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Users of locally-adaptive software for initial value ordinary differential equations
are likely to be concerned with global errors. At the cost of extra computation,
global error estimation is possible. Zadunaisky's method and 'solving for the error
estimate' are two techniques that have been successfully incorporated into
Runge-Kutta algorithms. The standard error analysis for these techniques,
however, does not take account of the stepsize selection mechanism. In this
paper, some new results are presented which, under suitable assumptions show
that these techniques are asymptotically valid when used with an adaptive,
variable stepsize algorithm—the global error estimate reproduces the leading
term of the global error in the limit as the error tolerance tends to zero. The
analysis is also applied to Richardson extrapolation (step halving). Numerical
results are provided for the technique of solving for the error estimate with
several Runge-Kutta methods of Donnand, Lockyer, McGorrigan and Prince.

1. Introduction

Adaptive software for the initial value system

y'it)=f{t,y{t)), 0<r^eDd, y(Q) = y0, (1-1)

produces discrete approximations yn '
ay(tn). Typically an error tolerance S, which

is supplied by the user to control the accuracy of the numerical solution,
determines dynamically the gridpoints tn = tn-l+hn, (to = Q) and the discrete
approximations yn at these points. The user is most likely to be concerned with
the global errors GK,,:=yn - y(tn); however, the relation between GE, and 8 is
highly problem-dependent. (For example, choosing 5 = 10"6 does not automati-
cally ensure that the numerical solution has six correct decimal digits.) It is
possible, however, to invest more computational effort in order to compute
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global error approximations. In this paper we consider global error estimation
techniques for explicit Runge-Kutta (ERK) algorithms. Traditionally, such sch-
emes are analysed without reference to the stepsize selection process—stepsizes
are assumed to be either constant or bounded above by some maximum value.
However, the schemes are usually implemented within adaptive, variable stepsize
algorithms that are driven by the error tolerance 8. Hence, we feel that an
important question remains unanswered—how does a global error estimation
technique, when combined with an adaptive strategy for varying the stepsize,
behave as a function of 5? Since a user has direct control over 8 (rather than the
individual stepsizes) this is a very natural question to ask. Qearly, for a scheme to
be asymptotically valid in this sense, it must produce a global error estimate that
converges to the true global error as 8—>0. This is the issue that we address in
this paper.

The paper is organized as follows: In the next section we introduce the adaptive
ERK methods and describe the three global error estimation techniques that we
analyse. Section 3 outlines known results about the behaviour of the global error
as a function of 8, both for the standard stepsize changing technique and a
recently proposed alternative (Calvo et al (1994)). In Section 4 we prove that the
global error estimates are asymptotically valid, in the sense that they deliver the
leading term in the global error as 8 ->• 0. We also quantify the effect of so-called
r-term estimators in the variable stepsize setting. Finally, in Section 5, we present
some numerical experiments that confirm the asymptotic behaviour in the case of
solving for the error estimate.

2. Global error estimation techniques

Techniques for global error estimation have been available for many years. A
diverse range of approaches has been put forward, with various degrees of
mathematical rigour. We refer the reader to Peterson (1986) and Skeel (1986) for
overviews of the area. In this work we concentrate on three techniques that have
been found to work well in practice and have been rigorously justified in the case
of constant stepsizes. (For the third technique, Richardson extrapolation, a
variable stepsize proof is also available, Henrici (1962).)

We begin by specifying the class of adaptive ERK methods that we consider. We
assume that a /?th-order ERK formula is used to obtain a discrete solution {tn, yn}
of (1.1) whose global error is to be estimated. This means that the local error LEn

over a step from (?„_,, >-„_,) to (tn, yn) satisfies

LEn :=yn ~ z(tn) = *S+V(4,-i, y, - .) + GMT2), (2-1)

where hH = tH-tn^1 is the stepsize, if/ is a sufficiently smooth function, and z(0 is
a piecewise continuous function defined in each interval (fn_i, tn] as the local
solution satisfying z'(t) =f(t, z{t)) and *(*„_]) = yn-i together with z(0) = y0.

For the purpose of error control, on the step from {tn-\,yn-\) to (tn, yn) a
locally-based measure of the error, en = e(hn; tn-u yn-\) is computed, where

i), (22)
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and ip is a sufficiently smooth function. Recall that the main formula is assumed
to have order p. Error estimates of the form (2.2) arise with (a) local-error-per-
unit-step control, (b) defect control with a suitably high order interpolant, and (c)
extrapolated-local-error-per-step control when the secondary formula has order
p - 1. (See Higham (1991) for more details and references.) The step is accepted
if ||en||ssS, where ||-|| is some vector norm and 5 is the user-supplied error
tolerance. Otherwise the step is re-taken from fn_] with a smaller stepsize. The
next stepsize hn+1 is given by the formula

) * • • ( 2 - 3 )

where 8 e (0,1) is constant and, in the usual case,

estmaxn = ||en||. (24)

The alternative formula proposed in Calvo et al (1994) has

= maxf||ell||,/i{;ininfic-ij|^|,estabs}), (2.5)

in (2.3), where K and estabs are constants that depend on the method. This
version produces a more robust global error behaviour.

Solving for the error estimate, which is also referred to as 'solving for the
correction', assumes that a computable continuous extension Q(t) of the discrete
solution {tn,yn} is available (i.e. Q{tn) = yn) satisfying (?(r) e C1. Putting e(t) =
Q{t)-y(t), the global error in Q(t) satisfies the so-called error equation or
secondary problem given by

E'(t)=f(t,e(t)):=Q'(t)-f(t,Q(t)-e(t)), e(0) = 0. (2,6)

Hence solving the secondary problem numerically provides an approximation to
the global error in the main problem.

In general, (2.6) is solved with a different ERK method, but with the same
stepsize sequence as that used for the main problem. It is intuitively clear that in
order for the resulting global error estimate to be valid, the secondary problem
must be solved more accurately than the main one. Suppose that over each step
the continuous extension satisfies

'), for all 0 < e r « l , (27)

where either 5 = 0 (giving an order p — 1 extension) or s = 1 (giving an order p
extension). Dormand et al (1989) showed that by exploiting the special structure
of the secondary problem is possible to derive customised ERK formulas that
achieve the extra order of accuracy with fewer stages that a general formula of
order p + r. Recall that the local error in the main integration is O(/i£+1).
Dormand et al (1989) derive formulas that produce local errors on the secondary
problem that are essentially O(hp

n
+r+i), where r =* 1 and typically r = 1 or 2. They

are referred to as r-term estimation formulas, since they have r extra zero terms
in their local error expansions.
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Zadunaisky's technique dates back to the work of Zadunaisky (1966); see also
Pereyra (1984). The basic idea is to introduce a neighbouring problem to (1.1),
which, in modern references, is taken to be

f (0 =/(', K0) "f 0.9(0) + d(t), 9(0) = y0, (2.8)
where d(t) = d{t, 8) := Q'(t) -f(t, Q(t)) is the defect in Q(t). This problem is set
up to have solution $(t) = Q(t). The neighbouring problem is solved with the
same ERK formula and the same stepsize sequence as the main problem. Since the
exact solution of (2.8) is known, the global error in the neighbouring computation
can be found, and used as an approximation to the global error in the main
computation. Intuitively, in order for this technique to be valid the main and
neighbouring problems must be 'sufficiently close', which amounts to saying that
the defect must be small. Note that with this technique, both the main and the
neighbouring problem are solved with the same 'special' formula. Therefore, this
technique is less flexible than solving for the error estimate with regard to the
choice of the RK formulas. Dormand et al (1989) derive special r-term estimation
formulas with the property that the local errors in the main and neighbouring
computations differ by O(/i£+r+1).

Global error estimation by Richardson extrapolation, or step halving, proceeds
as follows. The usual error control and stepsize selection method is applied to
produce a solution {yn} from stepsizes {hn}. Simultaneously, the same ERK formula
is applied over pairs of steps with stepsize hn/2 to produce another discrete
approximation {yn}. The quantity

2" - 1

then approximates the global error in yn. (Similarly, multiplying by 2P in (2.9)
produces an approximation to the global error in yn.) This technique, which does
not require the computation of a continuous solution, was chosen by Shampine
and Watts (1976) for the GERK code.

3. The global error

In this section we review the relevant results from Calvo et al (1994) and Higham
(1991) concerning the behaviour of the global error in a variable stepsize
algorithm.

We assume that

(i) the stepsize satisfying max,, {/in}—»0 as S—»0, and
(ii) the function \fi(t, y(t)) of (22) is non-vanishing over [0, fend].

From the first of these assumptions, standard convergence theory implies that
maxn{yn-y(tn)}-+0. Assumption 2 ensures that we are controlling a quantity
that behaves like hp

n (and not like some higher power of hn). It follows that if a
function is O(hn) then it is also O(61/p). The second assumption above can be
weakened to ^(0, y(0))?40 if the new stepsize changing technique defined by
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(23) and (2.5) is used; see Calvo et al (1994) for details. However, for simplicity,
we will assume that the standard step-changing formula (2.3)-(2.4) is used. (Our
analysis is easily adapted to lead to the same qualitative results for the new
technique.) From (2.2)-(2.4), since hn and hn+i are O(S1/p), we have

Hence, on every step,
I I U ^ S O ^ 1 ^ ) (3.1)

which will be needed later.
Results in Higham (1991) show that under these assumptions the numerical

solution has a global error that is asymptotically linear in 5. More precisely, if we
let 7},{t) denote the interpolant defined by

( f 7 ) y0, (3-2)

then as 8-*0, for any fixed /, the global error in T),(t) satisfies

V,(t)-y(t) = v(t)8 + g(t). (3.3)

Here, v(t) is C1 and independent of 5, and g(t) is continuous and piecewise C1

with zeroth and first derivatives of O(5(p+1)//'). Note that r),(t) is not computable,
in general, but it passes through the mesh data {tn, yn}. Hence this result reveals
information about the global error in the discrete solution as a function of 8. The
defect in ri,{t) will be denoted d/(t):

d /(f):=T,;(O-/(r,r, /(r)). (3.4)

(For definiteness, the derivative r\',(t) at each gridpoint t = tn is defined by taking
the limit from the left.)

Throughout our analysis we assume that the computable extension Q{t) is C1

with s = 0 or 5 = 1 in (2.7). It follows (Higham (1991)) that

Q(t)~yit) = O{8) and d{t) = O(8<p-^»). (3.5)

The aim of this work is to analyse the global error estimation techniques
described in Section 2, when incorporated into a variable stepsize algorithm. We
will show the under assumptions (i) and (ii), the global error estimates are
asymptotically valid as 5 —»0.

4. Analysis of the global error estimation techniques

4.1 Solving for the error estimate

We now examine the technique of solving for the error estimate. We suppose that
a numerical solution {tn, £„} has been computed for the secondary problem (2.6),
and we define an interpolant through this data by

z{f) + if~!n-'i)Un, te(tn-uta] nX0) = 0, (4.1)
n
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where the associated local solution z(r) satisfies

z'(t)=f(t,z(t)) and £&_,) = $,-!, z(0) = 0

and Hn := en - z (tn) is the local error. We also let d(t):= rfi'(t)-f(t,
denote the defect in rfM- Our aim is to show that TJXO is a valid approximation
to e(t), the global error in the main problem.

We begin with a lemma.

LEMMA 4.1 The defect d(t) in the interpolant rf/(t) defined above for an r-term
estimation formula when solving for the error estimate satisfies

d(t) = y(t)8<p+rVp + O(8<-p+r+iyp), (4.2)

where y(t) is C1 and independent of S.

Proof. The key property is that an r-term estimation formula has a local error
expansion that is zero until the hp+*+r term (see equations (12) and (15) of
Dormand et al (1989)). Moreover, since the elementary differentials of the
secondary problem at the point {tn-u ert_i) can be written in terms of (fn_i, yn-\)
(see Dormand et al (1989), p 840), it follows that the local-error-per-unit-step
satisfies

^ = £(*„_„ y^W + O(8(p+r+l)lp), (4.3)

where if/ and C1 and independent of 8. From (2.2), we have

Using this, along with (3.1), in (4.3) shows that the local-error-per-unit-step has
the form

LE _

where

=7/. ..x _ ftfcy)

is C1 and independent of 8.
Now from the definition (4.1) of the interpolant, since (t — tn-i)lhn = O(l),
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using (4.4). Finally, since y is C1, we may replace the arguments (tn-\> yn-i) by
('> >*(0) without affecting the leading term, giving the required expression. (With
a slight abuse of notation, we replace y(t, v(r)) by y(t).) D

We can now prove the main theorem concerning the accuracy of the estimate.

THEOREM 4.1 The error in the global error estimate of an r-term estimation
formula when solving for the error estimate satisfies

Ti(t) ~ eto) = vto)Slp+rVp + O ( S ( p + r + 1 V p ) , (4.5)

where v(t) is C1 and independent of 8.

Proof. We will use co(t):= Tito) - e(r) to denote the error in the global error
estimate. Taking the defect and expanding about e(t) leads to the variational
equation

«'(') -L(t> «(0M0 = d(t) + O(w(tf). (4.6)

Its solution satisfies (see, for example, Ascher et al (1988))

a>(0 = F(0 f r V * ) dy. + O(co(t)2), (4.7)
Jo

where Y(t) is a fundamental matrix of the variational equation of the secondary
problem (2.6) with respect to the solution e{t). Since fe(t, e(t)) =fy(t,yto)), Y(t)
satisfies

Y'to)=fy(t,yto))Yto),
showing that Y(t) is independent of S.

Now, inserting the expression (4.2) into (4.7) gives

f
•>o

O(o.(02), (4.8)

proving the result. D

Theorem 4.1 shows that the technique is asymptotically valid in the sense that

where v(f) is the solution of the linear problem

The global error, which is O(5), is approximated up to terms of O(6(p+r)/p). In
particular, this confirms that there is a gain in accuracy if r is increased.
Furthermore, the theorem shows that for a given t, the leading term in the 'error
in the error' settles down to a fixed value, v{t), and that v(t) is a C1 function of t.
This implies that for sufficiently small 8, each component of Tii{) ~ e (0 decreases
monotonically to zero with 5—this conclusion could not be drawn from a weaker
results such as Tito) ~ e(0 = O(5(p+1Vp).
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4.2 Zadunaisky's technique

To investigate Zadunaisky's technique, we first define quantities analogous to
those used in the previous section. We let {tn, _?„} denote the numerical solution
for the neighbouring problem (2.8). The corresponding local solution and local
error over a step from tn^ to tn will be denoted £(r) and LEn, respectively, with

i'(t)=J{t,t{t)), *(*„_,) = £,_, and LEn :=?,,-£(?„).

An interpolant fj/(t) to the discrete solution can be defined by

and the corresponding defect 3,(t) is given by 3,(t):= fj',(t) -f(t, fj/(/)). We use
£,(t) := fjiit) — Q(t) to denote the global error in r\,{t) for the neighbouring
computation. Similarly e,{t) := rj/(t) — y(t) denote the analogous global error for
the main problem. Our aim is to compare £j(t) and et{t).

The following lemma captures an essential property of an r-term estimation
formula.

LEMMA 4.2 The defect d.,{t) in the interpolant fji(t) defined above for an r-term
Zadunaisky formula satisfies

3,(0 = d,{t) + y(t)8lp+rVp + O(5("+r+1)/'') + O(5£,(0), (4.10)

where ^(0 is C1 and independent of S, and we recall that d,{t) is defined in (3.4).

Proof. With an r-term formula, the expansion of the local error for the
neighbouring problem and for the main problem on each step agree up to and
including the O{hp

n
+r) term (see equation (12) of Dormand et al (1989)). It follows

that the difference between the local-error-per-unit-step on the two problems
satisfies

T 1 ~ IT = # ( ' - ! ' yn-l)hPn+F + O(8<'+'+W), (4.11)

where iff is C1 and independent of 8. Analysis similar to that in Lemma 4.1 then
shows that

TL~TL= nn-uyn-^
p+rVp + 0(8^+r+^), (4.12)

where y is C' and independent of 5.
Now from the definitions of the interpolants, we have

hit) = —^T^hit, *(r))a + O(LE*), (4.13)

d,(t) = — ^ir^fyif, z(O)LE- + O(LE5). (4.14)
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Note that fptafy, by construction. Also, using (3.5)

*'(') ~f(t,Z(t)) = d(f) = O(fi<'-1)*)
and

£(*„-,)-z(rB-,) = £,(*„-,) = O(5).

Hence using a standard differential inequality (see, for example, Hairer et al
(1993), Theorem 10.2, page 58) we have, for rn_i < t =s /„,

£(r) - z(r) = O(5) + O(M("~1)/p) = O(S). (4.15)

Subtracting (4.14) from (4.13), and using (4.15), leads to

U0 - d,(t) = f= - ^ -^T^fyiU Z(t))(uin - LEn)
n

+ O(LE2) + O(LE2) + 0 (5^(0 ) + O(52).

Now, from (4.12), this becomes

d,(t) - d,(t) = ?(*„_„ ^ - O S ^ ^ " + O(5("+r+1>"')

and replacing the arguments (fn_i, yn-i) by (f, y(0) gives the result. •

We can now prove the main theorem concerning the accuracy of the estimate.

THEOREM 4.2 Suppose l s£r<p. With an r-term Zadunaisky algorithm the
global error for the neighbouring problem satisfies

g,(r) = £,(t) + v{t)8(p+rVp + O(5(p+r+1Vp), (4.16)

where f)(f) is C1 and independent of 8.

Proof. The technique of proof is similar to that used for Theorem 4.1.
The global error £/(/) = fj,(t) — Q(t) for the neighbouring problem satisfies the

variational equation

m) -h('>HO)e,(t) = 3,(0 + o(g7(0
2). (4.17)

By construction, $(t) = Q(t) and J9 =fy, so the solution of (4.17) satisfies

f
•'o

(t)2), (4.18)
•'o

where the fundamental matrix 9(t) is the solution of

?'(t)=fy(t,Q(t))?(t), ?(0) = I. (4.19)

Now Q(t) = y(t) + e(r), so replacing Q(t) by y{t) in (4.19) introduces an O(e(r))
perturbation. It follows from a standard differential inequality (see, for example,
Hairer et al (1993), Theorem 10.2, page 57) that

and ? ~\t) = Y~\t) + O(e{t)\ (4.20)

where Y(t) solves Y'(t)=fy(t,y(t))Y(t) and 7(0) = /, and hence is independent
of 5.
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Finally, using (4.20) in (4.18), substituting for 3f(t) from Lemma 4.2 and using
(3.5) we have

i,(t) = Y(t) f
Jo

Y(t) f Y-
4>

= e,(t) + Y(t) f Y-V)?(/*)S(p+r)/'' dn + O(8
4

8o>+r+lVp)

giving the result. •

Note that e,(tH):=ii,(tH)-y(ttt)=yn-y(tn), and similarly ii(tH) = $n
Hence, Theorem 4.2 applies to the computed global error estimate at the
gridpoints, and it shows that Zadunaisky's technique has a similar asymptotic
validity to solving for the error estimate, cf. Theorem 4.1. The result requires
r <p, which is a consequence of neglecting O(52) terms in the linearization (4.17).
However, since r is typically 1 or 2 this limitation has no practical significance.

4.3 Richardson extrapolation

We now examine Richardson extrapolation, as described in Section 2. Henrici
(1962, page 136) gave a variable stepsize result for this technique under the
assumption that hn = d(tn)h, where -&(t) is piecewise continuous, 0 < d(t) =£ 1 for
t e [0, tend], and h is constant. We can regard h as the 'maximum' stepsize. Henrici
showed that the global error estimate is correct up to O(/ip+1) terms. We show
below that it is straightforward to analyse Richardson extrapolation when the
standard stepsize selection process is used, and the estimate can be shown to be
valid in the limit as 5 —» 0.

From Higham (1991) the relation (3.3) holds for the true global error, with v(t)
the solution of the variational equation

f ^ L w(0) = 0. (4.21)

For the standard step-changing policy, the functions ij/ and 4> are those appearing
in the expansions (2.1) and (2.2). With the alternative step-changing policy given
by (2.5), the function 4> must be defined slightly differently—see Calvo et al
(1994). Now consider a second, simultaneous integration using pairs of steps with
length hnl2 to generate {tn,^n}. Straightforward analysis (see, for example, Hairer
et al (1993), Section II.4) shows that the local error at the end of a pair of steps of
length hnl2 from ^ . j to $„ has the form

cf. (2.1). Here, Z(t) is the appropriate local solution: Z'(f)=f(t,Z{t)), and
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£(rn_i) = yn-\- Hence, by analogy with (33) and (4.21), we find that the
interpolant

rj,(t) := ZH(t) + (f ~J"" 0 [ft, ~ Z(tn)], r e (*„_„/„], fj,(0)=yo,

satisfies

where v(t) solves the variational equation (421) with the right-hand side scaled
by 1/2P. Because (4.21) is linear, we find v(t) = v(t)/2". It follows that (2.9) gives
a global error estimate that is valid up to O(5(p+1V/').

5. Discussion and numerical results

Although our analysis has the advantage of dealing directly with the error
tolerance, it suffers from the inherent limitation of being relevant only for
'sufficiently small' S. However, the underlying adaptive algorithm is based on
similar asymptotics—the error estimation and stepsize selection mechanism is
motivated by small h expansions such as (2.2), and produces a global error that
satisfies the relation (3.3). Hence, it could be argued that the global error
estimation techniques analysed here possess similar properties to the underlying
approximations. In this sense the results are extremely positive, and serve to
justify the use of global error estimation in adaptive algorithms.

In order to check the agreement between our asymptotic results on global error
estimators and the numerical results obtained in practice, extensive calculations
with different RK methods and initial value problems (largely from the DETEST set
of problems, Enright & Pryce (1987)) have been performed. For the sake of
brevity we present here only numerical results from solving for the error estimate,
which we regard as the method of choice.

Let us recall that the asymptotic results for the technique of solving for the
error estimate were obtained under the assumptions (i) and (ii) given in Section 3.
Assumption (i) is normally satisfied, but as illustrated in Calvo et al (1994), there
are particular methods and problems for which assumption (ii) does not hold. In
this case it was shown in Calvo et al (1994) that the standard stepsize changing
policy does not guarantee the tolerance proportionality condition (3.3). Since the
leading term v(t) of the global error estimation in the numerical solution of the
secondary problem satisfies the variational equation (4.9), similar difficulties to
the ones encountered for tolerance proportionality appear in connection with the
global error estimation when ${t, y(t)) vanishes in the integration interval. It
must be pointed out that although the assumptions for tolerance proportionality
(see Calvo et al (1994), Higham (1991)) and for the asymptotic validity of the
global error estimation are identical, the two properties are independent. In fact,
it is possible to construct methods for which the main formula presents tolerance
proportionality even when the function ij/(t, y(t)) vanishes, and at the same time,
v(t) turns out to be unbounded at some point in the integration interval and
therefore the global error estimator is not reliable.
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In our numerical experiments, to avoid difficulties with the standard stepsize
changing technique caused by a vanishing ij/(t, y(f)) we used the alternative
stepsize changing formula based on (2.5). With this formula, when ||<A(f, y(0)ll 1S

small (in a sense which depends on the scale of the problem) at a grid point it is
replaced by a suitable non-vanishing function; therefore the new technique is
equivalent to using another stepsize function tp such that || \p \\ > v > 0, and
assumption (ii) is satisfied.

We chose Runge-Kutta methods from those proposed by Dormand et al
(1989). A typical method of order p consists of an ERK triple of order p (i.e. a pair
of discrete formulas of orders p and p — 1 together with a continuous extension of
order p - 1 or p) and an ERK formula for the secondary problem with order p + r.
In some cases the same formula is used for the main and the secondary problem
although its order is higher for the latter problem.

Next we describe how we test the asymptotic behaviour of the global error
estimator. Given a problem (1.1) and a triple of order p together with an r-term
error estimator, we compute, for all gridpoints corresponding to a given tolerance
8, the quotients

(5.1)

If our theory is correct, these values should converge (for S -» 0) to points on a
fixed curve v(t). (In fact, v(t) solves the variational equation (4.9).)

We present results for two test problems from class A of the DETEST set
(Enright & Pryce (1987)):

•:y'{O = '-Y U - ^ > >(°) = 1'

A3: y'(t) =

and one from class D:

Dl:

cos (r), y(0) =

y3(0

2)^J

y2(0)

y3(0)

l - e
0
0

_V(1+ €)/(!-«) J
with 0 < t «s 20 in each case.

First, we used the second order method RK2(1)3FD of Dormand et al (1989).
In this case, the second order triple has three stages and uses the FSAL condition.
The same discrete method is used for the main problem and for the error
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FIG. 1. A4 problem, RK2(1)3FD.

equation, but for the error equation it has order three, and therefore we have
one-term global error estimation.

In Fig. 1 we plot for the A4 problem the polygon determined by the points
{/„, vn) for 8 = 1(T4,... , 10~8. It is clear that as 5 tends to zero the polygons
converge to a fixed curve. In Figs 2 and 3 we show the corresponding graphs for
problems A3 and Dl.

It must be remarked that if we use the standard technique for stepsize
changing, the figures determined by the points {(„, vn} show a clear jump when the
numerical integration crosses a TP-singular point, i.e. a point t* where ij/(t, y(t))
vanishes. To illustrate this fact, Fig. 4 shows the polygons determined by the
points {tn, vn] for 5 = 1(T 4 , . . . . 10~8 on the A3 problem. In this case, the
TP-singular points are those values of t such that sin (f) = (VI - l)/2, i.e.

t* = 0-6662 • • • + 2kn, t* = 2-475 • • • + 2kn,

0 2 4 6 8 10 12 14 16 18 20

FIG. 2. A3 problem, RK2(1)3FD.
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which belong to the interval [0,20]. At each of these points the polygons show a
jump and clearly they do not converge as 5 - • 0.

Next we consider the third-order method RK3(2)4FD of Dormand et al (1989).
This method requires four stages per step and uses the FSAL condition. The same
formula is employed as both integrator and estimator. In Figs 5 and 6 we present
the polygons determined by the points {tn, vn} for the problems A4 and A3
respectively, computed with 8 = 10~4 , . . . , 10"12.

Finally, we use as the main integrator the well-known pair RK5(4)7FM (or
DOPRI5) of Dormand and Prince (Hairer et al (1993), page 178) with a
continuous extension of order four, and as estimator a seven-stage formula given
in Dormand et al (1989) which allows two-term estimation. Now, since the order
of the method is higher than in the above cases, the global errors are smaller and,
moreover, as we use a two-term error estimation, the global errors in the solution
of the secondary problem are much smaller. This means that special attention
must be paid to roundoff errors. In order to get reliable results, the computations
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with stringent tolerances were carried out in quadruple precision (32 significant
figures). In Figs 7, 8 and 9 we show the polygons determined by {tn, vn) for the
problems A4, A3 and Dl, respectively, with tolerances between 10~6 and 10~16.

Similar numerical results that support our theoretical predictions have been
obtained on a wide range of methods and problems.
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