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Abstract

Time-stepping methods that guarantee to avoid spurious fixed points are said to be regular. For fixed stepsize
Runge-Kutta formulas, this concept has been well studied. Here, the theory of regularity is extended to the case
of embedded Runge-Kutta pairs used in variable stepsize mode with local error control. First, the limiting case
of a zero crror tolerance is considered. A recursive regularity test, based on the folding technique of Hairer,
Iserles and Sanz-Serna (1990), is developed. it is then shown how regularity at zero tolerance carries through
to the case of small tolerances. Finally, the property of regularity for all tolerances is characterized. @ 1997
Published by Elsevier Science B.V.
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1. Background

An extreme case of a numerical method breaking down arises when a Runge—Kutta (RK) formula
computes a spurious steady state; that is, a fixed point which is unrelated to the underlying differential
equation. Iserles [6] defined regular RK formulas to be those that guarantee to avoid this difficulty
whenever the vector field is continuous. A recursive test for regularity was given by Hairer et al. [3],
where it was shown, for example, that the only formula that is both explicit and reguolar is (ignoring
redundancies) the forward Fuler method. Humphries [3] gave some fundamental results about the ex-
istence of spurtous solutions for small stepsizes. More recently, Jackiewicz et al. introduced the refated
concept of strong regularity and applied it to RK formulas for both ordinary and delay differential
equations [7,8].

The work mentioned above concerns RK methods in fixed stepsize mode. In practice, most high-
guality RK software uses embedded RK formula pairs with a variable time-stepping strategy based on
local error control. Aves et al. [1] looked at the potential for spurious fixed points in the context of local
error control. They showed that for most of the widely-used explicit RK pairs spurious fixed points
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are admitted, but are generically unstable, with the instability growing like the inverse of the local
error tolerance. However, they also showed that in these cases it is possible to construct differential
equations where stable, spurious fixed points exist for arbitrarily small tolerances.

In this work, we perform a systematic study of regularity for RK pairs. Our approach combines
ideas from [3]. where the concept of a folding was introduced, and {1}, where the importance of the
limiting case of a zero tolerance was identified. Work is currently underway to find characterizations
and order barriers for RK pairs with the propertics analyzed here,

2. Runge-Kutta pairs

Consider the initial value ordinary differential equation system
y' () =fly®),  y0) =y R™ (1)

An s-stage embedded RK pair for solving (1) numerically is determined by the coefficients {a;; };f" =1
and {c;, b;,b;17,, where the weights {b;}7_; belong to the main formula. Given y, ~ y{{,) and a
stepsize hn, > 0, we Compute Ynr1 = yl{tnr1), with {41 = £, + hy,, according to

&= f (yn + Ay z @'ijfj) , (2)

i=1
Yntt = Un + hn 3 biki. (3)

i=]

It is convenient to use

S
zi 1= Yy + by Z ;55
=1

to denote the arguments at which f is evaluated. The secondary formula, whose weights are {Ei}f:]_,
produces

5
Dot =t +hn 3 bk (4)
i=1
In a typical time-stepping algorithm, the difference between the main and secondary solution is used to
approximaie the focal error over the step, and is compared with the user-supplied tolerance parameter 7.
The error criterion 18

(a1 = Yntt]] 700 ([Pt = Yanrl] € 7he, (3)

for error-per-step (EPS) or for error-per-unit-step (EPUS) control, respectively. If the error criterion
is met, then the step is accepted. Otherwise, the step is rejected and re-taken with a smaller stepsize.
After a successful step, the usual formula for the next stepsize is

/g F 1/{g~1}
Ny == For, (+) or Iy = o, (““,:““““LIL) 3 (6)
in+1 = a1l Yt = Yt ]
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for EPS and EPUS control, respectively. Here ¢ is the largest integer such that ||Fns1 — yny1| =
O(h) as b, — 0, and § € (0,1) is a constant safety factor. Typically, other restrictions such as
0.5 € hn/hny <5 are imposed, but these are not relevant for our analysis,

Throughout this work, we assume that the RX coefficients satisfy the standard conditions 3 \7_ a;; =

c;, for i = 1,2,..., s and the consistency conditions Yo b= b = 1. We also assume that

b # b, so that the pair consists of distinct for mulas (although this properiy is not necessarily shared
by a folding of the pair—see Section 3). We let @] denote the ith row of A = (@), and we suppose
that @y — a; # 0 when k # [, so that no stage is redundant.

In the context of fixed stepsizes, the following definition of a spurious fixed point is used.

Definition 2.1. For a single RK formula {4, b, ¢} with a given, fixed stepsize (h, = h > 0), by a
spurious fixed point we mean a point y with f{y) # 0 such that 3, = y is a constant solution of the
map defined by (2) and (3).

For vartable time-stepping algorithms, both i, and h,, may vary with n. To make it clear whether
we are discussing fixed points with respect (0 y,, or to {(hy, ¥,,), we make the foiiowmg definitions.

Definition 2.2. For a RK pair {A, b, b, c} in variable stepsize mode with a given tolerance 7, by a
global spurious fixed point we mean a pair (h,y) with f(y) # G such that y, =y, by, = h > 0 isa
constant solution of the map defined by (2)-(4) and (6). (Note that in this case the error criterion (5)
is automatically satisfied.)

Definition 2.3. For a RK pair {4, b, g;c} in variable stepsize maode with a given tolerance 7, by a
local spurious fixed point we mean a pair (h,y) with f(y) # O such that 1,0 =y = v, b = h > 0
is a solation to (2)-(3) and the error criterion (5) is satisfied.

We emphasize that the definition of a local spurious fixed point refers to behaviour over a single
step, and if a method avoids local spurious fixed points then it will automatically avoid global spurious
fixed points,

3. Regularity at zero tolerance

Our approach in this work is to assume that the error tolerance 7, rather than the stepsize, is
smaH It is clear from (2)—(5) that a global or Iocal spurious fixed point of the algorithm must have
i€ =0and 70, b; i{i = O(r). Hence, for small tolerances, as mentioned in [1], a fixed point
of [he algorithm must be a fixed point of the main formula and within O(7) of being a fixed point
of the secondary formula. In this section, therefore, we concentrate on the limiting case of 7 = 0.
Section 4 shows how these results extend to the case of smail 7. We point out that Lemmas 3.1, 3.2,
3.4 and 3.5 below do not require b and b to be distinct. This allows us to accommodate the folding
process that is introduced later in the section.
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We begin with the following definition.

Definition 3.1. A RK pair {4, b,B, clis regular at 7 = 0, denoted Ry, if for every problem (1) where
f is continuous and every stepsize b > 0 the individual RK formulas {4, b, c} and {A,b,c}, in fixed
stepsize mode, do not simultaneously admit a spurious fixed point.

We emphasize that Ry is a weaker demand than asking for at least one of the individual formulas
to be regular. For example, consider the second and third order explicit pair of Fehlberg [2]

1
44 Lot
T .. 14 4
*i L4
T |5 6 A&
b il
2 2

The individual formulas are not regular. (This follows from [3, Corollary 4], where it is proved that
any explicit RK formula with order greater than one cannot be regular.) However, any fixed point that
is shared by the formulas must satisfy

lg+lg+is=0and 6 +365=0 = &=0.
Also,

mEy+ 10+ 1 =y
So, f(y) = f(z3) = & = 0. Hence, any simultaneous fixed point is not spurious. This shows that the
pair is Rg. By contrast, the well-known fourth and fifth order pairs DOPRI(5,4} of Dormand and Prince
and RKF45 of Fehlberg are not Ry—this follows as a by-product of the analysis in {1, Section 5].

In general, from (2)-(4), the system of equations that must be satisfied by a simultaneous fixed
point is

y+hzaij§j =z, 1<€1<s, {7
i=1

> b6 =0, (8

=1

> big =0 9)

F=1

Note that the values §; must correspond to f{2;) for some continaous function f; hence we cannot
have &, # & when z;, = z;. This motivates the following definition.

Definition 3.2. A solution (k,y, 2z, &) to (7}~(9) is valid if h > 0 and 2 = z; = § = &
We may now state a simple characterization of regularity at 7 = 0.

Lemma 3.1. A RK pair is Rg if and only if for every valid solution to (7)~9) there exists an index v
such that y = z, and £, = 0.
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Proof, The proof is entirely analogous to that of [3, Lemma 1], but is included here for completeness.
“Only if”. First, suppose the pair is Ry. Then, given any valid solution it is possible to construct a
fanction (for example, by componentwise polynomial interpolation) such that f(z) = & Wy = 2z,
but £, # 0 then we have f(y) # 0. Alternatively, if y # z; for all { then we can add the extra
interpolation condition f{y) = 1. Hence, in order for the solution to be non-spurious we must have
iy = z, and £, = 0, for some v.
“If”. This follows immediately, since any fixed point is forced to satisfy f{y) = flz,) =6, =0. O

It is clear from the proof of Lemma 3.1 that in order to investigate whether a pair is Rg, it is
necessary and sufficient to deal with scalar problems (m = 1). So henceforth, for convenience, we
wiil assume that m = 1.

We now make a definition that will play a similar role to that of essentially one step (EOS) in [3].

Definition 3.3. A RK pair is observably regular at 7 = 0, denoted ORg, if there exists an index
1 < p < s such that e, € span{b, b} and a, & span{b,b}. (Here e, denotes the pth column of the
identity matrix.)

There is an immediate result.
Lemma 3.2. A RK pair that is ORg is also Rq.

Proof, Supnose the pair is ORy. Given any fixed nnmf it follows from (8) an

df
agf = (; that is, from (7), y = z,. Hence, from Lemma 3.1, the pair is Rq. D '
Te proceed with the analysis, we will use the following linear algebra result.

Eemma 3.3. For any inreger & > 2, suppose we are given a pair of vectors g, v € R® and a finite set
of nonzero vectors V ={w 2]}N with vl € RS, Then if vl ¢ span{g,r} for all 1 < i < N, there
exists a vector w < R® such thar

wg=u'r =0 and uT’v[i]gﬁO} i€ N

Proof. Suppose that g and » are linearly independent. Then there exists an orthonormal basis {c } G=1
for R* such that span{e'!, ¢®} = span{qg,r}. Each v has an expansion vl = eri ﬁ;fcm, where
185, B, ... BT £0. ﬂ S

Now let  have an expansion of the form u = %, v;clf). Clearly u"q = wTr = 0. The remaining
conditions are ' .

iz

| 4 .
b eeavsl || #£0, 1<i< N
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That is, we are left with the problem of finding a vector in R*~? that is not orthogonal to any of
the vectors [3%, 3, ... 31T in R*~2. A simple inductive argument shows that such a vector ex-
ists.

A similar argament works when ¢ and » are linearly dependent.

Using this lemma, we can prove the following result.

Lemma 3.4. Suppose that s > 1 and the RK pair is not ORq. If the pair is Rg then a,—a; € span{b, E;}
Jor some k # 1.

Proof. Suppose that the pair is Ry and ay — a; ¢ span{b,g} for ail k& # [. We must show that the
pair is ORg.
First, we prove the result when 5 > 2, Let

Vo= lag —atps U e a; ¢ span{b,g}} Ule: e ¢ span{b,g}}.

Then taking g = b and v = b in Lemma 3.3 it follows that there exists a « such that

u'h=0, (10}
uTh =0, (11}
wllay —a) #0, k#1, (12)
wia; # 0, a; ¢ span{b,g}, (13)
ule; £ 0, e; ¢ span{bﬁ E} {14)

Hence, in (7)—(9) we may set y = k= 1 (arbitrarily) and £ = w, thereby defining =.

It follows from (12} that 2, # z; when & # [. Hence the solution is valid. Lemma B.E then shows
that there exists an index v such that y = 2z, and §, = G that is, uTaV 0 and u'e, = 0. So,
from (13) and (14) we must have a, £ span{b, b} and e, € span{b, b} showing that the pair
is ORg.

When ¢ = 2 and & # B the pair is ORg. (This follows because span{bﬁ} — R%.) We also consider
the case where s = 2 and b = b, since this may arise when we construct foldings (see below). In this
case, taking u # O orthogonal to b, we have u'b = wTh = 0 and (ay —ax)Tu # 0. Setting y = h = 1
(arbitrarily) and & = w, thereby defining =, we have a valid solution of (7)-(%) with z1 % Z2. From
Lemma 3.1 we must have y = 2, and £, = 0 for some index v, This means that uwla, =0=u'e,
or, equivalently, a, € span{b, b} and e, € span{b, b} showing that the pair is ORg. [

We remark that this result is analogous to [3, Theorem 3(i}], although the technique of proof is
different. Furthermore, the idea from [3, Theorem 3(ii)] of using foldings tc generate a recursive test
for regularity can be applied, as we now show.

Definition 3.4. Given an s-stage {¢ > 1) RK pair {4, b, B, ¢}, the folding of this pair is the 5 — 1
stage pair { A%, b*, b, ¢} defined by
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E .
[ 53 I 1] T Qs ain A1 s—1

C2 o] + 24 Az o . 02 sy
C* A*
b%T —
e
b oyt s—i1 T lgnls Qo122 ov oo Oge] g
by by b cee e bs_i
by + by b e bey

Lemma 3.5, With s > 1, suppose that ay — a; € span{b, g} for some k 5 1. Reorder the rows of the
RK 1ableay so that k v } and [ — s. The folding of this pair is Rq if and only if the original pair
is R().

Proof. Suppose a; — a; € span{b, 5} for some k # I, and reorder the rows of the RK tableau so that
k— 1 and I+ 5. Let {A*,b*,b", ¢*} denote the folding of this pair and consider the systems

vy agb =z, 1€i<s, (15)

Fe
&

ijgj ={, (16)

g=1

Y bty =0, (17)

jm=1

and

g1

YRy anti=z, 1€iss—1, (18)
Ge=1

s—1

> Bg =0, (19)

j=1

s—1 R

> big =0 (20)

j=1

Since a; — a, € span{b, g}, any valid solution (h, ¥y, z, &) to (15)>(17) must have z; == z, and hence
€ = &,. It follows that (h,y, {z}:7], {£):2]) solves (18)~(20). Conversely, given a valid solution (o
(18)-(20), by taking £, = & and z, = 2; we obiain a valid solution to (15%(17}. This shows that the
original pair is Ry if and only if the folding is Rg. O

From Lemmas 3.2, 3.4 and 3.5 we can construct the following regularity test.
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Recursive test for regularity at 7 =0
Start with the original REK pair.
I. If the current pair is ORg, then stop: the original pair is Ry.
2. If @), — a; € span{ b,g} for some k # [ then reorder the rows of the RK tableau so that & — 1
and ! — s and apply the recursive test to the folding. Otherwise stop: the original pair 1s not Rg.

The test is guaranteed to terminate, since if we repeatedly fold down to the level s = 1, the current
pair is ORg.

4. Begularily for nonzero tolerances

Our pext aim is to move from the limiting case of zero tolerance to the practically-interesting small
tolerance regime. Roughly, the Implicit Function Theorem tells us that a spurious solution at 7 = 0
can be extended to a spurious solution for small 7. However, care must be taken in deriving resulis
of this type since the validity condition z; = 2 = £, = & must not be violated.

As for the 7 = 0 case discussed in the previous section, the regularity issue is completely determined
by behaviour on scalar problems; so we assume m = 1.

We begin with a lemma that gives a canonical form for spurious fixed points,

Lemma 4.1. If a RK pair admits a global spurious fixed point {(h,y.z,&) for some 7 2 0, then for
the same T, h. y it admits a global spurious fixed point {h,y,z,€), where Z), # % for k # I, unless
aj — a; € span{b, b}. The same resull holds for local spurious fixed points.

Preof. First we consider global spurious fixed poinis. We have

y+halé=z, 1<i<s, 2D
bE =0, (22)
BTE = QT, (23)

where o = £6/h for EPS control and « = £6 for EPUS control. Since the solution is spurious, we
have
y# z; foralli, or y=z, & #0. (24)

If 2 = 2 and @i, — a; ¢ span{b,g} for some k # [, then Jv such that bTv = b'w = 0 and
{ay —a;)'v = 1. Perturbing £ to £ = £ + ew, for some £ = 0, produces a solution {h}yﬁ,g) r==
(hoy {z +ehalv}i_|, &+ cv). We can choose ¢ small enough so that z; # z; = 2 # 2; and (24)
remains true for the new solution. Now Zj, — % = eh(ay — a;)Tv = he # 0. Continuing this approach,
if necessary, we can always reduce the solution to the required form.

In the case of a local spurious fixed point (23) changes to El‘g = ar, where @} < 1/h for EPS
controf and (@] < 1 for EPUS control. The same technique of proof can be used. T

We now show how a lack of regularity when 7 = 0 extends to a lack of regularity for small 7.

Theorem 4.1. If a RK pair is not Ry then there exisi constants 7%, K, h, y, C' (depending only on
the RK pair) such that given any 0 < 1 < 77 there exists a continuous function [ (depending upon 7}
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with a global Lipschitz constant bounded above by K for which the REK pair admits a global spurious
fixed point (h,y), on the ODE (1) with

|fly)) = C >0

Proof. Suppose the pair is not Ro. Then there exists a spurious solution at 7 = 0, with f(y} = C # 0,
characterized by (h,y, 2, £). Let &nax = max,{|&;|}. By Lemma 4.1 we can assume that z, # 2 for
k£ 1, unless ay, — a; € span{b, 3}

Case I. Suppose all z; are distinct. Now Jv such that bTv = 0 and
’gf = & 4 ew, for some £ > 0, produces a solution

(h,yﬁ,é) = (h,y, {z + Eha;-rv}jil,g + £v).

We may choose 7 = he /6 for EPS control and 7 = = /6 for EPUS control so that, for this 7, the new
solution satisfies the error criterion (5) and gives h,q.y = Ay, in (6).
Now, given a set of real numbers {g;}7 |, define the quantity mindist by

Blo = 1. Perturbing £ to

mindist({q; }7n; ) = Iﬂ? lgi — ;.
Case 1(a). Suppose y 3 z; for all 1 < i < 3. Then
A= mindist({zi}fxl,y) >0,
Choosing ¢ such that jchalv| < 3/4 for all i ensures that
mindist{{Z; }}_;,y} = 8/2.
This guarantees that the new solution is valid. By reducing e, if necessary, we can also ensure thﬂ.t
max; ;| € 28ax. We can take f to be any function satisfying f(Z;) = & for i < i< sand f(y) =C.

Choosing, for simplicity, a piecewise linear interpclant, we find that the Lipschitz constant is bounded
above by the maximum of

E-g &-¢
max Ei—gji and  max |LA 3 ‘.
i % 7 i iE -yl
The maximum of these two quantities is bounded by
K = 2max{4max, C + 26max }/ 5.

where C' = |,
Case 1(b). Suppose y = z,, C' = &, # 0. The proof proceeds in a similar way to that of Case 1(a).

all 4, giving mindist{{Z;}?_,) = £/2 and min;, {Z; — y| = 33/4 and, by further reduction of ¢ if

necessary, so that |§y] z ' and max, \a\ < 28max. The perturbed solution is valid (since the z; are
distinct) and we may set f(y) = £,. Choosing f to be a piecewise linear interpolant gives a Lipschitz
constant bounded above by the maximum of

max ]51 ““" £j| < 4‘Smax - Sfmax

_ ;a - f(y)’ < 4£max - }mégmax
i 5 - %] T B/2 3 iy

d : - = .
TR TR N3pa T3
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Case 2. Suppose z;, = z for some k #£ [, where ay, —a; € span{b,g}. Swap rows of the RK tablean
so that & r— 1 and ! + s and form the folding of this pair. Arguing along the lines of the proof of
Lemma 3.5, we see that (h,y, {2 }5],{&}52]) is a valid spurious solution of the folding at 7 = 0.
We now repeat the current proof for the folding. Note that from Lemma 3.5 the folding is not Rg. If
Case 1 is used we are done, since the same f{y) can be used for the unfolded method. Otherwise fold
again, and so on. Eventually we must exit via Case 1 (otherwise the number of stages would reach
s = I, violating the condition that the pair is not Rg). O

Next, we seek a converse of Theorem 4.1 showing a positive consequence of the Ry property when
T is smail. Note, however, that it is not true that Ry completely eliminates spurious fixed points for
small tolerances. To illustrate this, we construct an example using ideas from [4]. Suppose we solve
the ODE ¢/ = —y with an explicit two-stage paiz, using a second order main formula and a first order
secondary formula. Since 5 = 2 and span{b,g} = [&?, such a pair is ORp and hence Ry. However, it
is easy to verify that global “spurious” fixed points exist, for any given 7, of the form

for EPS:  (h,y) = (2,467/2), so|f(y)| = 67/2,
for EPUS:  (h,y) = (2, £67), so | f(y) = 7.

In this example the spuriosity is innocuous in the sense that f{y) = O(7). We now show that this
effect is generic.
We begin with a result for the case ¢ = 2, and then generalize to an arbitrary R pair.

Lemma 4.2, Suppose the number of stages s = 2. Given 7 > 0 and f:R — R for which the pair
admits a local spurious fixed point (h,y) for the tolerance v, let L be the Lipschitz constant for { in a
region containing y and the stage values z1, z. Then for EPS control and EPUS control, respectively,
we have

)| € Cr(i +RL)/R and |f(y)] < Or(l +hL),
where C' depends only on the RK pair.

Preof. The fixed point satisfies

y+halt =z, i=1.2, (25)
ble =0, (26)
BTe| < ar, Q27)
where «« = 0 /h for EPS control and o = ¢ for EPUS control. Since
bT
B .= e R#*?
b*

is nonsingular, it follows from (26)—(27) that
1€l < [|B1]]_ar.
Hence, using (25),

ly = 21| < hlley €l < Rlar]i || BT or
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S0,
|1| €11y = £E0 -+ 1F(z0) < Lhllag 3B jar + | B7Y o,

giving the required result. [

Theorem 4.2. Suppose a RK pair is Rg. Suppose that (for either EPS or EPUS control) for some
tolerance v and some function f:R — R the pair admits a local spurious fixed point (h,y), which
we assume to be in the canonical form described in Lemma 4.1. Suppose further that

min{ min |z ~ 2z;], min {2; — y|} =48>0
Zifry #FY

and that f has a Lipschitz constant bounded above by L in a region coniaining y and the stage values
{2:}7_,. Then there exist constants K = K{(h, L) and 7 = v*(h, 3) such that

|f(y)| < Kr, whenever 0 < v < 7°.

Proof. We consider the EPUS case. A similar proof works for EPS control. Suppose the pair is Ry
and admits a spurious fixed point of the form stated in the theorem.

Since b and b are linearly independent, there exists a vector v (depending only on the RK pair)
such that bTv = 0 and bTw = 1. Let D = max; ja | and E = ||v]| .

We have

y+halt=1z, 1<i<s,
b'é = 0,
ETE = T,
where |~| < 6.
Case 1(a). Suppose all z; are distinct and y # z; forall 1 <7 < 5. Perturtb £ 10 & = € — 7o, to
give a solution (h,y, Z, &) at zero tolerance, where Z; = z; — hyral v, If
hDi~vT < 3/4, (28)

then the set {{Z;}7_,,y} has distinct elements. This means that we have constructed a valid spurious
solution at zero tolerance, contradicting the Rg assumption. Note that (28} is implied by
g
ahpo T
Hence, Case 1{a) cannot arise for = < 7*.
Case 1(b). Suppose all z; are distinct and y = z, (so f{y} = £,). The same perturbation used above
gives a valid solution at zero tolerance with distinct Z;. Since the pair is R, this solution cannot be
spurious, so we must have y = z,, and é“,, = 0. But, by construction,

*

TS

& - &) < Wlinir < 0BT
Hence, we have {f(y)| < 0ET.
Case 2. Since the solution is in canonical form, in the remaining case there exists a pair of indices
k # [ such that 2z, = z, where ay — a; € span{b, b}. Swap rows of the RK tableau so that k — 1
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and [ — s and form the folding of this pair. Following the arguments in the proof of Lemma 3.5, we
see that a valid fixed point (h,y, z, &) exists for this 7 if and only if the folding has a valid fixed
point (h,y, {% }f;;, {&; },j;;) for this T, Note that from Lemma 3.5 the folding is Rp. We now repeat
the current proof for the folding. If Case 1(b) arises we are done, otherwise fold again, and so on.
Eventually, if Case 1(b) never arises, we reach the level s = 2. If we obtain a folding with s = 2 stages
where b and b are distinct, then an application of Lemma 4.2 gives the result. Otherwise, if b= 3
we have a spurious fixed point of both individual formulas, contradicting the Ry assumption. U

So far we have been concerned with small tolerances. It is reasonable to ask which RK pairs can
guarantee to avoid spurious fixed points for all 7 > 0. Theorem 4.3 below gives a negative answer
to this question—only the trivial case of a regular main formula gives rise to a formula pair that is
guaranteed never to have a spurious fixed point. In this very demanding sense, standard error control
techniques can never regularise a RK formula.

Theorem 4.3. A RK pair never admits a local spurious fixed point for any continuous function [ and
any T > O if and only if the main formula (in fixed stepsize mode) never admits a spurious fixed point
for any continuous f. The same result is true for global spurious fixed points.

Proof. The ‘if’ is trivial. Now suppose that the main formula (in fixed stepsize mode) admits a
spurious fixed point. Then we have (h,y, z,§) such that y + ha;rﬁ — z for 1 <i<sand b€ =0.
IFBTE = § # 0 then take 7 = h|6|/# for EPS control and 7 = |§|/6 for EPUS control to give a global
(and hence local) spurious fixed point. Otherwise, if bT¢ = 0, then the pair is not Ry and we may
apply Theorem 4.1. O
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