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Dynamics of constant and variable stepsize methods for a
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Abstract

Hutchinson’s equation is a reaction-diffusion model where the guadratic reaction term involves a delay. [i
is a natural extension of the logistic equaton (no diffasion. no delay) and Fisher’s equation {no delay), both
of which have been used to ilustrale the potentiai for spuricus long-term dynamics in numerical methods. For
the case where initial conditions and periodic boundary conditions are supplied, we look at the use of ceniral
differences in space and either Euler’s method o1 the Improved Euler method in time. Gur aim is to investigate
the impact of the delay on the long-term behaviour of the scheme. After studying the fixed points of the methods
in constani slepsize mode, we consider an adaptive Gme-siepping approach, using a standard local error conirol
strategy. Applying ideas of Hall (1985) we are able to explain the fine detail of the time-step selection process.
@ 1997 Published by Elsevier Science B.V.

1. Introduction

Long-term numerical simulations are often performed on nonlinear evolutionary problems, cven
when there is little theoretical justification of the “correctness” of the answers. To redress the balance,
numerical analysts are currently building up a theory of "numerical dynamics” by studying classes of
noalinear problems and/or certain types of long-term behaviour [14]. The simplest object to study is
the fixed point, or constant sieady-state. In the case of constant stepsize implementations of ordinary
differential equation methods, fundamental resalis about fixed points were obtained by Iserfes [10] and
Humphries [9]. An important too] for analyzing variable stepsize methods was developed by Hall [4]

Other authors have gone on to investigate the issue of fixed points under discretization for various
types of evolutionary problem; see, for example, [1,3,7,11]. In this work we investigate methods for
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a model arising in popuiation dynamics. The model can be regarded as a generalization of a number
of test-problems that have been used in the study of numerical dynamics. The material presented here
is unusual in that it looks at both fixed and variable stepsize algorithms for a problem that has a
diffusion term and a delaved reaction term. Our interests lie (a) in the impact of the delay term on the
behaviour of the algorithm, and (b} in the effect of the error control process. Further resuits, including
an analysis of spurious solutions, appear in [13]. Reference [13] also contains technical details and
tllustrative figures that have been omitted from this paper in the intercst of brevity.

This work forms a natural extension to the earlier paper {8]. In [8], the same equation, subject
to homogencous Dirichlet boundary conditions, was studied., and a constant stepsize discretization
was used. Emphasis was placed on the existence and stabifity of spurious solutions for stepsizes
inside or outside the interval of linearized stability. In this work, we look at the case of periodic
boundary conditions, and concentrate on the stability of the true fixed pomt. We study two simple
time-stepping methods—first we look at the individual formulas in constant stepsize mode, and then
we study adaptive, variable stepsize methods based on local error control. We use the ideas of Hall
[4] to investigate the long-term dynamics of the adaptive method. {This approach was used in [5.6]
for scalar delay differential equations.)

The material is organized as follows. In Section 2 we introduce the differential equation and the
discretizations. We also look at the stability of the true fixed points of the semi-discrete system.
Sections 3 and 4 are concerned with fixed point stability when Euler’s method and the Improved
Euler method are used to advance the solution in time, respectively. In Section 5 we turn our attention
to adaptive algorithms in which the two time-stepping formulas are combined to give a local error
estimate. We identify equilibrium states that are seen to be relevant to the behaviour of the adaptive
algorithms in practice. The theoretical analysis, and the numerical tests, suggest that the error-controlled
algorithm chooses stepsizes that correspond to the largest stepsize that would be acceptable in constant-
stepsize mode. The relevant equilibrium state can be computed exactly if it is stable with respect to
small perturbations. We show by example that stability in this sense is a function of the problem
parameters as well as the nemerical method.

2. Discrefizations of Huichinson’s equation

Consider Hutchinson’s equation

3 GR
au(:f:,t) = E@u(fl‘:, O 4 ulx,t) [I —ulx, b — 'r)} , >0, 0K,

wlx, t) = Flx, ), te[-70],

2.1y

subject 1o periodic boundary conditions, where £ > 0 is the diffusion coefficient, 7 > 0 is the amount
of delay and the “initial value function” ¥{x,{) is continuous,

The scalar partial delay differential equation (2.1) is initially transformed into a system of ordinary
delay differential equations by discretizing the space variable x into (N - 1) discrete values (N = 1),
with a constant stepsize in space, Az = 1/N, so that x; = jAz, §=0,1,... N,

Let @,(t) = ¥(x;,¢) and U,(¢) denote the approximation to w(x,,t). Using the standard central
difference operator to approximate the Laplacian we obtain the system
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d £
LT (Y == MUt T(t e — Ut — 7)1, ¢ :
- U() Aa)? Ut)+ U)o e~ Ult—7)], t>0 2.2)
Uty = &1, te [—r,0,
where Ut —7), U(#), B(t) € BV, e =11, 1,...,1]T € RY and the matrix A € RV is of the form
0], it N =1,
-2 2 o
N =2,
2 2
2 1]
M=
P =2
itN 23
1
1 1 -2

The symbol “o” denotes componentwise multiplication, so that (U7 o W), = U, W,.
2.1. Constant solutions of partially discretized system and linear stability

The system (2.2) has two constant solutions that are period one in space; that is, of the form
U(t) =U”e € RY. These are U () = 0 and U{2) = ¢. After linearization, the zero fixed point can be
shown to be unstable for all 7 > 0. For the nonzero fixed point, extensive manipulation leads to the
linear stability condition 0 < 7 < 7/2.

2.2. Full discretizations of Hutchinson's equation

Constider the partially discretized system (2.2). Let
FUMUE—7)) = (eNMU@) + Ut o le— Ut —1)] € RV,

To solve the system U'(t) = f(t,U(t),U(t — 7)), either Buler’s method or the Improved Euler
method is applied to advance the solution in time and a linear Lagrange interpolant, ¢(¢ — 7, is used
to approximate the delayed values, Ut — 7).

Setting t,, = nAi, where Af is a positive constant stepsize in time, let U™ denote the approximation
to U{t,). If 1, —7 < 0 then we can take ¢(¢, —7) = $(f, — 7). Otherwise, Iet m be the smallest integer
snch that mAt = 7, so that £, — 7 lies in the interval [ty_pm, trome1), that is, (m — 1AL < 7 < mAL.
Let oAt = (mAt — 1), so that

T
cgEm— . o€ [0, 1)
The linear Lagrange interpolant based on the values U™~ %1 and U™ is then given by g(t, —7) =
o=t (1 oYU Therefore, ky = f(t,, U™, g{t, — 7)) results in
1

k‘] — K}Z [Br _ f}(]n - U'n, a {CTDW‘_"'7”+1 + (i _ (T)Uﬂ_m}
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when £, — 7 > 0, where B, := [(Al + 1}/ + M} € RV*N and 7 1= eAt/(Ax)? = eNAt.

If t, + A — 7 < 0 then we can take g(4, + At — 7) = @(t, + Al — 7). Otherwise ¢, + Al — 7 lies
in the interval [t, a1, by—maa) since (b, — 7) € [bn—m, fn—m1). The linear Lagrange interpolant
based on the values U™~™%2 and U™+ is given by

(](tn + AL — T) _ O_Lm,—m—',-z - (] _ O_)Un—-rr7,+].
Therefore,
kg = f (tn + AL U™ 4+ Atk qlt, + AL — T))

results in

k= A—é[B, - IBU" — B, — 1] (U” o [JU” el (] — L“““mj)
— EEB?'UHE a ggfjn---m-g-Z + {1 - O_)Uﬁ,—m—%—f]
T AU o [O“[J'Hfﬂ’ﬂ‘” 1 + (f o d)'Unw—m”‘ o ;"Jﬁ'?w-mvl--2 + (1 o O‘)U'nwm%q
when 4, + At — 7 > 0. Note that the quantity [jn—ml appears in the expression for k;. This is
done because when m = 1 the linear interpolant involves the unknown value V%1, In this case,
to keep the algorithm simple, we use the approximation U™ =~ U 4 Atk,. Hence, we define

Let
- - -
I ]n—l
oyt = e R.f\’{wwrl)‘
prn—m +1
pjrm

It follows that, using hinear Lagrange interpolation to approximate the delayed values:
(E) Euler's method U™ = U™ 4 Atk appiigd to (2.2) on a general step with n > 7 /At gives the

nonlinear recurrence U™ = g(v®) € RY, where

g(u) = BUY = UM o [(-mAz‘; — )T (AL - - A!,)L‘T‘”'”m].

(IE) The Improved Euler method U = U™ + %At(k; + ky} applied to {2.2) on a general step
with n > 7/AL, gives the nonlinear recurrence U™ = glv™) € RN, where

g(u™) = %U "4 %BEU”‘ - %BT (U’”’ o [(mAt — ) U (mAE — 1 — AT ”_T”‘D

— % iB?.U”j o [(mAt — T)f} L (AR — T — AT """%”W

+1U"o [(mAt — 7)U et (AR — - AU '

o [(mAt — YU (AL — 7 — AR 1,
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3. Euler’s method: constant stepsize

It is easily seen that Euler’s method combined with linear Lagrange interpolation is regular, that
is, it does net admit spurious constant sclutions. The period 1 in space and time fixed points of the
iteration are therefore " = 0 and U™ = e. It is simple to show that the rest state /" = 0 € RV (for
all m) is lincarly unstable for all 7., At > 0.

For m = 1, the linear stability region for the fixed point U7 z= e € R
form O <7 < 1 and 7 < At < 2{] + 7} — 47, where

. {-r[i —sin?(x/2NY], if N is odd,

N can be shown to have the

e . 3.1
7, if N is even. -1
Note that the linear stability regions corresponding to the cases odd N > 1 and even N become
identical as N — oo. For even N, in the limit as 7 — 0 for m = 1, the lnear stability interval of
U™ = e tends to 0 < At < 2 — 4r (which requires 0 < r < 1/2). This agrees with the stability of the
nonzero solution for the zero delay case, as established for even N in {2}, For odd NV, in the limit as

7 — {} for m = 1, the lincar stability interval of U™ = ¢ tends to

0<Af<2—dp|l—sin® | == ). 3.2
() o
It can be shown that (3.2} is the linear stability of U™ = ¢, corresponding to the zero delay case, for
odd N.
For m > 1, analysis shows that the nonzero fixed peint is stable whenever the polynomial
N T ¢ -
TE— #(A) is Schur, where

J

P = AL (l — 4 sin? (%)) + AMmAL — 1) — (mAt — 7 — At).

Note that the factor p{}{A) in the characteristic polynomiai is independent of ~ and N. Further, when
r =0, P (A} = pR(A) forall 7 = 1,2,..., N — 1. Tt follows that the region in the (Af,7)-plane
defined by {(At,r): pii(A) is Schur} represents:

e linear stability of U™ = e £ RN in the scalar case N = 1,

e linear stability of U” = ¢ & RY for all N when » = 0.

Also note that for a fixed positive v, the linear stability region of the nonzero constant solution
U™ = ¢ ¢ BY must be a subset of the linear stability region for N = 1 (because the product
H;‘I_, pP{A) can never be Schur for any (At, 7)-value for which the factor pF(A) is not Schur).

The linear stability region of /" = ¢ for large m can be determined numerically. Stability regicns
are shown in Figs. 1 (using “#”) and 2 (using ") for various values of 7 < 1 and 7 > 1. Note that,
as predicted in the theoretical analysis of case m = 1, when 7 < 1 the fixed point is linearly stable in
a part of the region where At > 7 but as soon as 1 < 7 {< w/2) it becomes unstable for any At = 7.
This abrupt change in the stability of the fixed point as the delay passes over one can be seen when
the delay from v = 0.99 in the last diagram of Fig. 1 is slightly increased to 7 = 1.01 in the first
diagram of Fig. 2. Also note that in Fig. 1. a small increase in 7 improves stability in the sense that
U™ = e is stable for a farger set of values (At, 7).

Based on experience with simple non-delayed parabolic partial differential equations, it is reasonable
to refine the space-time discretization while keeping At/(Ax)? fixed [12]. To analyze the stability
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Zuler's method: Stabiiity region of Un =g

tau=0 tau=0.2

tau=(.4 ta=0.6

Fig. 1. Stability region of U™ = ¢ € RN, for various values of 7 < 1, in the (Ai,?’}p]ane.
Euter's method: Stabifity region of Un =g
1 1 J
0.8 taus=1.01 L] tau=1.15 i

0.8 tau=1.3 fau=1.45

0.5 i 1.5 .5 1 1.5
dt at

Fig. 2. Stability region of U™ = e € B”, for various values of 7 > 1, in the (Af, 7)-plane,

properties when Af, Az tend to zero with A¢/{Az)? (= r/z) constant, consider the characieristic
equation Hj-\’:, p7(A) = 0, with the polynomial p"{}) re-written in the form

PR(A) = A™ P - (; _ 4r sin? (ff)ﬂ T @—1_—;3 (6A—o+1).

If At and Az decrease to zero (so that m and N are large) and such that /= remains constant. then
T{gA—ag+1)/{m—o) is negligible, so the roots of the polynomial pi*(A) = O with j & 2, N1,
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will be close to O and 1 — 4rsin*(z;7) with z; € (0, 1). The nonzero root close to | — 4r sin*(w;7) is
less than one in modulus when 0 < » < 1/{2sin*{z;7)). These roots are all less than one in modulus
when

. 1 1
Ocre<-4 mn [~ ],
' 2{ B (Sinz(:r;jfr)) }

which reduces to 0 < 7 < 1/2.

The above analysis cannot be applied to the polynomial pij(A) = 0, which is independent of » and
Az, since sin®(jw/N) is zero when § = N, If At is small (so that m is large) then the roots of the
polynomial p(A\) = 0 will be close to zero and one. To proceed with the analysis, assume that the
root close to one has the expansion

A= 14 7y/m+O(1/m?)

for some complex constant . Substituting this expansion into p’ (A} = 0 and noting that 1 /(m —o) =
1/m + O(1/m?) leads to

T i ]
I+ TY=—T+0{ — 1.
T 1,

Letting m — oo and multiplying by e™77 results in the relation 7y + 7e™77 = 0, so the polynomial
pRe(A) is Schur for sufficiently large rn {that is v has negative real parts) when 0 < 7 < w/2.

Thus, if the expansion above is valid, the nonzero fixed point U" = e € RN is linearly stable—that
is, the characteristic polynomial H}Zl p;-”()\) is Schur—for sufficiently large m and N (so that At and
Az are small) and such that At/(Az)?(= r/c) remains constant when 0 < 7 < /2 and 0 < 7 < 1/2.
Numerical tests were in agreement with this analysis.

-

4. The Improved Euler method: constant stepsize
The Improved Euler method inherits the fixed points U™ = 0 ¢ RY and U = ¢ € RY.
T8, AL > 0.

Results of a lengthy linear stability analysis of U™ = ¢ ¢ RY when m = | are given in Table I.
When m > 2, linear stability of e is determined by the roots of the polynomial H;V_1 pi(A), where

Tuble 1

Linear stability of I/ = ¢ € BV for the Improved Buler method when m = 1
N Delay  Stepsizes for which U = e ¢ RY is linearly stable when m = 1
N=1 T2 TEACTrH2

N=1 7322 %

—Dr+2) <M < LB+ 2 - (T =27+ 6))

Af <742 dr

Lo r+ 2 <M< 1042 ST Z 3 1 6)) — 4r
odd N 7<2 7K AE<T 42— dr[l = sin ({n/N)]

odd N 722 4

-

even N r <2 T

AN

even N T =2

—D(r+2) <At < i34+ 2= /(7= 2){7+6)) — [l —sin’{37/N}]

|

A
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lmproved Euler:  {(N=2) r=dUf0, lau=2

PR s -
E] - e,
g 1 M"M ______ o R . et
% S -
G
B Q.G oo e
@

08k e e i

; . L :
o] 35 1 1.8 2 2.5 3
stepsiza
3

ind
M

last 50 Uni1}
o

o :
n =

(=}

=)
o
[

stepsize

Tig. 3. Behaviour of the fmproved Buler method when 7 = 2 and ¥ = At/10.

. . 1 - "’l z 5 1 o
P = amt 5 (3 + {1 — 4y sin” (T)} ))\m + E(mﬂ.t — T\
+5 At 4r{mAt — 1) sin N E/\ - z(wmt —7 = AL} —drsint | ]

Note that only the stepsizes Al € [7/m,7/(m — 1)) are relevant for each m = 2.

We computed stability regions, for various fixed values of 7 and found that, with O < » < 7/2:

o U™ = ¢ € RY is linearly stable for all positive stepsizes At < 7 (that is, all m > 1) when
0 <7< 1/2 (cf. the smaller region (0 < 7 < % - L(Af — 1) for At = 7).

e A small positive delay improves the stability of U = e € RY in the sense that it remains stable
for larger stepsizes, namely 2{1 — 27) < Af < 7 4 2(1 — 27) and 0 <7 < 1/2.

e There is a critical value of 7 = 7/2 beyond which the fixed point becomes unstable for small
stepsizes but continues to be stable for larger stepsizes. This behaviour with the Improved Euler
method is distinct from that for Ealer’s method which ceased to be stable for all stepsizes with
a delay larger than 7/2. Recall that, for the continuous partially discretized system (2.2), the
constant solution U(1) = e € R is lincarly stable only when 0 < 7 < /2.

The technique for analyzing the stability as At — 0 and Az — 0 with A?/(Az)? fixed that was
developed for Euler’s method can be applied to the Improved Euler method, leading to the same
conclusion.

A numerical example to illustrate the stability of the fixed point U™ = ¢ € RV is presented in
Fig. 3. Here 7 = 2 and ¥ = AL/10 for stepsizes in the range 0 < At < 3. Note that ¢ remains
constant for all stepsizes and. in particular, N = 2 gives ¢ = 0.025. The top diagram shows the
largest root (in modulus) of the characteristic polynomial at the solution I/™ = e. 'The bottom diagram

shows the Tast 50 values { U/} ?fﬂm resulting after executing 500 time steps using initial values of the
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form @{¢) = 0.9, 1.1]7. It can be seen that the iterates converge to the nonzero fixed point when the
poelynomial is Schur.

5. Pynamics of variable stensize algorithmsg

We now investigate the behaviour of a variable stepsize algorithm, based on local error control, We
consider Euler’s method and the Improved Euler method, regarded as a Runge—Kutta pair. This allows
us to compare the variable stepsize results with the constant stepsize results derived in the previous
sections.

To analyze the adaptive algorithm our approach is to assume that the error control process advances
the numerical solution to the vicinity of the true fixed point U{t) = ¢ ¢ RY,

We then examine the behaviour of the algorithm around this solution. Linearizing the partially
discretized Hutchinson’s equation about the fixed point, by substituting U/ (#) = ¢+ &(t) ¢ BY in (2.2)
and ignoring second and higher order terms, leads fo the system

d. ‘ . .
Eé(t) = (eNZYME(E) — 801 — 1), >0,
6(t) = w(d), te -0,
where ¥{{) 1= [@{t) — ¢] € RY. Using the linear Lagrange interpolant g{t — ) lo approximate the
delayed values §(2 — ), let F{£,6(6), q(t — 7)) 1= (eNYME() — gt — 1) € BV,

We outline the linear Lagrange interpolation procedure when the stepsize is no longer constant. If
{(tn—7) < 0 then we can take g{¢,, —7) = ¢{f,, — 7). Otherwise, suppose that #,, — 7 lies in the interva)
toms tnmy1 ). That is, m is the smallest integer such that Af,, ., -+ Ay + -+ AL 27,
where Af; denotes the (non-constant} stepsize taken from #; to £, Let

1 T .
0, = S Atp— 7| €[0,1)
Atn R

so that the remainder Af,, ., + Aty iy + - + Al — 7 s denoted by 6,At, .

Both Evler’s method and the Improved Euler method require the approximation 8(¢, —7) = ¢{t, ~7),
where (i, — 7) & [ty Tn—ynr1). The linear interpolation over the interval [t, ., fn_mer) gives
Q'(tn _ ’I") _ B-n (S'n‘w'mmimi o+ (} o 671) gsn—rn

Further, the Improved Euler method also requires the approximation 64, +Al, —7) & g({y + Aty —7).
If (¢, + Af, —7) < 0 then we can take g{t, + Aly, — 7} = ¥(t, + Af, — 7). Otherwise, suppose
that ¢, + Af, — 7 lies in the interval [tn—s. Tnmier ). That is, [ is the smallest integer such that
Alpenat = By gy + -+ Ay 2 7. Let

| i
= . At — T
n 1—%
Atnfwwrl ;

ey

€ 0,1}

so that the remainder Af,_,, . + Ay opogey + -+ + Afy, — 7 is denoted by é\nétn_mw% The for-

[tnfmﬁlz tﬂ.=m+i;+l }» is giVCﬂ by

Q(in -+ Atn, - ”") - a“ﬂ;s‘\n—-mH-i-I -+ (i - an-)(snmmw:ml:
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where (10 keep the variable stepsize algorithm simple)
gn,.m,i,g,|,1 - 0" + Af}ﬂ-f@?‘m o™, q(t?? - Tj) for m =1,
gt for m # i.

The current nth step of the variable stepsize algorithm beging by computing

ky = f (tﬂ.! 8", (J(t’fh - Tﬂ"
b = f (f»-n, + Ay, 8" + Al ky, g(t” + Aty — T))’
C-Stn—{v] - %A[’ﬁ(kz - A:})

gTOL \'/*
Dlpegy = [ o Aty
HcStn 41 ||

where TOL is a parameter supplied by the user and the fixed safety factor # € (0, 1) is used to reduce
the likelihood of step rejections.
If [[esty41 || < TOL, then the step i accepted and the current values are updated to

gt O b Al for Euler’s method, or
T AT+ %Atﬂ(,’f { + ko) for the Improved Euler method,

bye1 =t + Ay,
Atn,—l—i = Atpew.

Otherwise, ||esty, 1] > TOL, so the step is rejected. In this case, we set At,, = Af,w and repeat the
process until ||est, || € TOL. Note that, either the Improved Euler method or Euler’s method can be
used to advance the solution in time. The behaviour of the Improved Euler method or Euler’s method
can therefore be analyzed in a variable stepsize context, enabling comparisons to be made with the
corresponding constant stepsize method.

Let w;(M) € RN, with j € [1,2,...,N], be an eigenvector cosresponding io the eigenvalue
A (M) = —4sin®(jn/N) of the matrix M ¢ RY*. Note that the eigenvalues satisfy Ay _; (M) =
A (M), Also, let 7y, 1= e N?AL,.

5.1. Eulers method: variable stepsize

Consider advancing the solution in time using Euler’s method, so that ML = 67 4 Atk € RY.
Following the analysis in [6] we look for period two equilibrium states, where the stepsize remains
constant while the numerical sofution alternates in sign, of the form

At, =Atp and 6"FF = (—1)fsp e RY,

In such a state, m, = rp = eN*Atp, | = | and #p = 0 = m — 7/Alp, where m is the smallest
integer such that mAty; > 7. Imposing these conditions, we find that such solutions occur with

2 ™ 1477 s 2 j"T
ATEDJ e m i:".’" — (*1) + (*;) 2’]”[)‘). S (T)} N
(!QTOL) w; (M)

5 ) sG]

c BN

b'D.? -+
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A

Euler's method:  N=2, ap=0.01, TOL=0.0001, tn=300

.5 (. K __ ‘“

g 1, T o, :.;

%ur .-’.d%%"‘w o

n TR o
o
L

o5k
o ‘ : . ‘ ‘ ‘
-2 -15 -1 0.5 0 0.5 1 18 2

last SO iterates (of first component)

Fig. 4. Behaviour of the variable stepsize Euler’s method when N = 2 and ¢ = .01

for j = 1,2,...,N. Each jth equilibrium state is only relevant when Aip, > 0 and the relation
(m — I)AtpJ < 7 < mMp, is satisfied, implying that

YK i
0<rp, sin’ (17\7;) < Z{2 +ry ifm =1,

or

1 mo_ WI_W 7t Jm i _vmo T i -
ii(l) 2773} S (=1)7rp; sin (N) <2[( Ly 2(m 1) | ifm #1.

Consider the equilibrium state j = N/2 (if N is even) or j = (N + 1}/2 (if N is odd), with stepsize
written compactly in the form

At, = Atp = — (=1 + (=127, (5.1)

2
2m—1) 7
where 7 is as defined by (3.1) with 7 and r respectively replaced by 7p and rp. Numerical tests
indicated that the stepsize given by (3.1) for the variable stepsize Euler’s method agrees with the
largest stepsize Al for which the fixed point U™ = ¢ ¢ RV is linearly stable for the corresponding
constant stepsize Euler’s method.,

A numerical example showing the long-time behaviour of the variable stepsize Euler’s method
applied to the nonlinear system (2.2) is shown in Fig. 4 when N = 2 and £ = 0.01. It was derived
using 6 = 0.8, TOL = 1.0e~04 and initial values #(¢) = [1 +6TOL, | — 6 TOL|T € R%. The algorithm
is executed up to ¢ = 300. As 7 is varied from 0 to 1.6, the last 50 stepsizes Af,, are plotted in the top
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diagram and the last 50 (U] — 1)/(0 TOL) are plotted in the bottom diagram. Note that in the case
m = 1 the equilibrium state with j = N/2 for the linearized problem is

2(1 + 7}
iy T e 22 2(1 4 p
Aln (1 +4eN?) F2(L ),
, OTOL | |1 1
= A a2 H{—1)70.35(6 TOL)
22 —1

using the [; norm. The long-time numerical solution in Fig. 4 appears to be oscillating around this
equilibrium state for 0 < 7 < 1. This illustrates a fypical example of an unstable equilibrium state. The
fixed point U™ = e € RY becomes linearly unstable for all 7 = 1 (when m = 1} for the corresponding
constant stepsize case and the algorithm therefore chooses more appropriate stepsizes for a delay larger
than one.

5.2, The Improved Euler method: variable stepsize

Consider advancing the solution in time using the Improved Euler method, so that 67" = & +
%Ai.,,,(k; + k) € BN, Following the analysis in [6] we look for period one equilibrium states, where
the stepsize and numerical solution both remain constant from step to step, giving

At = AMp and P =6p e RV,
In such a state, r,, = rp = cN°Atp, I = 1 and #p = gp = m — 7/Atp, where m is such that
{m — DAtp < v < mAtp. The two individual cases = 1 and m # 1| are analyzed separately.
In the case m = 1, there are period one equilibrium states of the form

Atp, = (7 +2)—4rp, sin” ’Z% .
GTOLY  wy{M N
él):i u.}( } 61@;\:
d T4+ 2 ) [w (M)
for 7 = 1,2,....N. This solution is only relevant when Atp, > 0 and Aip, > 7. implying that

) Fr 1
0 <7p. sin” | < -
< TDJ SN (;”V) 5

The smallest Afp, occurs when either j = N/2 (if N is even) or j = (N +1)/2 (if N is odd), say
At,, = Abp = (7 +2) —4¥p. This is only relevant when 0 < ¥p < 1/2. Recall that with a delay in the
range O < 7 < 7/2 the fixed point " = e € BV for the comresponding constant stepsize Improved
Euler method was determined to be linearly stable when 7 < Af < (v + 2) — 47. It follows that in
the case m = 1, Af, = minjgen (At ,r;j) for the variable stepsize Improved Euler method agrees with
the largest stepsize At for which the fixed point U” = ¢ € R” is linearly stable for the corresponding
constant stepsize Improved Euler method.
In the case m # 1, there are period one equilibrium states of the form
1
2eNZsin?{jn /NY’

s 2eN?sin?(jm /NP TOLY  w;{M) Y
"y TN 4eNe sin?(jw/N)Y+ 1 ) JJu; (M}l o

Atp, =
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Improved Euler:

N2, ep=0.5, TOL=0.0001

o I < I ; . x
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Fig. 5. Stability of equilibrinm states for the Improved Euler method.

froproved Euler:  MN=2, ep=0.5, TOL=0.0001, tn=10Q
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Fig, 6, Long-time behaviour of the variable stepsize Tmproved Euler method.

for j =1,2,..., N—1. This solution is only relevant when Afp, > Oand (m~ LJAlp, <7 <

implying that

m— 1

; < TR
2eN2sin?(jr/N) 7

m

2e N2 sin2(jm/ N) '
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mALp,,

mcthod agrees wﬂh lhc ld]‘UCSt constant etcpque for Wthh the Impmved Eulel melhod is stable.
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The stability of the equilibriom state 7 = N/2 when N = 2 and ¢ = 0.5 (using ¢ = 0.8 and
TOL = 1.0e-04) is shown in Figs. 5 and 6 for 0 < v < 1.6. In Fig. 5, Atp, and [16p [|2/(¢# TOL)
are shown respectively by the lines “-—" and “~” on the top diagram. The values of the spectral
ractius of the Jacobian at this equilibrium state are shown in the bottom diagram. These were derived
using Maple. The long-time behaviour of the variable stepsize algorithm applied to the nonlinear
problem (2.2), using initial values of the form $(¢) = [I + #TOL,1 — 0 TOL]" € R?, is shown in
Fig. 6. The algorithm is executed up to ¢ = 100. As 7 is varied from 0 to 1.6, the fast 20 values of
U™ — el|o/{6TOL} are plotted in the top diagram and the last 20 stepsizes Af,, are plotted in the
bottom diagram. It can be seen that the long-time numerical solution is attracted to the equilibrium
state where the spectral radius is less than one and osciliates around this equilibrium state where the
spectral radius is greater than cne.
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