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Runge—Kutta type methods for orthogonal integration

Desmond J. Higham !
Department of Mathematics and Computer Science, University of Dundee, Dundee, DD1 4HN, Seotland, UK

Abstract

A simple characterisation exists for the class of real-valued, antonomous, matrix ODEs where an orthogonal
initial condition implies orthogenality of the solution for all time, Here we present first and second order
numerical methods for which the property of orthogonality-preservation is always carried through to the discrete
approximation. To our knowledge, these are the first methods that guaraniee fo preserve orthogonality, without the
use of projection, whenever it is preserved by the flow. The methods are based on Gauss-Legendre Runge-Kutta
formulas, which are known to preserve orthogonality on a restricted problem class. In addition, the new methods
are linearly-implicit, requiring only the solution of one or twe linear matrix systems (of the same dimension as
the sclution matrix) per step. lllustrative numerical tests are reported.

Keywords: Geometric integration; Implicit midpoint rule; ODEs on manifolds; Qrthogonality; Structure
preservation

1. Background

Suppose that Y (¢} € R™™ is a time-varying matrix that satisfies the autonomous initial value
ordinary differential equation (ODE)

V(t)y=G(Y (), t>0, Y(0) given, (1.1)

where G:R™*™ — R™*™ is smooth. (Note that the problem (1.1) could be re-written as a standard
system of ODEs by stacking the columns of Y(¢) in a vector in R™ . For our purposes, however, it
1s natural to regard the solution as a matrix.)

Recall that a real square matrix A is said to be orthogonal if ATA = I, where I is the identity
matrix. Cettain applications, including algorithms for computing Lyapunov exponents, continuous

~orthonormalisation and continucus singular value decomposition {2,7], give rise to Bq. (1.1) where
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Y (0} is orthego-nal and it is known that ¥{#) remains orthogonal for all ¢ > 0. This prompts the
following definition.

Definition 1.1. The problem (1.1} is said to preserve orthogonality if
VOTY(0) =1 == Y()TV{t)=1forallt>0.

The following classical result that characterises this property may be found, for example, in {5,
Theorem 11.

Theorem 1.2, The problem (1.1) preserves orthogonality if and only if G(Y'} = FIYY for some
function R — R™UT that maps orthogonal matrices o skew-symmetric matrices; that is,

YV =T = F(Y)' = -F(Y).

Orthogonality-preservation is a qualitative property, and in line with other properties such as sym-
plecticness, periodicity and reversibility (see, for example, [1,3,8]) it is of interest to identify numerical
methods that share this property. This motivates the following definition.

Definition 1.3. Given Y; = ¥(0), suppose that a numerical method for (1.1) computes approximations
Yy, 72 V{t,), where O = {5 < t; < tp < - The method is said to preserve orthogonality if vy, =1
for all n whenever Y{0)'Y(0) = I and the problem preserves orthogonality. In other words, from
Theorem 1.2, the method preserves orthogonality if
VYo =1
GY)=F(Y)Y ; = Y, Yo=1foralln

VY =T = F(Y) = ~F(Y)

2. New methods

In this section we consider one-step discretisation methods for computing approximations Y, =
Y () in (1.1}, For convenience, we assume that a fixed step size f > 0 is used, so that £, = nh.
However, we point out that the property of orthogonality-preservation carries through directly to the
case where focal error control is applied in a variable time-stepping algorithm.
Recall that the implicit midpoint rule (IMR} for (1.1} is
Yop1=Yo + }LG(%(Yn + YnJrl))-
1t can also be written in more traditional Runge—Kutta form as

Ky = G(Y, + 1hKy), (2.1)
Vit = Yo + K. (2.2)

The IMR is a one-stage, second order, implicit Runge-Kutta formula, and it 13 a member of the
Gauss—Legendre class,
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Now, using the splitting G(Y'} = F(Y)Y. we consider the following linearly-implicit variation of
the IMR:

Yogr = Yo + hF(Y;,)%(Yh + Yori), (2.3)
or, mimicking the traditional Runge-Kutta form,

Ky = F(Y)(Ya + §hici), (2.4)

Yo=Y, + K, {2.5)

We see frem (2.3), or from (2.4)—(2.5), that computing Y, from Y, requires the solution of a
linear matrix equation; that is, m linear systems of dimension m, with the same coefficient matrix,
I — ShF(Y,). We are interested in the case where F(Yy) is skew-symmetric and hence has purely
imaginary eigenvalues. In this case [ — %hF(. w) is guaranteed to be nonsingular.

Theorem 2.1. The method (2.3) is of order one and preserves orthogonality.

Proof. Our proof is based on the ideas in [3, Theorem 2]. Assume that the ODE preserves orthog-
onality, and that Y{0)TY(0) = I. Suppose, for induction, that Y1V, = I. Using (2.4)-(2.5), we
have

Y Yo = ViIVa ot RV K + KTY,) + R2ET K,
Therefore, we need to show that

VIR, + KTV, + hKTK, =0, - (2.6)
Let ¥, = Y, + 4AK). Then

YUK =0 K - LhKT K, 2.7

K1Y, = K{¥ - LhKTK, (2.8)
Now Y, is orthogonal and so F(V,,)T = —F(V, ). Hence,

WK+ K = 8 PG00+ 0] F(Y) "0 = 0 (F(Y,) + F(Ya) 1), = 0. (2.9)

Adding (2.7) to (2.8} and using (2.9) gives (2.6) as required.
We see from (2.4) that K| = F(Y,)Y,, + O(h), and hence, in (2.5},
Voot =Yy 4 hG{Y,) + O(R%),

This shows that the method matches the first two terms in the Taylor expansion of ¥'(4,, + ), and
hence is at least first order. It is clear from the numerical tests in the next section that the order is no
higher than one. O

We note that the IMR does not preserve orthogonality in the sense of Definition 1.3. Following the
proof in Theorern 2.1 it can be shown that orthogonality-preservation for the IMR holds if

Fl)t = —F(y), (2.10)

where ¥, = ¥V, + %hK] in (2.1). The condition (2.10) follows if ¥, is orthogonal, which requires

K}TK 1 = 0. However, this condition is not true in general. The numerical tests in the next section
confirm that the IMR does not preserve orthogonality in this generality,
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It is true, however, that the IMR preserves orthogonality when a further restriction is placed on F:
if G{Y') = F(Y}Y where F' maps all matrices into skew-symmetric matrices, then (2.10) holds and
hence Y'Y, == I for all n. In fact, Iserles and Zanna [5] give an elegant proof that this property is
shared by all Runge—Kutta methods satisfying the “AM = 0” condition, which is an algebraic constraint
on the Runge-Kutta coefficients. In particular, all Gauss-Legendre methods have M = 0. (A slightly
weaker version of this result was established by Dieci, Russell and van Vleck [2], and Wright [9]
considered a related property.)

Theorem 2.1 shows that it is possible to construct an orthogonality-preserving method by adapting
the IMR in a way that exploits the natural splitting G(Y) = F(Y)Y arising from Theorem 1.2.
However, this reduces the order of the method from two to one. Second order can be recovered by
“bootsirapping” the argument that is supplied to F in (2.4) as follows (with F,, = F(V,)}

Kijp = Fo(Va+ hE ), (2.11)
Ky =F{Y, + $hK ) (Y + 1RE), (2.12)
Vipar = Yo + hE. (2.13)

Note that (2.11) and (2.12) represent linear matrix equations that must be solved for K| /2 and K,
respectively.

Theorem 2.2. The method (2.11)~(2.13) is of order two and preserves orthogonality.

Proof. The orthogonality-preservation can be established in two stages, both of which foillow directly
from the proof in Theorem 2.1. First, we see that ¥, + —%hK 12 18 orthogonal, since it is simply the
result of applying method (2.4)-(2.5) over a step of length h/2. Then, since (2.12)-(2.13) has the
same structure as (2.43(2.5) it follows that V), + A K is orthogonal.

To find the order of the method, we first expand

Ky = (I = 1aF,) T By Y = FY, + O(h),
and
F(Y, + 30K ) = Fy + FIY) (0K, o) + O(R) = Fy + LhF V) (Fu ) + O(h2).
{Here F'[Y,,](X) denotes the Frechet derivative of F at the point ¥}, operating on X.) Hence,
Ky = (I 5hF, + O(R3)) T By + LhF[Y,](F,Y,) + O(h) Yy,
= I+ ihF, + O(RY)) (Fy + LRF Y (Fu V) + O(RP)) Yn
= Iy + Sh(F2 + PV {F Y)Y + O(R).
Finally, in (2.13),
Yo = (I + BBy + LRH(E2 4 FY,J(F Y)Y + O(RY).
This agrees with the Taylor expansion of Y {,, + k) vp to O(h?), as required. It is clear from the

numerical fests in the next section that the order is no higher than two. O

We emphasise that the new methods (2.4)~(2.5) and (2.11)-{2.13) are linearly-implicit in the sense
that they only require either one or two linear matrix equations to be solved per step, respectively.
The IMR, by contrast, requires a {generally) nonlinear system to be solved on each step.
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The idea of adapting the Gauss—Legendre methods to exploit the splitting in Theorem 1.2 could be
pursved to higher order. Given coefficients {ay;}; ., and {b;}{.; we could consider the Runge-Kutta
based scheme

G=Yo+ by aykK;, - (2.14)
K = F(Up)¥, (2.15)
Y1 = Yo+ h) biK:. (2.16)

=1

Here U; is some approximation to Y (¢, + ¢ihy ), where ¢; = 5" | ay;. If the Uy are orthogonal then it
follows from the proof of [5, Theorem 2] that this scheme preserves orthogonality when the Gauss—
Legendre coefficients are used. However, aside from the difficulty of achieving high order with this
approach, it should be noted that computing {¥;};_, involves the solution of v coupled linear matrix
equations-—this can be written as m linear systems of dimension muy that share the same coefficient
matrix. In this case, a careful study would be needed to establish whether these customized methods
are competitive with the more straightforward projection approach where discrete approximations from
a standard time-stepping method are perturbed io nearby orthogonal matrices [2,41.

We also point ouf that (2.14)-(2.16) can be identified with a single iteration of the scheme proposed
in [2, Theorem 4.1}. However, we emphasise that iterating to convergence, so that the Gauss-Legendre
method is implemented, does not lead to orthogonality-preservation in the full generality of Defini-
tion 1.3.

3. Numerical tests

To illustrate the properties of the methods discussed in the last section, we present some numerical
results. Two problems of the form (1.1) with G{Y") = F{Y}¥ and m = 4 were solved, using

Problem 1: F(Y) = (Y exp(Y) — (Vexp(Y))")/2,
Problem 2: F(Y) = (Yexp(Y) — (Vexp(Y))T} /24 (¥YTY — I)/IO

Note that for Problem 1| we have F{Y}T = —F(Y) for all Y, and hence the IMR preserves
orthogonality. This is not the case for Problem 2, although Y'Y = [ = F(Y)T = —F(Y), as

required in Theorem 1.2.
In implementing the IMR, we solved the nonlinear system at each step with the fixed point iteration

Y v, R YY), v=0120

We used an Euler predictor, so Yn{ 4}-1 =Y, + hG(Y,), and the terminating criterion was
fu+1] = -12
HYnU—H Y;y—)l-li’ <107
(Here || - ll2 denotes the Euclidean norm.)
The problems were solved over 0 < ¢ < 20, using an arbitrary orthogonal Y (0). (More precisely,
we took Y (0) to be the matrix Q from [Q,R] = gr{magic(4)) in Matlab [6].) Each method was
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Fig. 1. Errors against step size on Problems 1 and 2. See text for details,
implemented with a fixed step size of 1/2, 1/4, ..., 1/256. Letting Y}t denote the approximation
Vi a2 Y (20) with a step size of h, the quantities
h. 7 hf2
ge' = “YI\} - Yy Hz’

which estimate the global error in Y[, were recorded for each method. Fig. 1 records these values
for Problems 1 (upper picture) and 2 (lower picture). The * symbol denotes the first order method
(2.4)—(2.5), the + symbol denotes the second order method (2.1 13(2.13) and the o symbo} dendtes
the IMR. In each case the slope of the line is consistent with the order of the method.

We also monitored the departure from orthogonality; that 1s,

’yh‘ = min{ El»: E ¢ R™™, (Y;{j’ 4 E)T(Y](} 4+ E) = ]},

which can be computed via a polar decomposition of Y% [4]. For the new methods on both problems,

and for the IMR on Problem 1, 'yh was consistent with roundoff error, as expected. For the IMR on
Problem 2, where orthogonality-preservation cannot be guaranteed, a plot of ~" was almost indis-
tinguishable from a plot of ge” Note that, since the true solution is orthogonal, the departure from
orthogonality is trivially bounded by the global error. For the IMR on Problem 2 the trivial bound is
sharp, which emphasises the lack of orthogonality in the numerical solution.
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