 4, it depends only on the RK
algorithm. (Specifying a particular RK formula automatically determines the point h A on the
absolute stability boundary.) Hence, a single algebraic condition involving the RK and error
control coefficients governs the stability of the fixed point on all problems of the form (1.5).

Results in [5] showed that some algorithms satisfy (2.4} while others do not. When {2.4) holds,
the stepsize approaches the value k. and remains virtually constant at that level with no step
rejections occurring. The numerical solution y, also settles into a corresponding period one or two
state. On the other hand, if (2.4) does not hold then the stepsize is seen to oscillate above and below
hy. Steps are frequently rejected when stepsizes above the hy level are chosen. The numerical
solution follows a similar nonsmooth pattern. Such behaviour is undesirable for two reasons. First,
the step rejections (typically one in every three steps) represent wasted computation. Second, the
global error in the numerical solution, while remaining about the size of TOL, varies erratically and
can differ by factors of more than 4 {rom step to step.

The analysis above has been extended to the problem y'{t) = Ay{f) where 4 is a constant matrix.
The scalar 4 must now be interpreted as a dominant eigenvalue of A4; that is, an eigenvalue for
which the condition {S(A4)] < 1 is most restrictive on h. When A Is complex, the analysis only covers
the case where A is normal and the Euclidean norm is used in (1.3) [6, 7]. We also mention that
Higham and Trefethen [10] argue that when A is highly nonnormal, predictions based on
cigenvalues are likely to be invalid.

‘The main purpose of this work is to extend Hall’s analysis to the test equation (1.10). In
particular, we wish to demonstrate that a DDE algorithm does not automatically inherit the
characteristics of the underlying ODE solver. The choice of interpolant and the values of the
parameters in the test equation also play important roles.

3. Improved Euler method with linear Lagrange interpolation

The ODE formulae that we analyse here are Fuler’s method and the Improved Euler method.
When applied to (1.1) these formulae can be regarded as a two-stage embedded RX pair of orders
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1 and 2:
ky = f (ta ¥uh (3.1
ky = f{ty + hyy Yo + Bakis)s (3.2
Vet = Ya o+ haky, (3.3)
VI =, + 0.5k, (ke + ko). (3.4)

In this section, we consider the case where yiE | is used for the numerical approximation y, + 1, with
est, 1 = ivE . — vas i), so that g = 2 in (1.4). We suppose that the lincar Lagrange interpolant
(1.8) is used for g(1).

The ODE stability polynomial for the Improved Euler formulais S(z) = 1 4 z + z*/2, and hence
the largest stable stepsize for (1.5) is given by hy = — 2/ Since S( — 2) = + 1, the corresponding
equilibrium state is a period one fixed point. Hence, it is reasonable to look for an analogous period
one fixed point for the DDE algorithm on {1.10). Our approach is, therefore, to seek a constant
solution of the recurrence with, say, h, = hp and y, = yp. (Equivalently, we are asking for the
characteristic polynomial to have a root equal to -+ 1.} To proceed with the analysis, we must be
precise about the ratio of the delay to the stepsize, since this determines the step number of the
recurrence. Let the integer m and the real number o & [0, 1) be defined by

(m — Dhp < 1 < mhp, T + chp = mhyp. (3.5

Hence, when a constant stepsize of hyp is used, t, — ¢ les in the interval [, . ln-m-1) and the
numerical method applied to (1.10) produces an (m -+ 1)-step recurrence. We consider first the case
m = 1 (that is, 0 < 1 < hp). This is actually a special case. The value g(t, + hp — 7} required for
k, in{3.2)is not available at the start of the stage since the interpolant needs the data y, . . To keep
the method explicit, we will therefore assume that g{(1) in (1.8) uses the Euler approximation
Vo + hyky, rather than y,. 4, in this case.

Under these assumptions, the interpolated value g{t, — 7) becomes (1 — a)yp + ayp = yp and
hence, in (3.1},

ki ={A+ p)yo. (3.6)
Using g{t,+, — 1) =1 —a)yp + alyp -+ hpky ], we find that k, in (3.2) reduces to
ky = (A + w1 + hpld + o)) yp. (3.7)

Now, in order for y, to be constant from step to step, we must have k, + ky = 01in (3.4). ff yp # 0,
then using ¢ = 1 — 7/hp it follows from (3.6) and {3.7) that

=24

_ 38
P At (3.8)
For h, to remain constant we need 0.5hp ks — ki1 = 6TOL, which gives
26TOL
lypi = {(3.9)

R0+ W + po)
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The values (3.8} and (3.9) define an equilibrium state, provided that hy satisfies hp = 7 > 0. This
condition reduces to t < — 2/4, and hence is satisfied for sufficiently small 7.

To analyse the stability of this equilibrium state, we regard the algorithm as a nonlinear map
Uys1 = G(v,), where v, = [ ¥,, fi,, Va1, 1a—1]". The Jacobian has the form
[0G, 3G, 8G,  8G,
ayn (}hn ayn —1 ahn -1
060G, 0G, G, G,
G; (i)) - ayn ahn @yn =1 la"/lr1f 1
1 0 0 0
0 1 0 0

where the partial derivatives in the first two rows are generally quite complicated functions. The
symbolic algebra package Maple was used to evaluate p(G'(v)) at the fixed point, and it was found
that the value varied with the parameters {4, u, T} in the test equation. This contrasts with the ODE
case; the spectral radius in (2.4) remains constant over all test problems of the form (1.5). Hence, the
stability of the DDE equilibrium state is not simply a characteristic of the algorithm itself, but also
depends on the particular test equation. It is possible, however, to show that the stability is
independent of the error tolerance, TOL. A proof is given at the end of this section.

We illustrate this analysis with some numerical examples, In these tests, and all others
presented here, we used an adaptive DDE solver written in Matlab. The program was adapted
from Matlab’s built-in ode23.m ODE solver. The equation (1.10) was solved over [0, 300]
with y(t) =1 for te[ — 1,0]. We used a safety factor of # = 0.81 and an error tolerance of
TOL = 1077

Example 3.1. In this example, we take 4 = — 2, p = 0.5 and t = 0.9. The relevant values from (3.8)
and (3.9} are hp = 1.03 and |yp| = 5.2-107*, giving a spectral radius of 0.95. Fig. 1 plots the
solution and stepsize values chosen by the code, with an asterisk {*) denoting a stepsize that led to
a rejected step, We see the typical smooth behaviour associated with a stable equilibrium.

Example 3.2. We now choose A= — 1, u= —05 and 7t =035 This gives hp = 1.5 and
|vpl = 3.6-16"* with a spectral radius of 1.03. The solution details are given in Fig. 2. In this
cxample, the spectral radius is slightly bigger than 1 and we see that small amplifications about the
equilibrium are slowly magnified until an eventual step rejection occurs,

We move on now to the general case, where m > 1in (3.5). {This analysis also applies in them = 1
case when the algorithm is regarded as implicit) Imposing h, = hy and y, = yp, we have
gét, — 1) = gq{ty+1 ~ T) = yp and

ky = (. + Wyp, ky = (A + )l + hpl)yp,
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Fig. 1. Numerical solution and stepsizes for Example 3.1.
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Fig. 2. Numerical solution and stepsizes for Example 3.2.
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Fig. 3. Stepsizes for Example 3.3.

and the conditions for a period one solution reduce to .

20TOL

ho(h + WA (3.10)

-2
h T e, freerrl
D )" ’ i Vb E
Note that — 2/4 is guaranteed to be positive (since we are assuming 4 < - |ul}) and hence (3.10)
defines a valid equilibrium state provided that m > 1, which reduces to © > — 2/4. It follows that
this m > 1 state exists whenever the m = 1 case derived earlier does not. We also point out that the
value — 2/4 in (3.10) is precisely the stepsize limit that arises when Improved Euler is used on the

ODE test equation {1.5). We will discuss this further in Section 6.

Example 3.3. This example illustrates the case m = 2, Weset A= — 4, p = — 1.5 and let 7 vary
over [0.59, 0.96] in steps of 0.01. In this case (3.10) gives hy, = 0.5, For each set of parameters we
solve the corresponding test equation. Fig. 3 plots a sequence of dots representing the last 50
stepsizes used by the program. The symbol * x* marks the average of the fifty values. Fig. 4 shows
the value of the spectral radius of the Jacobian at the fixed point as t varies. We see that in the range
of T where the spectral radius is bigger than 1, the stepsize sequence is not constant, but oscillates
about the 0.5 level. When the spectral radius is below 1, the last 50 steps are visually indistinguish-
able from the value 0.5.

Example 3.4. Figs. 5 and 6 illustrate the case where 4 = — 4, v = 0.95 and u varies between — 3.6
and — 1.45. Again, the spectral radius of the Jacobian at the fixed point determines the behaviour.,
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Fig. 6. Spectral radii for Example 34.

Examples 3.3 and 3.4 emphasise that the stability of the equilibrium state depends upon the
parameters in the test equation. We conclude this section by showing that the stability does not
depend upon the error tolerance. Hence, altering the value of TOL would not affect the long term
behaviour, qualitatively.

Theorem 3.5, The linearised stability of the equilibrium states defined in (3.8), (3.9) and in (3.10) is
independent of the error tolerance, TOL.

Preof. We give a proof for the general case m = 3. The cases m = 1, 2 can be handled in a similar way.
We remark that the same style of proof was used in a slightly different context in [9, Theorem 3.2).

We first write the general recurrence and then examine the Jacobian at the fixed point. When the
stepsize is constant we have t, — 1€ [y byeme 1 1 A0d Ty 7 — T € [y my 10 tn-m+ 2} and the first
two stages take the form

kl - Ayn + Ju((l - O-n—m)yn—m + Gy Yo m+1}s (31]}
k2 m/v(yt?+IInki)+ﬂ((l *anmﬂkl)yn/m”!--l "'E"Un “““ m+iyn—m+2)s (312)
where

hn—m'!'l +hn*m+2 + - hn‘”l — T
" ;

MW

Op-m = 1

]

hn*erz + hn—m+3 o ok hn =T

Op-m+1 — 1 “ia h
-t i
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The iteration may then be written

_yri+1 N _Gl({yn:hnuyn"lohn—la-“ayn-—rmhnmm}ﬂr) B
hll+1 GZ([yns hn: yn-"lahnfria---:yn*ma hn—m]T)

Yn ¥y

By h,

. = , : (3.13)
Yo—m+1 Vo-m+1
hn—mw‘] hn—m-!~1

where
Gl ([yna hm Vi1 hn-—la v Ynoeeme hrzwm]’r) = y:: + O~5hn(kl + kz): (314)
, gTOL  \?
h r— shn* IR ’n—msinfm = e " A

GZ([yna n Y 1 1 ¥ 1 j ) (Oshn(kl L kj)) (3 5)

(We assume, for definiteness, that k, > &y at the fixed point. If k; < k, then k, — k; should be
replaced by k, — k, in (3.15), and the result below remains valid.)

Now, at the fixed point defined in (3.10), we see that hy, is independent of TOL and yp depends
linearly upon TOL. Taking the appropriate partial derivatives in (3.14) and (3.15), using (3.11} and
(3.12), the dependence upon TOL of the first two rows of the Jacobian matrix at the fixed point may
be expressed as

[ ind. o« TOL ind. « TOL - - ind. oc T(}L]. (3.16)

o TOL™' ind. o« TOL ' ind. - - o TOL™' ind

Here, ind. denotes that the element is independent of TOL, with o TOL and o« TOL ™' denoting
linear and inverse linear dependence, respectively. The remaining rows of the Jacobian consist of
the rows of the 2m x 2m identity matrix, padded on the right by two zero clements. Letting
D = diag(l, TOL, 1, TOL, ..., 1, TOL), it follows that the similarity transformation ¢' — DG'D ™~ '
which does not alter the eigenvalues, produces a matrix that is independent of TOL. Hence the
result is proved. [

4. Improved Euler method with cubic Hermite interpolation

We now look at the effect of altering the interpolation formula. Suppose that the ODE solver
described in the previous section uses the cubic Hermite interpolant {1.9). This interpolant requires
first derivative approximations { f,}, and we suppose that these are computed by evaluating the
differential equation; so, from (1.7), f, = F(ts, Vu, q{t, — 7).
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Our approach is to look for an equilibrium state on the test equation (1.10) with &, = hp, v, = yp
and f, = fp. We let m and o be defined as in (3.5). Once again, the algorithm is not explicit when
m =1, since v, and f,4, are not available when ¢(r) needs them. There are several ways of
redefining the m = 1 algorithm to make it explicit, but since we are mainly concerned with the
qualitative effect of changing the interpolant, we will assume that the implicit equations are solved
when m = 1,

Under the assumption that h,, y, and f, are constant, the cubic Hermite interpolant in (1.9) gives

gty — ) =g lysr — 1) = [di{0) + d2(0) yp + hplei(0) + (6} fo = yp + hpp(o) fo,  (4.1)

where p(o)=c(o ~ 1)(26 — 1). Since f, = Ay, + ug{t, — 1), we have the relation fp=
Ayp + pLyp + hoplo) fpl, which gives

o= (4+uwyo

T hopplo) 4.2

The two stages in (3.1) and (3.2) then simplify to
ki =fp, (4.3)
ky = (1 + hApi}fp. (4.4)

In order for the Improved Euler equation in (3.4) to reproduce a constant solution, we need
ki + ky = 0. From (4.3) and (4.4) this reduces to

2 + hpd) fp = O, (4.5)

For a constant stepsize, we require 0.5h,{k, — k| = 0TQOL, which becomes

20T0OLIL — hpup(o)|
[ —
|ypi = Ty : (4.6)
It 1s clear that i, = — 2/4 soives {(4.5), and hence substituting this value into (4.6) and {4.2) we
obtain an equilibrium state {hp, yp, fp }. Once more, we observe that — 2/ is also the stepsize limit
for stability on the ODE (1.5). The stability of the equilibrium state {hp, yp, fp} can be determined
by writing the iteration in the form v,4, =G(v,), where v, = [ Vu o Vo 1. Pt
Ja=tsecos Vumms Pu—msfu—m]', and examining the spectral radius of the Jacobian at the fixed point.
As in Section 3, it is possible to prove that the equilibrium stability is independent of TOL.

Theorem 4.1. The linearised stability of the equilibrium state defined above is independent of the
error tolerance, TOL.

Proof. The result can be proved in a similar manner to Theorem 3.5, Here we briefly outline
a proof for the case m = 3.
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The Jacobian of the iteration has the following block structure

A2X2 BZX{}m—é} CZX3 D2x3
szz 02><(3mfﬁ} 02><3 02x3
Eio Fivom -8 Giua Hi,y |, (4.7)

0{3m — by % 2 I(3m — B} % {(3m — 6 0(37}1 ~ By x 3 0(31?1 SIEE!
03><2 03x(3m~6) I3><3 03><3

where the subscripts denote the dimensions of the blocks.

Noting that hp is independent of TOL, while yp and fp, depend linearly upon TOL, it can be
shown that when the Jacobian is evaluated at the fixed point, the nontrivial blocks above have the
following patterns of dependency:

o ind. « TOL
2T e TOLTY ind. [

5 B ind. « TOL  ind. ind. « TOL  ind.
2:Gm =673 o TOL™!  ind. o TOL™? o TOL™!' ind. o TOL™' |

c _ ind. o« TOL ind.
23T o TOL™! ind. o TOLT! P

b B nd. o TOL ind.
AT TOL™! ind. o TOL™' |

Ei., = [ind. o TOL],

Firom-g = [ind. o TOL ind. - ind. o TOL ind.J,

Giv3 = {ind. oc TOL ind.],
Hi.;=[ind. oc TOL ind.].

1t follows that with D = diag(1,TOL, 1, TOL, 1, 1, TOL, 1,..., 1, TOL, 1), the similarity trans-

formation G’ — DG'D ™! produces a matrix that is independent of TOL. [

5. Fuler method with linear Lagrange interpelation

Here, we take the algorithm described in Section 3 and alter the ODE formula. We use Euler’s
raethod (3.3) to advance the solution, keeping the same error estimate, est+ ¢ = | et = et s
and the same interpolant (1.8).

Fuler's method has stability polynomial §(z) = 1 + z. Hence, on the test ODE (1.5) the stability
limit is given by hpA = —2, with S(—~2)= — L. It follows that the corresponding equilibrium
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state in Section 2 has period two. Hence, we ook for an analogous period two solution to the
recurrence on the DDE (1.10). Specifically, we set h, = hp and y,+ = ( — 1/ yp, and we let m and
o be defined by (3.5} It then foilows that the linear Lagrange interpolant gives g{t, — 1)
= gty — )=~ 1)"yp(l — 20). Hence we have

ki = Avp 4+ pu{ — D" yp{l — 200 (5.1}
Now, for our period two solution, we require y, + h,ky = — y,, which leads to
hp —2 (5.2)

Ta ()l - 20)

The second stage (which is needed only for the error estimate) becomes

ko = yp(A(l + hpd) + ( — 1" u{l — 20)(hpi — 1)), (5.3)
and the condition for a constant stepsize, 0.5k, k, — k;| = 8TOL, forces
26TOL
‘nl = - - . 54
I g T T TP Rl — 39} (i — 3] (54)
Using the relation mhp = v + ¢hp, we may climinate ¢ from (5.2) to give
5 gy

TAF (= IVl - 2my

Egs. (5.4) and (5.5) define a period two solution, provided that the condition (m — 1) hp < © < mhp
holds.

We remark that the stepsize iy and solution yp, derived in this section are completely different, in
general, to those that arose in the previous two sections. In particular, the values here depend upon
the parity of m. Furthermore, the stepsize hp is generally different from the stepsize b, = — 2/2 that
arises when Euler’s method is applied to the ODE (1.5). Note also that hp is not necessarily smaller
than h.

As described in Section 2 for the ODE case, the stability of the period two solution can be
determined by writing the iteration as a map v,.1 = Glv,), where 6, = [V, Au, Yno1, o1,

w3 Vn—ms Bu—m]" and examining the spectral radius of the product of the Jacobian evaluated at the
two points,

Example 5.1. Here we take A= — 2, g =1 and v = 0.5. This gives hy = 1 with m = [ in (5.5), s0
that|yp| = 4.05- 107 * in (5.4). The refevant spectral radius is 0.55, so the fixed point is highly stable.
Fig. 7 plots the stepsizes and solution values produced by the code, and we see that the period two
solution is quickly located.

Example 5.2. In this example, we have 4 = — 3, y =08.8 and 7 = 1. Here, hp = 2/3 with m = 2 in
(5.5}, and {yp] = 4.05-107* in (5.4). In this case, the fixed point is very unstable as the relevant
spectral radius is 1.63. We see from Fig. 8 that the solution and stepsize oscillate about the
equilibrium values and many steps are rejected.

As in the previous two sections, the equilibrium states can be shown to be tolerance-independent.
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o 50 100 150 200 250 300

0 50 100 150 260 250 300

Fig. 7. Solution and stepsizes for Example 5.1.

¢ 50 100 150 200 250 300

0 50 1060 150 200 250 306

Fig. 8. Solution and stepsizes for Example 5.2.




D.J. Higham, 1.Th. Famelis/Journal of Computationa! and Applied Mathematics 58 (1995} 151169 167

Theorem 5.3, The lincarised stability of the equilibrium states defined above is independent of the
error tolerance, TOL.

Proof. Our outline proof follows those in the previous sections. The relevant Jacobian matrix has
the block form

Asz Bj o - Cava
-12><2 02><{2m - 4 leLl . (56)

0(2m —dyx 3 I{Em — ) {2m - 4 Oﬁlm —4ixd

By examining the dependency pattern of the first lour rows, 1t 18 possible to find a diagonal
similarity transformation G’ - DG'D ™! that removes the dependence upon TOL. [

6. Discussion and exfensions

Our numerical tests suggest that when a stable equilibrium state exists, it invariably attracts the
numerical solution. Loosely, the error control ensures that the numerical solution approaches the
true fixed point y = 0, after which the linear attractivity becomes relevant. In the case where the
equilibrium state is unstable, the numerical solution and stepsize oscillate about their equiltbrium
values. In this case, we have observed that it is possible for nonuniform fixed points with high
peried involving one or more rejected steps per period o arise.

Overall, we conclude that the equilibrium theory of Hall [ 5] for GIDEs is also applicable to DDE
algorithms. However, some key differences arise on moving from the ODE (1.5} to the DDE (1.10).
In particular, for the algorithms studied here, the stability of the equilibrium state depends on the
parameters in the test equation and also on the interpolation process. Hence, equilibrium state
stability is not simply a characteristic that is inherited from the underlying ODE solver, This
suggests that in order to guarantee smooth behaviour, an alternative mechanism for error control
and stepsize selection must be used. Ideas from the area of control theory have recently been
applied to ODE solvers |2, 3]; clearly an extension of this approach to the DDE case would be
worthwhile.

The analysis here applies to the linear test equation (1.10). it can be argued, however, that, as for
the ODF case, the results should be applicable to more general nonlinear equations, provided that
linearisation about a steady state 1s valid. In particular, we performed a series of tests on the
nonlinear equation

yit—1)

—_— 6.1
NI el

vy =7y +p

which has been proposed as a model for biood-related diseases [4]. Here 4 < 0, , 7 > Oand nisan
gven infeger. Linearising about the steady state y(f) = 0 produces the lingar model {1.10). Experi-
ments on (6.1} with n = 10 and with 4 and u chosen so that y{t) — 0 as n - oo gave results that
were virtually identical to those on the corresponding finear problem.



168 D.J. Higham, I.Th. Famelis{Journal of Compuiational and Applied Mathematics 38 (1995) 131169

It is clearly possible to extend the analysis presented here to more general Runge-Kutta based
DDE algorithms. When high order RK formulae are used, interpolants with an appropriate order
of accuracy must be chosen. The derivation of such interpolants has recently been an active area of
research, and several choices are available; see, for example, [ 13, 157]. Our approach of looking for
period one or two fixed points, where the stepsize is constant could be applied to such algorithms.
However, it is not clear whether the existence of an equilibrium state can always be guaranteed.
Further, high order interpolants must be based on several pieces of data, many located at off-step
points, and it is not clear what conditions should be imposed in order to define an equilibrium
state. There is much scope here for further work.

It is possible, however, to establish the existence of an equilibrium state for a general class of
DDE algorithms, and we finish with this result. The theorem below shows that when Lagrange
interpolation is used, an RK formula for which § (h 2) = + 1 on the ODE stability boundary has
a period one equilibrium state on (1.10) with hy, = hy. This generalises the findings for the
Improved Euler method in Section 3. Note that the result applies to RK formulae and interpola-
tion schemes of any order.

Theorem 6.1, If an explicit RK formula satisfies S(hiA) = + 1 on the ODE stability boundary, and if
the interpolant q{r) is chosen to be a Lagrange polynomial that interpolates | v+ values, then the
corresponding DDE algorithm applied to (1.10) has a period one fixed point with hy = hy and
Vy constant.

Proof. If such a fixed point exists with, say, y, = yp, then the corresponding Lagrange interpolant
reduces to a constant function; that is, g(t) = yp. The RK formula will then be integrating
a problem of the form

y'(t) = Ay(t) + pyp. (6.2)

It is easily verified that the RK formula applied to (6.2) produces

Yoot = Sty + (S (r,2) = 1) 22

Hence with stepsize h, = hy, we get Y, o1 = yp. Now the error estimate, est, ;. ;, is a linear function
of yp. Hence we can always choose yp to make est, v = OTCL. This ensures that the stepsize and
solution rematn constant from step to step.  []
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