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Abstract 

The long-time behaviour of a discretised evolution equation is studied. The equation, which involves diffusion 
and a nonlinear, delayed, reaction term, has been proposed as a model in population dynamics. It contains, as 
special cases, logistic-style problems that have been used before to provide canonical examples of spurious 
behaviour. The existence and stability of the basic steady states are systematically studied, as functions of the grid 
spacings and problem parameters. Particular attention is paid to the effect of the delay on the long-time behaviour. 
It is found that, as has been seen with other nonlinear problems, increasing the time step beyond the linear stability 
limit may induce stable, spurious, steady states, which are clearly undesirable as numerical solutions. When a delay is 
present, spurious solutions are also found to exist within the linear stability limit, and this is seen to affect the 
dynamics. Potential symmetry in the problem is identified and it is shown that in certain circumstances the 
bifurcation patterns depend dramatically upon whether the initial data shares the symmetry. 

1. I n t r o d u c t i o n  

It is now widely recognised that long-time numerical simulations can settle down to 
unwanted, spurious, steady states. Classical convergence and linear stability theory is not 
relevant in these circumstances and, in general, a bifurcation analysis must be performed for 
each combination of method and problem. The canonical example of complicated long-time 
behaviour arising from a discrete map is given by the Euler discretisation of the logistic initial 
value ordinary differential equation (ODE) 

ut=u(t)(1-u(t)), t>O, u(O)=u o. (1.1) 

* Corresponding author. E-mail na.dhigham@na-net.ornl.gov. The work of this author is supported by the UK 
Engineering and Physical Sciences Research Council under grant GR/H94634. 

J The work of this author is supported by a Research Studentship from the UK Engineering and Physical Sciences 
Research Council. 

0168-9274/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0168-9274(95)00051-8 



156 D.J. Higham, T. Sardar /Applied Numerical Mathematics 18 (1995) 155-173 

With a stepsize of At, the map is 

Un+l=Un+atun(1--Un), n>~O. (1.2) 

The resulting bifurcation diagram for this map can be found in many texts; see, for example, 
[15,17,18]. In fact, the difference in emphasis between these three references illustrates that the 
same map can be analysed in a number of contexts: 

• in an application where the map itself is a mathematical model, 
• in the theoretical study of dynamical systems, 
• in the analysis of numerical methods, where the map is regarded as an approximation to an 

underlying continuous problem. 
In particular, we point out that a numerical analyst may regard a long-term solution as spurious 
while, in a different context, the solution may be interpreted as interesting by a mathematical 
biologist. From a numerical analysis perspective, it is essential that the asymptotic, n ~ oo, 
behaviour of the map reflects the dynamics of the continuous problem. Studying simple, 
nonlinear problems, such as (1.1) gives insight into the difficulties that may arise. 

There are many ways in which to alter, or generalise, the problem (1.1) and the numerical 
method used to give (1.2). Griffiths et al. [7] consider explicit Runge-Kut ta  methods on 
polynomial-type ODEs. Griffiths and Mitchell [6] and Gardiner and Mitchell [4] add diffusion 
in (1.1) to give an initial-boundary value partial differential equation (PDE) with periodic and 
homogeneous Dirichlet boundary values, respectively. This reaction-diffusion equation, which 
is often referred to as Fisher's equation, is a standard model in population dynamics [15]. 
Discrete and semi-discrete analogues of the PDE have also been proposed as biological models 
[13]. It is often argued that, as a population model, the logistic ODE can be made more realistic 
by including delay effects. A finite difference approximation to an ordinary delay differential 
equation (DDE) analogue of (1.1) was studied in [9]. 

In this work we perform a systematic study of the basic steady states that are possible when 
both diffusion and a constant delay are incorporated in (1.1). The continuous model, which is 
known as Hutchinson's equation [3], is discretised with central differences in space and Euler's 
method in time. To allow for the delay, we use a linear Lagrange interpolant, which is a natural 
continuous extension of the Euler step. We impose homogeneous Dirichlet boundary values--  
this is perhaps the most relevant choice for applications in population dynamics. Our approach 
is ODE-based: we first discretise in space with the method of lines, and then consider the time 
discretisation. We emphasise that the semi-discrete problem itself may be regarded as the 
underlying model in some circumstances--for  example, in island chains, where individuals 
inhabit separate regions, with some interaction between neighbouring regions [5]. Hence, even 
a very coarse space discretisation (which, in this work, turns out to give the most tractable 
problem) may be of interest. 

Our aim, as numerical analysts, is to understand how the existence and stability of the steady 
states vary with the grid parameters. The analysis is specialised to one problem and discretisa- 
tion. However, we feel that the problem is sufficiently general to make the results of interest. In 
addition to the widely-recognised feature of spurious solutions bifurcating beyond the linear 
stability limit, we look at the following issues: 

• the dependence on the diffusion and delay coefficients of the existence and stability of 
fixed points, 
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• the effect of symmetry on the bifurcation patterns (even in the presence of rounding 
errors), 

• the potential for spurious solutions within the linear stability limit when a nonzero delay is 
present. 

Section 2 defines the continuous problem, sets up the discretisation and looks at the 
semi-discrete problem. In Section 3, we consider the zero-delay case. Here we extend some 
results from [4]. In particular, we show how different bifurcation patterns can arise depending 
on the symmetry in the problem. Section 4 covers the general case of a non-zero delay. In the 
final section we present our conclusions and point out areas for future work. 

Our policy in this paper is to focus on the presentation and interpretation of the main 
results. Further technical details can be found in the report [11]. 

2. Hutchinson's equation (HE) 

2.1. Hutchinson's equation and space discretisation 

Consider Hutchinson's equation 

0 ~2 
~ - f u ( x , t ) = e ~ x 2 U ( x , t ) + u ( x , t ) [ 1 - u ( x , t - r ) ] ,  t>O, x ~ (0, 1); (2.1) 

u ( x , t ) = ~ ( x , t ) ,  t ~ [ - r ,  0], x ~ (0, 1), 

subject to homogeneous Dirichlet boundary conditions: 

u(0, t ) = u ( 1 ,  t ) = 0 ,  t > ~ - r ,  

where e > 0 is the diffusion coefficient, ~-> 0 is the amount of delay and the "initial value 
function" g '(x,  t) is continuous. For the purpose of comparison, we also consider the non-delay 
version, for which -r = 0. 

The scalar partial DDE (2.1) is initially transformed into a system of ordinary delay 
differential equations by discretising the space variable x into (N + 1) discrete values (N >f 2), 
with a constant stepsize in space, Ax = 1/N, so that xj =jhx ,  j = 0, 1 , . . . , N .  Let q~i(t)= 
gt(x/, t) and Uj(t) denote the approximation to u(x i, t). Using the standard central difference 
operator to approximate the Laplacian we obtain the system 

d e 
d t U ( t )  = ~ i x 2 M U ( t ) + U ( t ) o [ e - U ( t - r ) ] ,  t > O ;  (2.2) 

U(t)=cI)(t), t ~ [ - z ,  0], 

where U(t - r), U(t), @(t) ~ RN-I, e = [1, 1 , . . . ,  1] T ~ R N-1 and 

- 2  1 
1 - 2  

M =  

1 

- 2  

[~(N- 1)×(N- 1) 
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The symbol " o "  denotes componentwise multiplication, so that 

[i 1 
U - 1  

o[il 
W - 1  

UlW 1 

UN-  1WN - 1 

2.2. Fully discretised Hutchinson 's  equation 

To solve the system of DDEs (2.2), Euler's method is applied to advance the solution in time 
and a linear Lagrange interpolant, q ( t - r ) ,  is used to approximate the delayed values, 
U(t  - z).  

Setting t ,  = n A t ,  where At is a positive constant stepsize in time, let U n denote the 
approximation to U(t , ) .  Euler's method applied to (2.2) gives 

U " + l = U "  + r ~ M U "  + A t U " o [ e - q ( t , - . c ) ] ,  n>>.O, (2.3) 

where q( t  n - r )  = U( t ,  - r )  and 

At 
r e = e A x  2 = e N Z A t .  

If t , - z  ~< 0, then we can take q( t  n - r ) =  clg(t n - r ) .  Otherwise, let m be the smallest 
integer such that r <~ m A t .  Then t,  - r lies in the interval [tn_m, tn_m+l); that is, (m - 1)At < 
z ~ m A t .  Let o-At = m A t  -- .c, so that 

T 

o - = m  A t '  o - ~ [ 0 , 1 ) .  

The linear Lagrange interpolant based on the values U " -m+l  and U " -m is then given by 

q ( t ,  - z )  ~ - o ' U  n - m + l  "[- (1 - o ) U  n-m.  

Hence, on a general step with t,  > z we have the recurrence 

u n + l = u n + r ~ M U n + A t U n o [ e - o ' U n - m + l - ( 1 - o ' ) U n - m ] ,  n>~O. (2.4) 

Let 

U n 

u n - 1  
U n : =  . • ~ ( N - 1 X  r n + l )  

u n ' - m  

and define f ( v  n) ~ ~ N - 1  by 

f ( u  n) : =  (1  + A t ) U  n + F e M U  n - ( m A t  - z ) [ U "  o U "-m+l] 

+ ( m A t - - r - a t ) [ U " o U n - m ] .  (2.5) 
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Table 1 
Period-(1, 1) solutions and their linear stability 

159 

N Constant solution U *e Linearly stable 

N~>2 U* = 0  e > e  N "r>~0 

1 
N = 2  U* = l - 8 e  e < -  0 ~ < r < - -  

8 
1 

N=3 U * = l - 9 e  e < -  0 ~ < r < - -  
9 

N >/4 no nonzero U * 

'IT 

2(1-8e)  
'IT 

2(1 - % )  

Then (2.4) may be writ ten in the form v ~+~) = G(un),  where 

U ~ u n - 1  U ~ 
= G . := ~ ~(N-1)~,,+I) (2.6) 

u n - m - f  l u n ' - m  u n _ m +  1 

This is an (m + 1)-step vector recurrence, in which the value of  rn depends  upon the stepsize, 
At. 

2.3. Constant solutions o f  partially discretised system 

Constant  solutions of  (2.2) which are period-one in space, that is, of  the form U(t)  =- U *e 
with U * ~ •, must satisfy 

U * [ ( e N 2 ) M e  + (1 - U* )el = 0 ~ ~ N - 1  

It is easily shown that they exist as given in Table 1. 
The linear stability of  the zero solution can be determined by examining the appropriate  

Jacobian matrix. For  the nonzero solutions, linear stability theory for D D E s  must be applied; 
see [2]. Table 1 summarises the stability results, including, for comparison, the case z = 0. The 
value E N in the table is defined by 

1 

eN := 2 n Z [  1 _ c o s ( r r / N ) ]  " (2.7) 

(This has the asymptotic value l i m u _ ~ e  N = 1 /72 . )  

3. Dynamics of Hutchinson's equation with zero delay 

In order  to study the effects of introducing a delay, we first analyse the fixed points of 
Hutchinson's  equation (2.1) with z = 0. In this case, (2.3) simplifies to U n+a = g(Un),  where 

g ( U n ) = U n + r ~ M U ~ + A t U n o [ e - U n ] ,  n>~O. (3.1) 
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We note  that  the Jacobian matrix of this i teration is of the form 

J(U ~) = (1 + A t ) l +  r e M -  2At diag(U n) ~ ~(N-1)×(N-1). (3.2) 

Existence and linear stability of period-(1, 1) and period-(2, 1) solutions for N = 2 have been 
analysed by Gardiner  and Mitchell  [4]. Thei r  results will be stated here. We will also go into 
fur ther  detail theoretically for larger N and give numerical  results where  appropriate .  Fur ther ,  
we pay at tent ion to the special case of symmetric initial data when N = 3. 

3.1. Period-(1, 1) 

The  fixed points of (3.1) that  are per iod-one in space and t ime are solutions satisfying 
U n --g(U n) such that  U" - U *e. These  are identical to the ones for (2.2) given in Table 1. 

For  N = 3, we note  that  the i teration has the form 

[ U ~ + : ] = [  U~] r e [ - 2  1 [ ] + A t [  ] o ( [ 1 1 ] -  . (3.3) 

u; u; t v; j] 
It follows that  for initial data such that  U ° = U ° ,  all i terates will satisfy U~ -- U~. Even with 
finite precision arithmetic,  the symmetry in (3.3) ensures that  the rounding errors in each 
componen t  will be the same (under  the reasonable assumption that  fl(a + b) -- fl(b + a), where  
fl is the floating point  answer). Hence,  the stability of appropr ia te  fixed points when U ° = U ° 
must  be t reated sepa ra t e ly - - the  action of the Jacobian on e de termines  the stability. The  
region of stability when  U ° = U ° is potentially much  larger than that  for general  initial data. 

Linear stability of  zero fired point 
At the fixed point  U n = 0, the Jacobian J(0) = (1 + At ) I  + reM has eigenvalues [14] 

A s = ( l + A t - 2 r e ) + 2 r ~ c o s  , j = l  . . . .  , N - l ,  

which have modulus  less than one  for 

'Tr 'IT 

Substi tuting for r e, after some manipulat ion,  we find that  U n -= 0 is linearly stable when  e > ear 
and 0 < At < At N, where 

2 

AtN:= 2N2e[1 + c o s ( r r / N ) ] -  1 

We note  that,  when N = 3, J(O)e = (1 + At - r~)e. Hence  the condit ion [1 + At - r e I < 1 
de termines  stability when  U ° = U2 °. It follows that  when  e > e 3 = ~, the zero solution is linearly 
stable for 0 < At < 2 / ( 9 e  -- 1) if U ° = U °,  which should be compared  with the smaller range 
0 < At < 2 / (27e  -- 1) that  applies for general  initial data. 



D.J. Higham, T. Sardar /Applied Numerical Mathematics 18 (1995) 155-173 

Table 2 
Eigenvalues  Aj(J(U *e)) at selected values of  At 
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N U ~ ~- U *e e At Aj(J(U *e)) A~ 

1 2 
N = 2  U* = 0  e > -  - 1  --1 

8 8e - 1 
1 2 9 e + l  9 e + l  

N = 3  U* = 0  e > ~  2 7 e - 1  - 1 ,  2 7 e - 1  2 7 e - 1  

1 2 4 
N = 3  U* = 0  e > -  5 1 --1 

9 9e - 1 9e - 1 ' 
N>~4 U* = 0  e > e  N A t  u - 1  . . . . .  - l + 4 N 2 e  c o s ( r r / N ) A t  u none 

1 2 
N = 2  U* = l - 8 e  e < -  - 1  - 1  

8 1 - 8 e  
1 2 27e - 1 27e - 1 

N = 3  U* = l - 9 e  e < -  - 1 , - -  
9 l + 9 e  9 e + l  9 e + l  
1 2 27e + 1 

N = 3  U* = 1 - 9 e  e < -  1 - 1  
9 1 - 9 e  1 - 9 e  ' 

N >/4 no nonzero  U * 

Linear stability of nonzero fixed points 
For N = 2, see [4]; the period-one solution U ~ = (1 - 8e)e  is linearly stable for 

1 2 
- - .  e < ~ ,  0 < A t <  1 - - 8 e  

For N = 3 the conditions for linear stability are 

1 2 
e < ~ ,  0 < A t <  l + 9 e  

We also note that J((1 - 9 e ) e ) e  = ( 1 -  At  + r~)e, from which it follows that with initial data 
satisfying U ° = U°2, the relevant stability condition is 

1 2 
e < ~ ,  0 < A t <  1 - 9-------e" 

Table 2 gives the eigenvalues at the (possible) bifurcation points of  U" --- U *e and, where 
appropriate, A e denotes the eigenvalue corresponding to the eigenvector e. At the given 
stepsizes in Table 3.1, a root of the Jacobian passes through - 1, so period two solutions may 
bifurcate. 

3.2. Period-(2, 1) 

Fixed points of  (3.1) which are per iod-(2 ,  1), that is period-one in space and period-two in 
time, are solutions satisfying U n = g ( g ( U n ) )  4: g ( U  ~) such that U ~ - U~,e, with U n ~ E. 

For N = 2, see [4]; a period-(2, 1) solution with 

U*~=[ (1-8e)At+22At + ( - 1)n ~/(1 - 8e)2 A t 2 -- 4 2 A t  
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1 This is linearly stable for exists only for At 2 > 4 / (1  - 8e) 2, e 4= ~. 

2 f6 1 
< A t <  e4:  -- .  

l1 - 8el 1 -  8 e l '  8 

As expected from Table 2, if e > ~, then this period bifurcates from the stepsize At = 2 / (8e  - 1) 
1 

at which the period-(1, 1) solution U ~ -= 0 becomes unstable, and if e < ~ then this period 
bifurcates from the stepsize At = 2 / (1  - 8e) at which the period-(1, 1) solution U n = (1 - 8e)e 
becomes unstable. 

For N = 3, a period-(2, 1) solution with 

[ ( 1 - 9 e ) A t + 2  ~/(1 - 9 e ) 2 A t 2 -  4 ] 

U*~= 2At + ( - 1 ) n  2At ' 

1 is found to exist for At 2 > 4 / (1  - 9e) 2, e 4: ~. With general  initial data, this solution is linearly 
stable when e < ~ and 

2 
[9e + ~/81e 2 + (1 + 9e)(1 - 27e)] < At < - -  (3.4) 

(1 + 9e)(1 - 27e) 1 - 9e 

However, when U ° -- U ° the condition for linear stability is 

2 f 6  1 
< A t <  e4:  - .  

11 - 9 e l  11 - 9 e l '  9 
1 With the information for N - -  3 in Table 2, note that with initial values U ° 4= U ° for e < ~-, 

this period-(2, 1) solution does not bifurcate from the stepsize At = 2 / (1  + 9e) at which the 
period-(1, 1) solution U n - (1 - 9e)e becomes unstable. However, in the case when the itera- 

1 tion is initiated with U ° = U °, if e < ~ then this period-(2, 1) solution does bifurcate from the 
stepsize At = 2 / (1  - 9e) at which the period-(1, 1) solution U ~ = (1 - 9e)e becomes unstable 

1 and if e > ~ then the solution bifurcates from the stepsize At = 2 / ( 9 e -  1) at which the 
period-(1, 1) solution U n = 0 becomes unstable. 

3.3. Period-(2, 2)* for  N = 3 

To investigate the bifurcation that occurs when the period-(1, 1) solution becomes unstable 
for the case when the iteration is initiated with U ° 4: U °, we look for fixed points which are 
period-two in time and space, of the special form 

[;] [a u , 2 n  - -  , - - * *  - -  , 

with a 4: b. Following [6] we refer  to these as period-(2, 2) * solutions. Note that this form can 
never arise in the iteration initiated with U ° -- U °,  since in this case U7 -- U2" for all n. 

For iteration (3.1), the condition U,Z, " = g(g(U2~,)) requires 

b = a  + r ~ ( b -  2a)  + Ata(1 - a ) ,  (3.5) 

a = b + r~(a - 2b) + Atb(1 - b), (3.6) 
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Writing a and b in the form a = a +/3 and b = a - / 3 ,  the period-(2, 2) * solution becomes 

u L =  - ( - 1 ) " / 3  " 

W h e n  At = 1 / ( % )  and e 4: ~, Eqs. (3.5)-(3.6) give 

( 1 - 9 e )  ( 1 -  9e) 
a = 2 ' /3 - 2 (3.8) 

It can be shown that  solutions of this form are always unstable.  When  At 4: 1 / (9e) ,  (3.5)-(3.6) 
lead to 

[ ( 1 -  27e)At + 2] 
a = 2At  ' (3.9) 

([(1 - 27e)At + 2][(1 + 9e)At  - 2] 
/3 = 2At  (3.10) 

It can be shown that  these solutions are linearly stable in the two intervals 

( 2 -  r , ) < A t  < r ,  + ~/2(3 - 5r, + 2 r 2 ) ,  (3.11) 

r ~ -  ~/2(3 - 5r, + 2r  2) < a t  < ( 3 r ~ -  2), (3.12) 

HE with tau=O, N=3: Stability Regions of Period 2 Solutions 

1 

0.8 

~0.6 / 

iJ J ' 
0.4 ~ / /  i . 

111 i 
0.2 ...... t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i I 

0.5 1 1.5 2 2.5 3 
dt 

Fig. 1. L i n e a r  s tab i l i ty  reg ions when  U ° ~ U ° in the A t - r  e plane.  
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1.s 

A 

e" 

~o.s 
m 

HE with tau.,0, N=3 : r'ep=0.2 

IOO O l ~  
% ° 

C :::::~-° 

0 

1.., ¢ 

O 
0.5 

0 

ols 1 1.5 
dt ( UO-[0.1,0.09] ) 

21s 

...I f 
.°° 

oO 
," 

o o'.s l'.s is  
dt (U0= [0 .1 ,0 .q )  

Fig. 2. Long-term behaviour with r~ = 0.2 for unequal and equal initial data. 

where r, = 9 e A t .  The corresponding region of the A t - r ,  plane is marked with the " • "  symbol 
in Fig. 1. The stability region of the period-(2, 1) solution when U ° 4: U ° is also shown using 
the symbol " o "  

Note that the region where  U n - 0 is stable corresponds to the interior of the triangle with 
vertices at (0, 0), (1, 1) and (0, 2) in Fig. 1, and for the region where  U" - (1 - 9e)e is stable, 
the vertices are at (0, 0), (1, 1) and (2, 0). 

It can be seen from Fig. 1, or by manipulating (3.11)-(3.12), that for e < 1, a stable 
period-(2, 2)* solution bifurcates from the stepsize At = 2 / (1  + 9e) at which the period-(1, 1) 
solution U " - = ( 1 -  9e)e becomes unstable and for e > 1, a stable period-(2, 2)* solution 
bifurcates from the stepsize At = 2 / ( 2 7 e -  1) at which the period-(1, 1) solution U n -=0 

becomes unstable. 
A bifurcation diagram for the case r, = 0.2 (that is, e -- 0 .2/(9At))  is given in Fig. 2. Here  the 

time step ranges from 0 to 3 on the x-axis. For each time step we performed 1000 iterations, 
plotting the first component  of the last 20 iterates. The top picture comes from unequal  initial 
data, U ° = [0.1, 0.09] T, and the lower picture has equal initial data, U ° = [0.1, 0.1] "r. Note that 

1 1 
e > ~ when At < 0.2 and e < ~ when At > 0.2. As expected, the zero fixed point is stable in the 
range 0 < At < 0.2 for both types of initial condition. With U ° 4: U ° (in the top diagram) the 
nonzero fixed point U n -= (1 - 0 . 2 / A t ) e  is stable when 0.2 < At < 1.8, the special period-(2, 2)* 
solution (which cannot occur with U ° -- U °)  appears when 1.8 < At < 2.240 and the period-(2, 1) 
solution is only stable when 2.427 < At < 2.649. This is highlighted by the horizontal line at 
r, = 0.2 in Fig. 1. On the other  hand, with U ° = U ° (in the bottom diagram) the nonzero fixed 
point u n - =  (1 - 0 . 2 / A t ) e  and the period-(2, 1) solution are seen to be stable for the larger 
ranges 0.2 < At < 2.2 and 2.2 < At < 2.649, respectively. The difference between taking initial 
values of the form U ° 4:U2 ° and U ° = U ° can be clearly seen in the range 1.8 < At < 2.427. 
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Table 3 
Summary of stability of fixed points for ~" = 0 with U1 ° 4: U ° 
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e Period Form of U" Linear stability region with U ° ~ U2 ° 

e < 1 /27  (2, 1) U~.e 
e < 1 / 9  (2, 2)* U.~. 
e < 1 / 9  (1, 1) ( 1 - 9 e ) e  
e > 1 / 9  (1, 1) 0e 
e > 1 / 9  (2, 2)* U.~. 

r,. + 2tol(r ,)  < At < (r~ + Vr6) 
(2-- r~) < At < r,  + toz(r~.) 
r E < At < ( 2 - -  r , )  
(3 r~ - -2 )<  At < r~ 
r~ -- w2(r ~)< At <(3r~- -2 )  

Table 4 
Summary of stability of fixed points for z = 0 with U ° = U ° 

e Period Form of U n Linear stability region with U~ ~ = U2 ° 

e < 1 / 9  (2, 1) U.~e (2+  r~)< At < ( r  e + ~/-6-) 
e < 1 / 9  (1, 1) ( 1 - 9 e ) e  r~ < At < ( 2 +  r E) 
e > 1 / 9  (1, 1) 0e (r~--2) < At < r F 

e > 1 / 9  (2, 1) U~.e (r e - v / 6 ) <  At < ( r  E - 2 )  

3.4. Summary of  linear stability regions for N = 3 

The results concerning linear stability of fixed points for Hutchinson's equation with z = 0, 
when N = 3, are summarised in the Tables 3 and 4, where 

w l ( r ~ ) : = ~ f l + r ~ + r  2 , w = ( r ~ ) : = ~ Z ( 3 - 5 r F + 2 r 2 ) .  

4. Fixed points of  fully discretised Hutchinson's equation 

4.1. Period-(1, 1) 

Fixed points of  (2.6) that are period-one in space and time are solutions satisfying U n = U *e 
and U ~ =f(gn). These are identical to the ones for (2.2) given in Table 1. 

4.1.1. The zero fixed p o i n t  

It is easily seen that linearising about the zero fixed point removes the effect of  the delay. 
Hence,  the stability condition e > e N and At < A t  N that arose for the non-delay case also 
applies here. 

4.1.2. The nonzero fixed p o i n t  for N = 2 
When N = 2, f ( v  n) in the recurrence (2.6) may be written in the form 

f(v n) = Un[1 + A t ( 1 - 8 e ) - ( m A t - z ) U  n-m+~ + ( m A t - z -  At)U"-m]. 
1 We remark that when e < 5 this recurrence is equivalent to the one studied in [9]. 
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N-2: Stability Region of Un = (1 - 8*ep)o 

1.2 

1 

.~0.8 

0.6 

0.4 

0.2 

O0 0.5 1 1.5 2 2.5 3 3.5 
dt*(1-8"ep) 

Fig. 3. Region of stability for U n--- ( 1 - 8 e ) e  in the A t ( 1 -  8 e ) - z ( 1 - 8 e ) p l a n e  when N = 2. (Also for U n~- ( 1 - 9 e ) e  
in the At(1 -- 9e)-~'(1 --9e)  plane when N = 3 and q~l(t) = qgz(t).) 

For m = 1, that is, At >/z, the region of stability for the fixed point U n -= (1 - 8e)e is 

N=2 ( 1 
R m = l  :=  e , ~ ' , A t : e < - ~ , ~ ' <  

Similarly, the region for m = 2 is 

N=2 ( 1 
R m = 2  :=  e, r, At: e <-~, At < 

1 [ 
( 1 - 8 e ) ' A t < 2  ~" 

(1 - 8e ) '  

1]) 
+ ( 1 -  " 

(1 - At(1 - 8e) ~/1 ~ A t ( 1 -  8e) 
A t -  < ~ - < A t +  0-8 ) 

The stability region for m >~ 3 has been determined numerically. It is displayed with the symbol 
" * "  in Fig. 3. The linear stability regions for m = 1 and m = 2 are also shown; they are marked 
with the symbols " × "  and " o "  respectively. 

We see from Section 2.3 that for the semi-discrete system, the fixed point is linearly stable 
for 0 < ~-(1- 8 e ) <  "rr/2. The region in the figure appears to meet the y-axis in the range 
(0, Tr/2), suggesting that whenever  the fixed point is stable for the semi-discrete problem, there 
exists a time step for which it is stable for the fully discrete problem. This has been verified 
analytically in [9] and the same technique can be applied to the N =  3 case in the next 
subsection (see Fig. 4). 

4.1.3. The nonzero fixed point for  N = 3 
When N = 3 the iteration has the same symmetry as (3.3). Hence,  stability for equal initial 

data must be treated separately from the general case. It can be shown that when q~l(t) - =  qbz(t) 
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N,,3: Stability Region of Un ,, (1-9*ep)e when r 'ep-0.2 
1.6 

1.4 

1. 

1 
~ 0.6 

o i t 0. 

°6 0'.s i l s 2 1.5 a's , 
dt*(1-9*ep) 

Fig. 4. R e g i o n  o f  s tabi l i ty  for  U "  - (1 - 9 e )e w h e n  r = 0.2 an  d qb 1( t ) :g • 2 ( t )  in t h e  A t (1 -- 9 e ) -  ~'( 1 - 9 e ) p l ane .  

Fig. 3 gives the stability region for U ' -=  ( 1 -  9e)e, if the x- and y-axes are identified with 
At(1 - 9e) and ~-(1 - 9e), respectively. For q~l(t) 4: ~2(/) ,  when m = 1 the region of stability is 
found to be 

N = 3  [ 1 l 2 
R , , = ~ = l e , ~ , A t : e < - ~ , ' r <  ( l _ 9 e ) , A t <  ( l + 9 e )  - - [ 1  + T ( a -  9e)]},  

and for m > 1 stability occurs when both p](,k) and p2()t) are Schur polynomials, where 

pl(}~) = / ~ m + l  _ l~m _~_ ( m A t -  ~-)(1 -- 9e)A - ( m a t - ~ - -  At)(1 - 9e), 

p2(a ) = y ~ m + l  (1 - 2r~)a m + (rnAt--r) (1  - 9e),k - ( m A t - r -  At)(1 - 9e). 

Note that as r, ~ 0, the polynomial p2()t) tends to the polynomial p~(A). We also mention that 
when q ) l ( t ) -  qbz(t) stability is determined by the characteristic equation p~(A)= 0. This 
emphasises that equal initial data gives rise to a smaller class of perturbations, so that linear 
stability is a less stringent requirement.  

Fig. 4 is an example of a linear stability region, displayed with the symbol " * ", when r e is 
kept constant; r~ = 0.2 in this case. The region is plotted in the A t ( 1 -  9e)-~-(1 - % )  plane, 
which allows comparison with Fig. 3 for the case when @~(t) = q92(t). 

The numerically determined linear stability region of U ' - ( 1 -  9e)e, that is, the region 
where pt(A)pz(A) = 0 is Schur, is given in Fig. 5 for some selected values of ~-. The regions are 
plotted in the At-r~ plane. Note that, from Section 3.4, when ~- = 0 the stability region is the 
interior of the triangle with vertices at (0, 0), (1, 1) and (2, 0), It can be seen that introducing a 
small delay improves the stability of the iteration. 
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N=3: 

dt (tau=O) 

Stability Region of Un=(1-9"ep)e 

¢3. "~ 

% ",.. 

dt (tau=O.25) dt (tau=O.S) 

o.1 

0 

dt (tau=0.75) 

-0 2 
dt (tau=1.5) 

¢x 
GI 

",... 

dt (tau=1) 

'  ILf 
4 - 0  2 4 

dt (tau=1.75) 

¢g 

dt (tau=125) 

dt (tau=2) 

Fig. 5. Regions of stability for U" =- (1 - 9e)e when tibl(t) ~ be(t), for various ~-, in the A t - r ,  plane. 

4.2. Period-(2, 1) 

Fixed points of (2.6) that  are period-(2, 1) are solutions satisfying U"-U,"e and v,  ~ = 
G(G(vT)) 4: G(vn). Let 

1 - 8 e ,  if N = 2 ,  
%:= 1 - 9 e ,  if N = 3 ,  

then the period-(2, 1) solution, for both N = 2 and N = 3, takes the following form. 
If rn is odd, At 4: z/m, At 4: 2 z / ( 2 m  - 1) and Atr/,  4: - 2 ,  there  is a period-(2, 1) solution 

n U" - U, e, where  

( 2 + A t % )  [ ~ (rl~[(2m 1)At-2z] 2) l 
U*~ 2 ( m A t  z) 1 + ( - 1 ) "  At - - - ( 2 + A t % ) [ ( 2 m - 1 ) A / - 2 z ]  " (4.1) 

If m is even, At 4= 2 z / ( 2 m  - 1) and Atr/~ 4: - 2 ,  there is a period-(2, 1) solution with 

( 2 + A t r / ~ )  [ _  l ) A t - - z ]  n /At(r l~[(2m-l)At--2z]+2) A-~)[-(2m---~-t---}~ 
U*~ = - 2 [ (m 1 + ( -  1) V " (4.2) 

The  solutions (4.1) and (4.2) only exist when  the te rm in the square root is positive. Note  that  in 
both cases we are also assuming At > z if m = 1 and ~'/m < At < 7/(m - 1) if m > 1. 

4.2.1. Period-(2, 1) for N = 2 
The  regions of stability for the solutions (4.1) and (4.2), where  r/~ = 1 - 8e, can be deter-  

mined  numerically. Let  the symbols " * "  and " o "  mark  the region in which the period-(2, 1) 
solution is stable for m odd and m even, respectively. 
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N=,2, ep < 118: Stability Region of Period-(2,1) Solution 

J I 1.4 / 

I 
1.2 i t 

rn=2 / 
I 

1 i 
A i I 
r l  

0.8 / 
I 

0.6 11 
I 

ii 
0.4 t 

I '  

0.2 / / 

rn=l 

1 2 3 4 
dt'(1-8"ep) 

1 Fig. 6. Stability region for the period-(2, 1) solution when e < ~ in the At(1 - 8 e ) - r ( 1  - 8 e )  plane. 

When e < ~, the stability region is given in Fig. 6. Note that it lies within the area where 
m = 1; this solution bifurcates from the stepsize At = 2(-rr/~ + 1)/r/~ at which the nonzero 
solution U n = r l , e  becomes unstable. 

When e > ½, the stability regions for m = 1 , . . . ,  11 are given in Fig. 7. Note that as m 
increases the size of the region in which the solution is stable shrinks. This solution is 
bifurcating from the stepsize At = - 2 / %  at which the zero solution becomes unstable. 

N=2, ep • 1/8: Stability Region of Period-(2.1) Solution 

"1"= 

-20 

-2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 
dt*(1-8"ep) 

! 
Fig. 7. Stability region for the period-(2, 1) solution when e > g in the A t(1 - 8 e ) - r ( 1  - 8 e )  plane. 
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N=3: 1 0;, 03 f i  0" 0"3 
et 

C o.2 C 0.2 

O.o! O,o  
4 4 

Stability of Period-(2,1) Solution 
0.4 

°'0"3ti ~ 
~o.2 

O. 

dt (tau----0) dt (tau=0.25) dt (tau=0.5) 

0.4 

0.3 
¢ k  

0.2 

0.1 

O, 

i o, 0. 

Co, 

0, 

II 0.4 jt 0.2 

0.1 

, 02 
dt (tau=1) 

4 4 
dt (tau=0.75) dt (tau=l.15) 

Fig. 8. Stability regions for the period-(2, 1) solution when q)l(t) :# (bz(t), for various ~', in the A t -  r e plane. 

4.2.2. Period-(2, 1) f o r  N = 3 
Consider  the case N =  3 for which r/, = 1 -  9e. When  ~l(t)=# q b z ( t )  , the numerically 

de te rmined  linear stability regions of the solutions (4.1) and (4.2), at some selected values of r, 
are given in Fig. 8. When  q01(t)= q~z(t), the linear stability region is shown in Fig. 9, for 
At, r E ~ (0, 15), at some selected values of ~-. The  regions are plot ted in the A t - r  E plane. 

N=3: Stability of Period-(2,1) Solution 

dt (tau=O) at (tau=O.S) 

g.10 

10 10 
dt (tau=l.5) dt (tau=2) 

• o;  l o  " o;  lo  
dt (tau=3) dt (tau=3.5) 

(equal initial data) 

10 
dt (tau=l) 

1(1 
dt (tau=2.5) 

~.10 t f 

"" O~ 10 
dt (tau=4) 

Fig. 9. Stability regions for the period-(2, 1) solution when qbl(/) = ~2(t) ,  for various ~-, in the A t - r ~  plane. 
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12 ! 

10 

8 

,4 
6 

N=3: Effect of unstable period-(2,1) when tau=l/2 and ep=2/9 

o 

t 0 

Io 

Ii0 
1 ° 9 

i.5 0.6 0.7 0 8 0 9 1 
stepsize dt 

Fig. 10. Ef fect  o f  the unstable per iod-(2,  1) so lu t ion on the stable per iod-(1,  1) solut ion,  w i th  ~ l ( t )  = ~2 ( t ) ,  in the 
A t - j r f  p lane.  

Unstable solutions will not be computed in practice. However, as pointed out in [16], they 
t may have a significant impact on the dynamics. To illustrate this, consider the case r = ~ and 

2 e = ~. With initial values q~l( t)= ~2(t), the zero solution is stable for 0 < At < 2. With 
I 

< At < 1, for which m = 1, the period-(2, 1) solution (4.1) exists and is unstable. In our tests 
the iteration is initiated with 

U 0 : U - 1  ~ ~ 4 ,  

where 

{U °, U -1} =3"f 1 4- ( 2 -  At)(1 - At)  e. 

In Fig. 10 the value ~ / i s  allowed to vary from - 2  to 15 and the symbol " - "  is displayed in the 
A t -~"  plane if the iterates converge to zero. The symbol " o "  marks, for each stepsize, the 
value ~ = ( 2 -  At)/(2At- 1) at which the initial data reaches the period-(2, 1) solution in 
(4.1). It can be seen in Fig. 10 that for a significant range of At the unstable period-(2, 1) 
solution roughly corresponds to the boundary of the basin of attraction of the stable zero fixed 
point. 

5.  S u m m a r y  

Our aim in this work was to study the existence and stability of the basic steady states of a 
discretised version of Hutchinson's equation (2.1), and to examine the bifurcations to spurious, 
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periodic solutions. The report  [4] (which considers a range of nonlinear reaction terms) gives 
information about the case where r = 0. In this work we extended these results in various ways. 
In particular, we showed that period-(2, 2)* solutions play an important role in the bifurcation 
that occurs at the linear stability limit. New results were then derived for the general case of 
r > 0. Introducing the extra parameter  r changes the recurrence from a one-step map to an 
m-step map, where m depends on the ratio of the delay to the time step. Typically, the analysis 
for m > 2 is intractable, and hence numerical  computations must be used to examine the 
behaviour. 

It has been pointed out in several references, including [4,6,7,16,18], that a rich variety of 
behaviour is possible when the time step exceeds the standard linear stability limit. This work 
serves as further  illustration of this phenomenon  but, more  importantly, provides insights in 
two main areas. 

The effect of  a delay 
In comparing the r = 0 and r > 0 cases, the first point to be made is that the stability of the 

zero fixed point is unaffected by r. (This is a consequence of the fact that the delay term in 
(2.1) disappears on linearising about u - 0.) For the nonzero fixed point, Fig. 3 summarises the 
results for N =  2, and also for N = 3 when the initial data is symmetric. In both cases, 
increasing r a small distance away from zero causes the fixed point to become stable for a 
larger range of time steps. As r is increased further,  the range of stable time steps shrinks, 
reaching zero when the semi-discrete problem itself becomes unstable. For the case where 
N = 3 and the initial data is not symmetric, Fig. 5 gives stability regions for the nonzero fixed 
point at various r. Once more, a small delay increases the stability range, but larger values 
cause the region to shrink. Overall, our results are in agreement  with other  examples where 
hereditary effects are introduced, such as those in [9], where introducing a small delay improves 
stability of  the true fixed point. 

We also found that for r > 0 spurious solutions may exist for time steps that are stable in the 
linear sense. As illustrated in Fig. 10, even unstable spurious solutions can be important,  since 
they generally influence the basin of attraction of the "correct"  solution. 

Symmetry 
In the N = 3 case, our analysis was refined to account for the symmetry in the problem. We 

showed that, even allowing for finite precision arithmetic, there is a dramatic difference in the 
bifurcation patterns that arise with equal and unequal  initial data; see Fig. 2. 

We conclude by mentioning two possible extensions to this work. First, in the case where  
r = 0, the fully continuous problem (2.1) has been widely studied, and it is known that for 
e < 1 / r r  2 a stable, positive, t ime-independent  steady state exists, having the form u(x, t) = v(x), 
where v(x) solves the second-order O D E  ev"(x) + v(x)(1 - v(x)) = 0, with v(0) = v(1) = 0. 
Details can be found, for example, in [12]. It would be of interest to study the existence and 
stability of an analogous steady state for the discrete problem, both for r = 0 and r > 0. A 
major difficulty here  seems to be the characterisation of the spatial pat tern of the solution for 
general N > 2. A second area of study is the use of variable time steps. Although constant grid 
spacing is commonly used, particularly in the solution of PDEs, there is practical and 
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theore t i ca l  ev idence  to show tha t  var iable  t ime-s tepp ing  via e r ro r  con t ro l  is he lpful  for  
long- t ime s imulat ion,  par t icu lar ly  as a means  of  avoiding spur ious  behav iour ;  see [1]. Some  
analysis of  an e r ro r - con t ro l  s cheme  for  the  D D E  vers ion of  (2.1), tha t  is, wi th  e = 0, has b e e n  
given in [9]. It  would  be  of  in teres t  to see how these  ideas, which are  based  on  the  work  of  
[8,10], could  be  e x t e n d e d  to the  P D E  case with delay. 
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