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A b s t r a c t .  

Certain applications produce initial value ODEs whose solutions, regarded as time- 
dependent matrices, preserve orthonormality. Such systems arise in the computation 
of Lyapunov exponents and the construction of smooth singular value decompositions 
of parametrized matrices. For some special problem classes, there exist time-stepping 
methods that  automatically inherit the orthonormality preservation. However, a more 
widely applicable approach is to apply a s tandard integrator and regularly replace the 
approximate solution by an orthonormal matrix. Typically, the approximate solution 
is replaced by the factor Q from its QR decomposition (computed, for example, by the 
modified Gram~ method). However, the optimal replacement-- the  one that  is 
closest in the Frobenius norm-- is  given by the orthonormal polar factor. Quadratically 
convergent iteration schemes can be used to compute this factor. In particular, there 
is a matrix multiplication based iteration that  is ideally suited to modern computer 
architectures. Hence, we argue that  perturbing towards the orthonormal polar factor 
is an attractive choice, and we consider performing a fixed number of iterations. Using 
the optimality property we show that  the perturbations improve the departure from 
orthonormality without significantly degrading the finite-time global error bound for 
the ODE solution. Our analysis allows for adaptive time-stepping, where a local error 
control process is driven by a user-supplied tolerance. Finally, using a recent result 
of Sun, we show how the global error bound carries through to the case where the 
orthonormal QR factor is used instead of the orthonormal polar factor. 
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1 I n t r o d u c t i o n .  

This  work appl ies  some l inear  a lgebra  ideas in an o rd ina ry  differential  equa t ion  
(ODE) context .  We begin  by  summar i s ing  the  a p p r o p r i a t e  l inear  a lgebra ,  and  
then we in t roduce  the  O D E  problem.  
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Suppose that  A E ~:~m• with m > p, has full rank. Then A has a unique 
polar decomposition 

A = UH, U E ~t m• u T u  = I, 

H E F~ pxp symmetric positive definite, and a unique QR decomposition 

A = QR, Q E F~ mxp, QTQ = I, 

R E ~:~pXp upper triangular with positive diagonal. We refer to U as the or- 
thonormal polar factor and to Q as the orthonormal QR factor. 

Now, consider approximating A by an orthonormal matrix, measuring pertur- 
bations in the Frobenius norm, defined by ]]AIIF = trace(ATA) 1/2. We let 7(A) 
denote the corresponding departure from orthonormality, that  is, 

(1.1) 7(A) := min{ JJEJJF : E e ~:[mxp, (A + E)T(A + E) = I }. 

It  is known (see, for example, [11]) that  7(A) = II U - AIIF; in other words, 
the orthonormal polar factor is a best orthonormal approximation. A useful 
order-of-magnitude estimate of 7(A) can be found using the inequalities 

(1.2) JIATA -- IIIF < < I IAT A - IIIF 
[[AI[2 + 1 - - 

from [11]. 
It  is possible to construct the orthonormal polar factor U from a singular 

value decomposition of A, but for the application described here a more efficient 
approach is to use a matrix iteration. If m = p and A is nonsingular, then the 
sequence generated by 

Y0 = A, 

y - T  I//+1 = (Y/+  i ), i = 0 , 1 , 2 . . .  

converges quadratically to U [10]. We refer to this as the Newton iteration, since 
it can be obtained by applying Newton's Method to y T y  __ I. For m > p, if 
A has full rank then the Newton iteration can be applied after an initial QR 
decomposition: with A -- QR, if R has the polar decomposition R = URHR 
then A has the polar decomposition A = (QUR)HR. 

An alternative iteration that  works for any m _> p is the Schulz iteration [13] 

Yo = A, 

Y ~ ( I + 2 ( I - - y i T y i ) )  , i---- 0,1,2 . . . .  Y~+I 

This iteration is locally quadratically convergent, and a sufficient condition for 
convergence is ]]ATA - I]I2 < 1. 

Now, consider the matrix ODE 

(1.3) Z ' ( t )  = F ( t , X ( t ) ) ,  t > O, 
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where the initial value X(0) = X0 E Rm• is given. We introduce the solution 
operator S(t, At, Y) that  advances the flow (1.3) from X(t)  = Y over time At; 
formally, for t > 0, At > 0 and Y E F t  re• we have 

s(t ,  zxt, z )  = x ( t  + At), 

where X is the solution of (1.3) with X(t)  = Y. 
We assume that  XTXo = I, and that  the problem has the property of pre- 

serving orthonormality: 

(1.4) X( t )Tx ( t )  = I for some t > 0 

S(t, At, X(t))T s(t ,  At, X(t)) = I for all At > 0. 

The main application that we have in mind is the computation of Lyapunov ex- 
ponents of a general ODE by a discrete or continuous QR algorithm [3, 2, 4, 14]. 
In this case, the columns of X(t)  represent solutions of the same ODE arising 
from different initial values. However, only the property (1.4) will be needed 
here. For certain problem subclasses that  satisfy (1.4) it is possible to show that  
some discretisation methods share the property of preserving orthonormality. 
However, such methods are expensive to implement, and, furthermore, there 
are known to be problem classes where no standard discretization method can 
preserve orthonormality [4]. An attractive alternative is to use a projected in- 
tegrator. The idea is to apply a conventional discretization method and, after 
each time-step, to replace the approximate solution by a matrix with orthonor- 
mal columns. The standard choice is to replace the matrix by its orthonormal 
QR factor, computed by the modified Gram-Schmidt method. 

2 N e w  m e t h o d  and  error  analys is .  

Since the orthonormal polar factor gives an optimal perturbation in (1.1), it 
is natural to consider using this matrix, rather than the orthonormal QR factor, 
in the projected integrator. More generally, we could perform a fixed number of 
iterations of the Newton or Schulz iteration. In this section, we analyse the effect 
of the projection on the global error and the departure from orthonormality. We 
are concerned with finite-time error bounds, and hence throughout this section 
we assume that the problem (1.3) is to be solved over a finite interval [0, T] with 
a fixed initial condition X0. 

To proceed with the analysis we must introduce some notation and state our 
basic assumptions. We suppose that any conventional one-step ODE method 
with local error control is used; for example, an (explicit or implicit) Runge- 
Kutta pair. We let p[O] (t, At, Y) denote the basic time-stepping operator; that  
is, P[~ At, Y) is the result of applying the one-step method to Y ~ X(t) with 
time-step At. (Note that  in the case of implicit Runge-Kutta methods, it may be 
necessary to restrict At and Y in order for P[~ At, Y) to be uniquely defined. 
It is clear that this could easily be accommodated in the analysis below, so, 
for simplicity, we do not mention this further.) Similarly, we let P[k](t, At, Y) 
denote the result of applying the one-step method followed by k iterations of 
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either the Newton or Schulz iteration. We also let P[~ At, Y) denote the 
result of iterating P[~ At, Y) to convergence with either the Newton or Schulz 
iteration. The discrete sequence that results from the "time-step plus iterate" 
process is denoted {X[~k]}. More precisely, we assume that  the time-step selection 
and local error control procedure is based on the standard one-step method, so 
that a complete step has the following form. Given X[~ k] ~ X(t,~) and Atn, 

�9 Compute P[~ Atn, X[~k]). 

�9 Compute the local error estimate. 

�9 If the local error estimate is too big, reject the step and repeat with a 
smaller time-step. 

�9 Otherwise, compute the time-step Atn+l ready for use on the next step, 

and generate x~[k+] 1 by applying k iterations of the Newton or Schulz iter- 

ation to p[0] (tn, Ate ,  x[k]). 

The local error control and time-step selection is driven by a user-supplied tol- 
erance v > 0, a smaller ~- indicating that greater accuracy is desired. We refer 
to [6, section II.4] for implementation details. 

The local e r ro r  committed by the basic ODE method p[O] over a step from 
Y ~ X ( t )  to P[~ At,  Y )  ~ X ( t  + At) is defined to be 

p[0] (t, At ,  Y )  - S(t,  At,  Y) .  

We follow the approach of [9] by making simple, realistic assumptions about the 
effect of the local error control strategy used by the numerical method. This 
allows us to draw conclusions that are independent of the particular details 
of the method. We point out that [9] analyses errors in the continuous realm, 
whereas in this work we find it more convenient to work directly with the discrete 
approximants. 

In the following, given 6 > 0 we define the tube 

B ~ ( t ) : = { Y : Y = X ( t ) + E ,  HEIIF<_5, 0 < t < T } .  

ASSUMPTION 2.1. There exists T* > 0 such that for any 0 < T < T* a 
f v [ k ] ] N  f a t  1. N - 1  solution sequence l / t n  ~n=O and a time-step sequence t njn=O are computed, 

with x-'N-1 A t  y[k] Atn and N upon z..,~=0 n = T. (Note that the dependence o f - , n  , 
r is suppressed in this notation.) Further, for any 0 < T < T* the following 
conditions hold. First, letting Atmax := max~{At,~}, 

(2.1) Atma• --4 0 as T--+ 0 and NAtm~x < C, 

for some constant C. Second, there exists a constant D such that 

(2.2) T <_ DAtn ,  for all n >>_ O. 
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Third, there exist constants K > 0 and 5* > 0 such that the local error control 
method ensures that 

(2.3) H P [ ~  kl) -- S(tn, At.,X[nkl)llF < KAtnT,  

for all X[~ k] E B~. ( t , ) .  

The conditions (2.1)-(2.3) can be justified for smooth problems by asymp- 
totic (small At) expansions. For (2.3), the method must use error-per-unit-step 
control or extrapolated error-per-step control--see, for example, [9]. 

We also make an assumption about F.  

ASSUMPTION 2.2. The function F in (1.3) is continuous in all variables 
and locally Lipschitz; that is, for any bounded set C there exists a constant L, 
depending upon C, such that 

I IF( t ,X) - -  F( t ,Y)IIF <-- LOIX-- YiiF, for all O < t < T,~ X,  Y E C. 

We define e[n k] := fiX [k] - X(tn)HF and ~/[k] := ~/(x[k]), which represent the 

global error and the departure from orthonormality of the X [k] values, respec- 
tively. The analysis in [9] shows that  the basic ODE method, under Assump- 
tions 2.1-2.2, produces a global error that  can be bounded by a constant multiple 
of T. It follows trivially that the corresponding departure from orthonormality 
satisfies the same bound. Our aim here is to investigate the global error and 
the departure from orthonormality of the partially projected values {X[~ k] }, for 
fixed k > 0. Intuitively, we would expect the Newton or Schulz iterations to 
give an improvement over the departure from orthonormality that  would arise 
with the unprojected method. Perhaps the key difficulty in the analysis is that 
the values {X [k]} are not exactly orthonormal, so the property (1.4) cannot be 
immediately invoked. Our approach is to set up a recurrence for the departures, 
~/[k], in addition to the usual recurrence that  arises for the global error, pin k]. 

We begin by specifying two basic results. 

RESULT 2.1. There exist constants 5*,At* > 0 and K1 > 0 such that for 
0 < At ~ At* and Y C B~.(t) we have 

~/(P[k](t, At,  Y) )  ~ KF/(P[~ At, Y) )  2k, 

IIp[kl(t, At,  Y ) -  P[~](t, At,  Y)llF <_ Kl~/(P[~ At,  Y ) )  2k, 

lip [k](t, At, Y) - p[0] (t, At, Y)]IF --< 2il p[~l(t ,  At, Y) - p[0] (t, At, Y)HF. 

PROOF. The first two inequalities are direct consequences of the quadratic 
convergence of the iteration and the third follows from the triangle inequality. D 

RESULT 2.2. There exist constants 5*,At* > 0 and L > 0 such that 

IIS(t, At, X) - S(t, At, Y)IIF _< (1 + iA t ) l l  X - YIIF, 

for allO < At  <_ At* and X , Y  E B~.(t). 
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PROOF. Choose any 5* > 0. Suppose 0 < t < T and X, Y E B~. (t). Using 
the local Lipschitz property (Assumption 2.2) it follows from a standard stability 
bound [6, Theorem 10.2] that  

IlS(t, At, X) - S(t, At, Y)IIF <_ e x p ( / , A t ) l l X  - YHF, for all X , Y  E B~.(t), 

where L is the appropriate local Lipschitz constant. (Note that  we may  regard 
(1.3) as a vector system, with the columns of X(t)  stacked into a vector in Rmp. 
The result for this vector problem using [[. H2 converts into a result for the matrix 
problem using I1" IIF.) Now by restricting 0 < At < At* with LAt* < .5 we have 
exp(LAt) < 1 + 2LAt. The result follows with L -- 2L. D 

In the following, we suppose that 5* and T* are chosen so that the above 
assumptions and results are valid. (Note that by restricting T* we can ensure 
At~ _< At*.) Also, without comment we use the symbols K2, K3, K4,/(5 to 
denote constants (independent of n and T). 

LEMMA 2.1. If X[~ k] E B~.(tn) for all n >_ 0 and all 0 < T ~_ v*, then 

(2.4) ~(P[~ At , ,  X[~k])) _< K A t , T  + (1 + LAt,~)~/[k], 

and 
(2.5) ~,[k] < K I { K A t n r  + (1 + LAtn)~/[k]} 2k. I n +  i - -  

PROOF. Let X [k]* be a nearest orthonormal matrix to X [kl. Then, from the 
property (1.4) of the ODE, S(tn, Atn, X[~ k]*) is also orthonormal, so that 

~/(P[~ At~,X[k])) <_ IIP[~ k]) - S(tn, Atn, X[k]*)llF 

< IIP[~ k]) - S(tn, At~,X[kJ)llg 

+ IIS(tn, Atn,X[~ k]) - S(t~,Atn,X[kl*)llF. 

Now the first term on the right hand side can be bounded using the error control 
assumption (2.3) and the second term can be bounded using Result 2.2, to give 
(2.4). Finally, using Result 2.1 

~/[k] ~/(p[k](t~,Atn,X[k]) ) < Kl~/(p[O](tn, Atn,X[k]))2k" n + l  : ~  

Inserting (2.4) completes the proof. D 

The next lemma establishes the convergence of ~/[k]. The bound is then refined 
in Lemma 2.3. 

LEMMA 2.2. If X[n k] E B~.(tn) for all n > 0 and all O < T <_ T*, then, by 
further reduction of T* if necessary, we have 

~f[k] < K2T, for all n > O, 0 < T < 7 * .  
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PROOF. By reducing T* in Lemma 2.1, if necessary, we can ensure that  r* < 1. 
Now assume that  ?~k] is sufficiently small for 

(2.6) ?[k] <_ 1 and (1 + LAtn)2k-l(?[nk})2k-1 ~-- K---I"I 

It then follows from (2.5) in Lemma 2.1 that  

(2.7) ?[~k+] 1 < K I { K A t ,  T + (1 + LAt,)?[k]) 2k < K3Atnm + (1 + LAt~)?[~ k]. 

The proof can be completed with an application of the discrete Gronwall 
Lemma; see, for example, [7, pages 18-19]. D 

LEMMA 2.3. Under the assumptions of Lemma 2.2, 

~/[nk] ~_ K4 r2k, for all n >_ O, 0 < r e < T * .  

PROOF. Applying Lemma 2.2 in (2.5) of Lemma 2.1, we have 

~[k] < KI{KAtnT + (1 + LAtn)K2T} 2k < K472k. n + l  - -  

LEMMA 2.4. Under the assumptions of Lemma 2.2, 

NP[k](tn, Atn,X[nk])-- P[O](tn, Atn,x[k])lIF ~ K5AtnT, 

for all n > O, 0 < ~ ' < T * .  

PROOF. Using Result 2.1 

[IP[~](t,~, At,,, X[~ k]) - P[~ ( t . ,  atn, X[nk])lIF 
_ _  211PE J(tn, At. ,  xt l) _ ptol(t., a t . ,  xt2])llF, 

which can be written 

ItPE*](tn, ZXt., X~ ~1) - PE~ at , , ,  Xt~*]) IIF ___ 2?(pI~ a t . ,  X~*])). 

Now, applying (2.4) of Lemma 2.1 and Lemma 2.3, 

,y(P[~ At.,x[~k])) < KAt .T  + ( 1+  LAt.)?[~ k] 
<: KAtnT + (1 + LAth)K4 T2k. 

Now (2.2) completes the proof. 

LEMMA 2.5. Under the assumptions of Lemma 2.2, 

e~]+l < gsAtn~ + (l + LAtn)e[n k], for all n > O, O < T ~ V*. 
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PROOF. From ..[k] ~.+1 := IIp[kl(t., At . ,  X[~ k]) - S(tn, Atn, X(t.))HF we have 

e~]+x < IIP[k](t.,At.,X[~ k]) - p[Ol(tn, At.,X[nkl)llF 

+ IIPI~ z t., x kl) - s ( t . ,  a t . ,  x kJ)ll  
+ I ls( t . ,  A t . ,  x[~ k]) - s(t., at . ,  X(t.))IIF. 

We can bound the first, second and third terms on the right hand side by using 
Lemma 2.4, the error control assumption (2.3) and Result 2.2, respectively, to 
give the required result. [7 

Lemma 2.5 is the key relation that allows us to bound the global error. The 
final result is given the following theorem. 

THEOREM 2.6. There exist constants ~ > 0 and C1,C2 > 0 such that 

e[nk] <_ C1 T 
} forall n > 0 ,  O<T<?. 

-y[fl < C 2 r  zk  - _ 

PROOF. Recall that Lemma 2.5 requires X [k] E 135. (tn) for all n > 0 and all 
0 < T < T*. Assume for the moment that this condition holds. Using "Gronwall" 
analysis, as in the proof of Lemma 2.2, we obtain 

e[n k] ~ C1T. 

Now, by further reduction of T*, if necessary, we can ensure that  X [k] e B~. (t,~) 
for all n > 0 and all 0 < T G T*, as required. We may also invoke Lemma 2.3 to 

obtain the bound for 3 ,[k]. [3 

3 Discussion and further analysis. 

How do the results in Theorem 2.6 compare with those for the unprojected 
method? Under Assumptions 2.1 and 2.2, the discrete Gronwall approach from 
the previous section (or the continuous analogue in [9]) can be used to show that 
the global error for the unprojected method satisfies a bound of the same form: 

(3.1) e[~ ", forall n > 0 ,  0 < T _ < ~ .  

Since X(t , )  is a candidate for the nearest orthonormal matrix, we can deduce 

from (3.1) that 3,[~ ~ < C3T. 
It is natural to ask how the constant C3 in (3.1) compares with that for the 

projected method in Theorem 2.6. To this end, we remark that it is particularly 
simple to analyse the case where the Newton or Schulz iteration is continued to 

convergence (k = oc). Here, since X [~176 is orthonormal, we have 

]]p[oo](tn, At . ,  X~ ~176 - S(t . ,  At . ,  x [~ l )  lie 

< IlP[~176 At . ,  X .  [~176 - P[~ At . ,  X[.~])IIF 

+ IIP[~ At . ,  X [~l) - S(tn, At . ,  X[.~I)IIF 
_< 211P[~ At . ,  X [~1) - S(t. ,  At . ,  X[~I)IIF , 
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using the optimality of the orthonormal polar factor p[oo] (tn, Atn, X [~]). Hence, 
with (2.3) of Assumption 2.1, we have 

(3.2) IIP[O~l(tn,Atn, X[~ ~~ - S( tn,Atn,XD~ < 2KAtnr .  

So the local-error-per-unit-step for the k = oo process satisfies a bound that  is 
twice the bound for the unprojected version. It follows that the global error sat- 

isfies e[~ ~176 < 2C3r, where C3 is the constant in (3.1). Using a similar argument, 
we can show that  for any k > 0 the global error bound has essentially the same 
constant. This follows from 

liP[k] ( tn, Atn,  X[n k]) - S( tn, At,, ,  X~kl)llg 
< II p[k] (tn, At,~, X[~ k]) - p[oo] (tn, Ate,  X[k])[I s 

+llP[~O] (t~, ate,  x[~ k]) - S(tn, Z~t,~, X[<)I IF 
< .~[k] 
- -  / n + l  -}- 2 K A t ,  T. 

Since ^,[k] = O(r2k), this local-error-per-unit-step bound, and hence the result- l n + l  
ing global error bound, is essentially the same for general k > 0 as for the k = oo 
case in (3.2). 

In summary, for any k > 0 the projected method has (a) a global error bound 
that is no more than a factor two bigger than the unprojected method and (b) a 
departure from orthonormality that is O(r2k). It is worth emphasising that we 
have compared global error bounds only, and the analysis was based on a local 
Lipschitz condition (Assumption 2.2). For problems with special structure, it 

may be possible to exploit the smallness of ~[k] to refine the error analysis for 
the projected methods. 

Next we show that it is possible to analyse the projected integrator that uses 
the orthonormal QR factor of p[O] rather than the orthonormal polar factor. 
We make use of the following result of Sun [18, Lemma 2.4]. This lemma com- 
pares the approximating power of the orthonormal QR factor with that of the 
orthonormal polar factor. 

LEMMA 3.1 (SUN, 1995). Let A E ~ m x p  have full rank. Let U and Q 
denote the orthonormal polar and QR factors of A, respectively, as described in 
Section 1. Then if ]IATA - III2 < 1, we have 

(1 + IIAII2) 
II A -  Vile <- v~(1 - IIATA- III2 ) ]IA- UIIF" 

We let X [QR] denote the result of projecting onto the orthonormal QR factor 

(rather than iterating towards the polar factor). Thus, y[Qa] is the orthonormal -CLn-bl 

QR factor of P[~ Atn,X[QR]). We use p[QR] to denote the corresponding 

operator, so that  Y[QR] = p[Qa] (tn, Atn,  X! QR]). " ' n + l  

Now, since X [QR] is orthonormal, the error control assumption (2.3) gives 

"y (P[~ < IIP[~ [qa]) - S(tn, At~,x[qR])IIF 

<_ KAtnT.  
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So, from (1.2), 

P[~ Atn, x[QR]~Tp[OI(tn~ , ~ , Ate, x[QRI~n , = I + O(rAtn).  

Hence, using IIAII~ = IIATAII2, we have 

]lP[O](tn, Atn, X[nQR])II2 ~-- 1 +  O(rAtn). 

Thus, applying Lemma 3.1, 

IIP[~ At,~, X[~ QRI) - P[QR] (tn, Ate, x~QRI)IIF 
2 + O(~-Atn) 

- v ~ ( 1  - o ( ~ t ~ ) )  
• IIPE~ Ate, XCnQR b - pE~ ~t~, x~QRI)H~, 

which gives 

(3.3) IIPE~ Atn, X~ Q~1) - pEQR](t~, Atn, x~QRJ)IIF 

<_ (v~ + o(~At~)) 
• Ilg[~ x[~QR]) - P[~176 (tn, At,,, x[QR]) HF. 

In words, projecting onto the orthonormal QR factor corresponds to a pertur- 
bation that  is no more than a factor v ~  (plus higher order terms) bigger than 
the optimal perturbation given by the orthonormal polar factor. Hence, the 
local-error-per-unit-step can be bounded; using (2.3), (3.3) and the optimality 
of the polar factor we have 

IIPIQRI(t~, Atn, X [QR] ) - S(tn, Atn, x~QRI) II~ 
< IIPIQRI(t., Ate, x~QRI) _ pIOl(t., Ate, xE2RI)II~ 

+ IIP[~ (t,,, Atn, X [OR]) - S(t,~, Atn, x[qRI)IIF 

<_ (V~ + 1 + O('rAtn))KAtnT. 

So we have a bound similar to (3.2) on the local-error-per-unit-step. The con- 
stant 2K arising for the polar factor case (k = oo) is increased to ( v ~ +  1)K (plus 
higher order terms) for the QR case. Thus, there is a corresponding increase to 
(x/2 + 1)C3 in the resulting global error bound. 

We mention that  Dieci et al. [2] and Lord [14] also consider the convergence 
behaviour of the QR-based projection method. Lord establishes convergence 
with fixed time-steps on linear problems, and Dieci et al. [2, Lemma 4.2] show 
that the size of the projection is of the same asymptotic order as the local error. 
However, neither reference determines a constant (such as (x/~ + 1)C3) for the 
leading term in a global error bound. Bunse-Gerstner et al. [1, page 26 and 
Theorem 14] consider projecting onto a nearest orthonormal matrix as part of a 
time-stepping algorithm for computing an analytic singular value decomposition 
of a path of matrices. Using the optimality of the projection, they prove con- 
vergence of a constant time-step, first-order, Euler-based scheme. In the same 
context Mehrmann and Rath [16, page 83] use the QR-based projection. 
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We have based our approach on the idea of projecting towards orthonormality 
at the end of each time-step, and then advancing from this new value. It is 
possible, of course, to perform all time-steps with the standard method, p[0], 
and then to project the values {X[~ ~ towards orthonormality. If the solution 
is required only at certain time values, this approach offers computational ad- 
vantages, since only the relevant X[~ ~ matrices need to be projected. Further, 
if we project to the optimal orthonormal polar factor then, since X(tn) is or- 

thonormal, the perturbations are no bigger than e[n ~ So, from (3.1), we obtain 
the global error bound 2C3T. Similarly, projecting to the orthonormal QR fac- 
tor leads to the global error bound (V~ § 1)C3T. In other words, projecting 
after the integration has been completed leads to the same bounds as projecting 
during the integration. However, it seems intuitively preferable to project dur- 
ing the integration, so that the numerical solution is continually forced towards 
orthonormality. 

With regard to cost, each Schulz iteration requires 2m2p § 2mp 2 flops, using 
the terminology of [5, section 1.2.4], where a flop is any floating point operation. 
However, as mentioned in [13], the iteration is rich in matrix multiplication, mak- 
ing it extremely attractive for modern computer architectures. Hence, for the 
Schulz iteration, the raw flop count may not be an appropriate measure of cost. 
(In fact, an alternative iteration specifically designed for parallel computers is 
derived in [12].) A QR decomposition computed by the modified Gram-Schmidt 
method costs 2mp ~ flops [5, section 5.2.9]. When m -- p, one Newton iteration 
costs 8m3/3 flops. Overall, performing one iteration of Schulz for m < p or 
Newton for m --= p is likely to require roughly the same computational effort as 
the QR decomposition, and gives slightly better  global error bounds. Whether 
the cost of projection forms a significant part of the complete integration process 
is heavily dependent upon the nature of the ODE system. 

We illustrate some of these ideas with numerical tests on Example 5.2 of [2]. 
We implemented the algorithms in Matlab [15] with the underlying time-stepping 
and error control based on the built-in ode45, m function (which uses an explicit 
Runge-Kutta pair of orders four and five). The upper plot in Figure 3.1 shows 

the global error scaled by the tolerance, that is e~]/T, for 

�9 the unprojected scheme, k = 0: thin solid line, 

�9 the scheme with one Newton iteration, k = 1: dashed line, 

�9 the scheme with two Newton iterations, k = 2: dotted line. 

A tolerance of T = 10 -5 was used. In the upper plot, the two projected schemes 
produced visually indistinguishable global errors which are roughly two orders of 
magnitude smaller than those for the unprojected scheme. (The number of time- 
steps was identical for the three schemes.) The improvement in the departure 
from orthogonality caused by projection is clearly visible in the lower plot. In 
the k = 2 case the departure from orthogonality is consistent with rounding 
errors. 
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Figure 3.1: Effect of projection on global error and departure from orthogonality: 
see text for details. 

Similar results arose with the Schulz iteration. We also implemented schemes 
that,  on each time-step, replaced the approximate answer with (a) the orthonor- 
mal polar factor, and (b) the orthonormal QR factor, computed by the modi- 
fied Gram-Schmidt method. We found very little difference between these two 
schemes and the k = 2 Newton or Schulz versions in our tests. 

We also looked at the approach of applying the standard scheme and simply 
projecting to the orthonormal polar factor at the end of the integration. On 
some test problems, this gave an endpoint global error as small as that arising 
from projection at each time-step. However, this was not always the case---for 
example, on Problem 2 from [8, section 3] projection at each time-step gave an 
endpoint global error that was smaller by more than an order of magnitude than 
endpoint projection, with the same number of steps. 

As a final point, we remark that the analysis in section 2 could be applied in 
more general circumstances where the solution operator has an invariant mani- 
fold and there is a convenient way to compute an optimal projection. Shampine 
[17] discusses this issue and develops some theory, although his assumptions are 
very different from those made in this work. 
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