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Abstract. Unconstrained optimization problems are closely related to systems of ordinary
differential equations (ODEs) with gradient structure. In this work, we prove results that apply
to both areas. We analyze the convergence properties of a trust region, or Levenberg–Marquardt,
algorithm for optimization. The algorithm may also be regarded as a linearized implicit Euler
method with adaptive timestep for gradient ODEs. From the optimization viewpoint, the algorithm
is driven directly by the Levenberg–Marquardt parameter rather than the trust region radius. This
approach is discussed, for example, in [R. Fletcher, Practical Methods of Optimization, 2nd ed.,
John Wiley, New York, 1987], but no convergence theory is developed. We give a rigorous error
analysis for the algorithm, establishing global convergence and an unusual, extremely rapid, type
of superlinear convergence. The precise form of superlinear convergence is exhibited—the ratio of
successive displacements from the limit point is bounded above and below by geometrically decreasing
sequences. We also show how an inexpensive change to the algorithm leads to quadratic convergence.
From the ODE viewpoint, this work contributes to the theory of gradient stability by presenting an
algorithm that reproduces the correct global dynamics and gives very rapid local convergence to a
stable steady state.
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1. Introduction. This work involves ideas from two areas of numerical analy-
sis: optimization and the numerical solution of ODEs. We begin by pointing out a
connection between the underlying mathematical problems.

Given a smooth function f : R
m 7→ R, an algorithm for unconstrained optimiza-

tion seeks a local minimizer , that is, a point x? such that f(x?) ≤ f(x) for all x in
some neighborhood of x?. The following standard result gives necessary conditions
and sufficient conditions for x? to be a local minimizer. Proofs may be found, for
example, in [5, 6, 7].

Theorem 1.1. The conditions ∇f(x?) = 0 and ∇2f(x?) positive semidefinite
are necessary for x? to be a local minimizer, whilst the conditions ∇f(x?) = 0 and
∇2f(x?) positive definite are sufficient.

On the other hand, given a smooth function F : R
m → R

m and xinit ∈ R
m, we

may consider the ODE system

x′(t) = F(x(t)), t > 0, x(0) = xinit.(1.1)

Now suppose that F in (1.1) has the form F(x) ≡ −∇f(x). In this case the ODE
(1.1) is said to have a gradient structure; see, for example, [21]. By the chain rule,
we have

d

dt
f(x(t)) =

m∑

i=1

∂f

∂xi

dxi

dt
= −

m∑

i=1

(
∂f

∂xi

)2

= −‖∇f(x(t))‖2.(1.2)
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From (1.2) we see that along any solution of the ODE, the quantity f(x(t)) decreases
in Euclidean norm as t increases. Moreover, it strictly decreases unless ∇f(x(t)) = 0.
Hence, solving the ODE up to a large value of t may be regarded as an attempt to
compute a local minimum of f . The conditions given in Theorem 1.1 may now be
interpreted as necessary conditions and sufficient conditions for x? to be a linearly
stable fixed point of the ODE.

Several authors have noted the connection between optimization and gradient
ODEs. Schropp [20] examined fixed timestep Runge–Kutta (RK) methods from a
dynamical systems viewpoint, and found conditions under which the numerical so-
lution of the gradient ODE converges to a stationary point of f . Schropp also gave
numerical evidence to suggest that there are certain problem classes for which the
ODE formulation is preferable to the optimization analogue. The book [12] shows
that many problems expressible in optimization terms can also be written as ODEs,
often with gradient structure. Chu has exploited this idea in order to obtain theoreti-
cal results and numerical methods for particular problems; see [3] for a review. In the
optimization literature, the gradient ODE connection has also been mentioned; see,
for example, the discussion on unconstrained optimization in [19]. Earlier work [1, 2]
looked at the use of ODE methods to solve systems of nonlinear algebraic equations.

Related work by Kelley and Keyes [16] looked at implementations of the linearized
implicit Euler method that are designed to give rapid convergence to steady state for
general ODEs, with an emphasis on the case of semidiscretized partial differential
equations. This approach has been widely used in the computational fluid dynamics
community, and [16] developed a rigorous convergence theory. Since the class of
problems considered in [16] is more general than the class of gradient systems, the
results are necessarily weaker than those obtained here. A more detailed comparison
of the results is given in subsection 4.2.

The algorithm analyzed in this work can be interpreted from the perspectives
of optimization and timestepping. From the optimization viewpoint, the algorithm
uses a trust region approach and is driven by the Levenberg–Marquardt parameter.
This avoids the requirement of satisfying (exactly or approximately) a trust region
radius constraint at each step. The algorithm is essentially that given by Fletcher [6,
pp. 102–103], but to our knowledge, the convergence properties have not been analyzed
before. We establish global convergence and provide sharp upper and lower bounds
on the local convergence rate. An extremely fast type of superlinear convergence is
identified—asymptotically k more bits of accuracy are obtained on the kth step. We
also show that a minor modification leads to quadratic convergence.

From a timestepping viewpoint, this work adds to the literature on long-term
dynamics for gradient systems [13, 15, 20, 22, 23]. The emphasis in this area has
been placed on identifying methods that guarantee convergence to a fixed point (thus
mimicking the global ODE dynamics). The gradient results in [15, 20] apply to fixed
timestep Runge–Kutta methods and require the timestep to be sufficiently small. The
analysis in [23] applies to very special classes of variable timestep methods and requires
the gradient system to satisfy a one-sided Lipschitz condition. These results were
extended to general adaptive Runge–Kutta pairs in [13], but the attractive feature
that the local error tolerance could be chosen independently of the initial data was lost.
None of the references [13, 15, 20, 22, 23] considers the rate at which convergence takes
place. The adaptive algorithm analyzed in this work combines the desirable properties
of (a) global convergence, that is, convergence to steady state independently of the
initial data and the initial timestep, and (b) rapid local convergence.
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The presentation is organized as follows. In the next section we introduce New-
ton’s method and some simple numerical ODE methods. Section 3 is concerned with
the trust region algorithm for unconstrained optimization. The algorithm is defined in
section 3.1. A nonrigorous discussion of the convergence properties is given in section
3.2, and the main convergence theorems are proved in section 3.3. In section 4 we
state the analogous results that hold when the algorithm is interpreted as an adaptive
timestepping process for gradient ODEs. Subsection 4.2 discusses related behavior of
general-purpose ODE methods.

2. Numerical methods. Most numerical methods for finding a local minimizer
of f begin with an initial guess x0 and generate a sequence {xk}. Similarly, one-step
methods for the ODE (1.1) produce a sequence {xk} with xk ≈ x(tk). The time-levels
{tk} are determined dynamically by means of the timestep ∆tk := tk+1 − tk.

The steepest descent method for optimization has the form

xk+1 = xk − αk∇f(xk),(2.1)

where αk is a scalar that may arise, for example, from a line search. This is equivalent
to the explicit Euler method applied to the corresponding gradient ODE with timestep
∆tk ≡ αk. We note in passing that the poor performance of steepest descent in the
presence of steep-sided narrow valleys is analogous to the poor performance of Euler’s
method on stiff problems. Indeed, Figure 4j in [7] and Figure 1.2 in [10] illustrate
essentially the same behavior, viewed from these two different perspectives.

Newton’s method for optimization is based on the local quadratic model

qk(δ) := f(xk) + ∇f(xk)
T
δ + 1

2δ
T∇2f(xk)δ.(2.2)

Note that qk(δ) is the quadratic approximation to f(xk +δ) that arises from a Taylor
series expansion about xk. If ∇2f(xk) is positive definite, then qk(δ) has the unique

minimizer δk = −
(
∇2f(xk)

)−1 ∇f(xk). Thus we arrive at Newton’s method

xk+1 = xk −
(
∇2f(xk)

)−1 ∇f(xk).(2.3)

The following result concerning the local quadratic convergence of Newton’s meth-
od may be found, for example, in [5, 6, 7].

Theorem 2.1. Suppose that f ∈ C2 and that ∇2f satisfies a Lipschitz condi-
tion in a neighborhood of a local minimizer x?. If x0 is sufficiently close to x? and
if ∇2f(x?) is positive definite, then Newton’s method is well defined for all k and
converges at second order.

The implicit Euler method applied to (1.1) with F(x) ≡ −∇f(x) using a timestep
of ∆tk produces the equation

xk+1 = xk − ∆tk∇f(xk+1).(2.4)

This is generally a nonlinear equation that must be solved for xk+1. Applying one iter-
ation of Newton’s method (that is, Newton’s method for solving nonlinear equations)
with initial guess xk+1 = xk gives

xk+1 = xk − ∆tk(I + ∆tk∇2f(xk))
−1∇f(xk).(2.5)

This method is sometimes referred to as the linearized implicit Euler method; see, for
example, [16, 24]. Note that for large values of ∆tk we have

xk+1 ≈ xk −
(
∇2f(xk)

)−1 ∇f(xk),(2.6)
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and the ODE method looks like Newton’s method (2.3). On the other hand, for small
∆tk we have

xk+1 ≈ xk − ∆tk∇f(xk),(2.7)

which corresponds to a small step in the direction of steepest descent (2.1). Hence,
at the extremes of large and small ∆tk, the ODE method behaves like well-known
optimization methods. However, we can show much more: for any value of ∆tk, the
method (2.5) can be identified with a trust region process in optimization. This con-
nection was pointed out by Goldfarb in the discussion on unconstrained optimization
in [19]. The relevant optimization theory is developed in the next section.

3. A trust region algorithm.

3.1. The algorithm. We have seen that Newton’s method is based on the idea
of minimizing the local quadratic model qk(δ) in (2.2) on each step. Since the model
is valid only locally, it makes sense to restrict the increment, that is, to seek an
increment δ that minimizes qk(δ) subject to some constraint ‖δ‖ ≤ hk. Here hk is a
parameter that reflects how much trust we are prepared to place in the model.

Throughout this work we use ‖·‖ to denote the Euclidean vector norm and the cor-
responding induced matrix norm. In this case the locally constrained quadratic model
problem is amenable to analysis. Lemma 3.1 below is one half of [6, Theorem 5.2.1];
a weaker version was proved in [8]. Lemma 3.2 is from [8]. For completeness, we give
proofs of the lemmas here.

Lemma 3.1. Given symmetric G ∈ R
m×m and g ∈ R

m, if, for some ν ≥ 0,

(G + νI)δ̂ = −g(3.1)

and G + νI is positive semidefinite, then δ̂ is a solution of

min
δ

gT
δ + 1

2δ
TGδ subject to ‖δ‖ ≤ ‖δ̂‖.(3.2)

Furthermore, if G + νI is positive definite, then δ̂ is the unique solution of (3.2).
Proof. In the case where G + νI is positive semidefinite, it is straightforward to

show that δ̂ minimizes

q̂(δ) := gT δ + 1
2δ

T (G + νI)δ.

Hence, for all δ we have q̂(δ) ≥ q̂(δ̂); that is,

gT δ + 1
2δ

TGδ ≥ gT δ̂ + 1
2 δ̂

T
Gδ̂ + 1

2ν(δ̂
T
δ̂ − δ

T
δ).

Thus δ̂ solves the problem (3.2). When G + νI is positive definite, the inequality is

strict for δ 6= δ̂, and hence the solution is unique.
Lemma 3.2. Given symmetric G ∈ R

m×m and 0 6= g ∈ R
m, suppose that G+ νI

is positive definite for some ν ≥ 0. Then increasing ν in the linear system (3.1) causes

‖δ̂‖ to decrease.
Proof. Let the normalized eigenvectors of G form the columns of the orthogonal

matrix Q and let {λi} be the corresponding eigenvalues, so that QTGQ = diag(λi).
From (3.1) we have

QT (G + νI)QQT
δ̂ = −QTg,
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and hence

‖δ̂‖ = ‖diag
(
(λi + ν)−1

)
QTg‖.

Since each λi + ν > 0, the result follows.

Note that Lemma 3.1 does not show how to compute an increment δ̂ given a trust
region constraint ‖δ‖ ≤ hk. Such an increment may be computed or approximated
using an iterative technique; see, for example, [6, pp. 103–107] or [5, pp. 131–143].
However, as mentioned in [6], it is reasonable to regard ν in (3.1) as a parameter that
drives the algorithm—having chosen a value for ν and checked that G+νI is positive
definite, we may solve the linear system (3.1) and a posteriori obtain a trust region

radius hk := ‖δ̂‖. Lemma 3.2 shows that ‖δ̂‖ may be indirectly controlled through ν.

These remarks motivate Algorithm 3.3 below. We use λmin(M) to denote the
smallest eigenvalue of a symmetric matrix M and let ε > 0 be a small constant.
Given x0 and ν0 > 0 a general step of the trust region algorithm proceeds as follows.

Algorithm 3.3.

Compute fk := f(xk), gk := ∇f(xk) and Gk := ∇2f(xk)
If λmin(Gk + νkI) ≥ ε

Solve (Gk + νkI)δk = −gk

Compute ∆fk := fk − f(xk + δk)
Compute ∆qk := fk − qk(δk)
Compute rk := ∆fk/∆qk
Set νk+1 = V (rk, νk) using (3.3)

else
set rk = −1, νk+1 = 2νk (and regard δk as zero)

end if
If rk ≤ 0

set xk+1 = xk

else
set xk+1 = xk + δk

end if

The algorithm involves the function

V (r, ν) =





2ν, r < 1
4 ,

ν, 1
4 ≤ r ≤ 3

4 ,
1
2ν,

3
4 < r.

(3.3)

Note that rk records the ratio of the reduction in f from xk to xk + δk and the
reduction that is predicted by the local quadratic model. If rk is significantly less
than 1, then the model has been overoptimistic. This information is used in (3.3) to
update the trust region parameter ν. In the case where the local quadratic model
has performed poorly, we double the ν parameter, which corresponds to reducing the
trust region radius on the next step. If the performance is reasonable, we retain the
same value for ν. In the case of good performance we halve the value of ν, thereby
indirectly increasing the trust region radius.

We emphasize that Algorithm 3.3 is a trust region algorithm in the sense that on
each step δk solves the local restricted problem

min
δ

gk
T
δ + 1

2δ
TGkδ subject to ‖δ‖ ≤ ‖δk‖.(3.4)
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We also remark that the algorithm is essentially the same as that described in [6,
pp. 102–103]. The underlying idea of adding a multiple of the identity matrix to
ensure positive definiteness was first applied to the case where f has sum-of-squares
form, leading to the Levenberg–Marquardt algorithm. Goldfeld, Quandt, and Trotter
[8] extended the approach to a general objective function and gave some theoretical
justification.

Theorems 5.1.1 and 5.1.2 of [6] provide a general convergence theory for a wide
class of trust region methods. However, these results do not apply immediately to
Algorithm 3.3, since the algorithm does not directly control the radius hk := ‖δk‖
but, rather, controls it indirectly via adaption of νk. In fact, we will see that the
behavior established in Theorem 5.1.2 of [6], local quadratic convergence, does not
hold for Algorithm 3.3. We are not aware of any existing convergence analysis that
applies directly to Algorithm 3.3, except for general results of the form encapsulated
in the Dennis–Moré characterization theorem for superlinear convergence [4, 5, 6] and
the “strongly consistent approximation to the Hessian” theory given in [18]. These
references are discussed further in the remarks that follow Theorem 3.5.

3.2. Motivation for the convergence analysis. The proofs in section 3.3 and
the appendix are rather technical, and hence, to help orient the reader we give below
a heuristic discussion of the key points.

Theorem 3.4 establishes global convergence, and the proof uses arguments that
are standard in the optimization literature. Essentially, global convergence follows
from the fact that when the local quadratic model is inaccurate the algorithm chooses
a direction that is close to that of steepest descent. Perhaps of more interest is the
rate of local convergence. Suppose that xk → x∞ as k → ∞, with ∇f(x∞) = 0 and

∇2f(x∞) positive definite, and suppose that for k ≥ k̂ we have rk > 3/4, and hence
νk+1 = νk/2. It follows that, for some constant C1,

νk =
C1

2k
, k ≥ k̂.(3.5)

Note also that Gk and G−1
k are bounded for large k.

Now, given a large k, let δNewt
k denote the correction that would arise from New-

ton’s method applied at xk, so that we have

(Gk + νkI)δk = −gk,(3.6)

Gkδ
Newt
k = −gk.(3.7)

Expanding (3.6), using (3.7),

δk − δ
Newt
k = −

[
(Gk + νkI)

−1 −Gk
−1

]
gk = νkGk

−2gk + O(‖gk‖νk2).(3.8)

Letting dk := xk − x∞ and ek := ‖dk‖, we have gk := ∇f(xk) = ∇f(x∞ + dk) =
Gkdk + O(e2

k). Hence, in (3.8)

δk − δ
Newt
k = νkG

−1
k dk + O(ν2

kek) + O(νke
2
k).

Using (3.5) we find that

‖δk − δ
Newt
k ‖ ≤ C2

2k
ek + O(ν2

kek) + O(νke
2
k)(3.9)

for some constant C2.
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Now, since xk + δ
Newt
k is the Newton step from xk, we have from Theorem 2.1

‖xk + δ
Newt
k − x∞‖ ≤ C3e

2
k(3.10)

for some constant C3. The triangle inequality gives

ek+1 ≤ ‖xk + δk − (xk + δ
Newt
k )‖ + ‖xk + δ

Newt
k − x∞‖,

and inserting (3.9) and (3.10) we arrive at the key inequality

ek+1 ≤ C4

2k
ek + O(e2

k)(3.11)

for some constant C4. The first term on the right-hand side of (3.11) distinguishes the
algorithm from Newton’s method and dominates the rate of convergence. To proceed,
it is convenient to consider a shifted sequence; let êk := ek+N for some fixed N to be
determined. Then from (3.11),

êk+1 := ek+N+1 ≤ C4

2k+N
ek+N + O(e2

k+N ) =
C4

2N
êk
2k

+ O(ê2
k).(3.12)

Choosing N so that 2N > C4, we have

êk+1 ≤ 1

2k
êk + O(ê2

k).(3.13)

Now, neglecting the O(ê2
k) term in (3.13) leads to

êj ≤
ê0∏j−1
i=0 2i

=
ê0

2j(j−1)/2
.(3.14)

If, in addition to ignoring the O(ê2
k) term in (3.13), we also assume that equality

holds, then we get equality in (3.14) and

êk+1

ê2
k

=
ê0

2(k+1)k/2

2k(k−1)

ê2
0

=
2k(k−3)/2

ê0
→ ∞ as k → ∞,(3.15)

but

êk+1

êk
=

ê0

2(k+1)k/2

2k(k−1)/2

ê0
= 2−k → 0 as k → ∞.(3.16)

We see from (3.15) that the error sequence is not quadratically convergent. However,
(3.16) corresponds to a very rapid form of superlinear convergence. Although this
analysis used several simplifying assumptions, the main conclusions can be made
rigorous, as we show in the next subsection. The type of superlinear convergence that
we establish is likely to be as good as quadratic convergence in practice. This matter
is discussed further after the proof of Theorem 3.5.

3.3. Convergence analysis of the trust region algorithm. The following
theorem shows that Algorithm 3.3 satisfies a global convergence result. The structure
of the proof is similar to that of [6, Theorem 5.1.1].

Theorem 3.4. Suppose that Algorithm 3.3 produces an infinite sequence such
that xk ∈ B ⊂ R

m and gk 6= 0 for all k, where B is bounded and f ∈ C2 on B. Then
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there is an accumulation point x∞ that satisfies the necessary conditions for a local
minimizer in Theorem 1.1.

Proof. Any sequence in B must have a convergent subsequence. Hence, we have
xk → x∞ for k ∈ S, where S collects the indices in the convergent subsequence. It is
convenient to distinguish between two cases:

(i) sup
k∈S

νk = ∞, (ii) sup
k∈S

νk ≤ W for some constant W.(3.17)

Case (i). From the form of V (r, ν) in (3.3), there must be an infinite subse-

quence whose indices form a set Ŝ, where Ŝ ⊆ S, such that rk < 1
4 . Also, using the

boundedness of Gk and gk, we have

‖δk‖ ≤ ‖(Gk + νkI)
−1‖ ‖gk‖ = O(1/νk),

and hence

‖δk‖ → 0, as k → ∞, k ∈ Ŝ.(3.18)

Suppose that the gradient limit g∞ := ∇f(x∞) 6= 0. Then there exists a descent
direction s, normalized so that ‖s‖ = 1, such that

sTg∞ = −α, α > 0.(3.19)

Now, since δk solves the local restricted subproblem (3.4), we have qk(‖δk‖s) ≥ qk(δk)
and so ∆qk ≥ qk(0) − qk(‖δk‖s). Hence,

∆qk ≥ −‖δk‖sTgk + o(‖δk‖) = ‖δk‖α + o(‖δk‖).(3.20)

Also, a Taylor expansion of f(xk + δk) about xk gives

∆fk = ∆qk + o(‖δk‖2).(3.21)

We conclude from (3.18), (3.20), and (3.21) that rk = 1 + o(1) as k → ∞ in Ŝ, which
contradicts rk < 1

4 . Hence, g∞ = 0.
Now suppose that G∞ := G(x∞) is not positive semidefinite; then there is a

direction v, with ‖v‖ = 1, such that

vTG∞v = −β, β > 0.(3.22)

Pick k̂ ∈ Ŝ, and σ = ±1 so that σvTgk ≤ 0 for all k ∈ Ŝ with k ≥ k̂. Then, since δk

solves the local restricted subproblem (3.4), we have

∆qk ≥ qk(0) − qk(σ‖δk‖v) ≥ − 1
2‖δk‖2vTGkv,

and hence

∆qk ≥ 1
2‖δk‖2β + o(‖δk‖2).(3.23)

It follows from (3.18), (3.21), and (3.23) that rk = 1 + o(1) as k → ∞ in Ŝ, which
contradicts rk < 1

4 . Hence, G∞ is positive semidefinite.
Case (ii). From the form of V (r, ν) in (3.3), there must be an infinite subsequence

whose indices form a set S̄, where S̄ ⊆ S, such that rk ≥ 1
4 and λmin(Gk + νkI) ≥ ε.
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If g∞ 6= 0, then ‖gk‖ ≥ gmin for some constant gmin > 0 and for large k ∈ S̄, and
hence

gmin ≤ ‖gk‖ ≤ ‖Gk + νkI‖ ‖δk‖ ≤ (Gmax + W )‖δk‖,

where Gmax := sup
x∈B ‖∇2f(x)‖. This gives

‖δk‖ ≥ gmin

Gmax + W
for large k ∈ S̄.

Hence, removing the earlier indices from S̄ if necessary, we have with hk := ‖δk‖

inf
k∈S̄

hk ≥ hmin :=
gmin

Gmax + W
.(3.24)

Let f∞ := f(x∞) and ∆fk := f(xk) − f(xk+1) ≥ 0. Since f1 − f∞ ≥ ∑
k∈S̄ ∆fk,

we have ∆fk → 0 as k → ∞ in S̄. From rk ≥ 1
4 it follows that ∆qk → 0. Let

q∞(δ) := f∞ + δ
Tg∞ + 1

2δ
TG∞

δ, choose h̄ ∈ (0, hmin), let δ̄ minimize q∞(δ) on
‖δ‖ ≤ h̄, and set x̄ := x∞ + δ̄. Then, for large k ∈ S̄,

‖x̄ − xk‖ ≤ ‖δ̄‖ + ‖xk − x∞‖ = ‖δ̄‖ + o(1) ≤ h̄ + o(1) ≤ hk.

Hence, x̄ − xk is feasible on the subproblem that is solved by δk, and so

qk(x̄ − xk) ≥ qk(δk) = fk − ∆qk.(3.25)

Letting k → ∞ in S̄, it follows from (3.25) that qk(δ̄) ≥ f∞ = q∞(0). Thus δ = 0

also minimizes q∞(δ) on ‖δ‖ ≤ h̄, and since the constraint is inactive, the necessary
conditions of Theorem 1.1 must be satisfied. Hence, g∞ 6= 0 is contradicted.

Now, with g∞ = 0 in Case (ii), we have

‖δk‖ ≤ ‖(Gk + νkI)
−1‖ ‖gk‖ ≤ 1

ε
‖gk‖ → 0,

as k → ∞ in S̄. Suppose G∞ is not positive semidefinite. Then the arguments giving
(3.22)–(3.23) may be applied and we conclude that rk = 1 + o(1) as k → ∞ in S̄. It
then follows from (3.3) that νk → 0, and since λmin(Gk + νkI) ≥ ε we must have G∞

positive semidefinite. This gives the required contradiction.
Note that, as mentioned in [6], since the algorithm computes a nonincreasing

sequence fk, the bounded region B required in this theorem will exist if any level set
{x : f(x) ≤ fk } is bounded.

In Theorem 3.4 we assume that gk 6= 0 for all k. If g
k̂

= 0 for some k̂, then the

algorithm essentially terminates, giving xk = x
k̂

and ∇f(xk) = 0 for k ≥ k̂. However,

in this case we cannot conclude that ∇2f(xk) is positive semidefinite for k ≥ k̂.
The next theorem quantifies the local convergence rate of Algorithm 3.3. The

first part of the proof is based on that of [6, Theorem 5.1.2].
Theorem 3.5. If the accumulation point x∞ of Theorem 3.4 also satisfies the

sufficient conditions for a local minimizer in Theorem 1.1, then for the main sequence
δk → 0, νk → 0, and rk → 1. Further, the displacement error ek := ‖xk − x∞‖
satisfies

ek ≤ C

2k2/3
(3.26)
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for some constant C, and if ek > 0 for all k,

C̃

2k2/2
≤ ek ≤ C

2k2/3
,(3.27)

C̄

2k
≤ ek+1

ek
≤ Ĉ

2k
(3.28)

for constants C̃, C̄ > 0 and Ĉ, but the ratio ek+1/e
2
k is unbounded.

Proof. First, we show that Case (i) of (3.17) in the proof of Theorem 3.4 can be
ruled out. Suppose that Case (i) arises. Then rk < 1

4 , νk → ∞ and ‖δk‖ → 0 as

k → ∞ in Ŝ.
Since G∞ is positive definite, the matrix Gk is also positive definite for large k

in Ŝ. In this case the Newton correction, δNewt
k , satisfying Gkδ

Newt
k = −gk, is well

defined and gives a global minimum of the local quadratic model qk. Define α by
α‖δNewt

k ‖ = ‖δk‖ and note that since δk solves the local restricted subproblem (3.4),
we have α ≤ 1. Then

qk(αδ
Newt
k ) = fk + αδNewt

k

T
gk + 1

2α
2
δ

Newt
k

T
Gkδ

Newt
k

= fk + ( 1
2α

2 − α)δNewt
k

T
Gkδ

Newt
k

≤ fk − 1
2α

2
δ

Newt
k

T
Gkδ

Newt
k .

Hence, using fk = qk(0),

∆qk := qk(0)−qk(δk) ≥ qk(0)−qk(αδ
Newt
k ) ≥ 1

2α
2
δ

Newt
k

T
Gkδ

Newt
k ≥ 1

2α
2µmin‖δNewt

k ‖2,

where µmin > 0 is a lower bound for the smallest eigenvalue of Gk for large k in Ŝ. It
follows that

∆qk ≥ 1
2µmin‖δk‖2.

We may now conclude from (3.21) that rk → 1 as k → ∞ in Ŝ. Hence, Case (i)
cannot arise.

For Case (ii), we have

‖δk‖ ≤ ‖(Gk + νkI)
−1‖ ‖gk‖ ≤ 1

ε
‖gk‖ → 0,(3.29)

as k → ∞ with k ∈ S̄. Further, since (Gk + νkI)δk = −gk,

∆qk = −δ
T
k gk − 1

2δk
TGkδk = 1

2δk
TGkδk + νkδk

T
δk ≥ µ̄min

2
‖δk‖2,(3.30)

where µ̄min > 0 is a lower bound for the smallest eigenvalue of Gk for large k in Ŝ. It
follows from (3.21) that as k → ∞ in S̄ we must have rk → 1, and hence νk → 0.

Having established that νk → 0, we now know that the correction used in the
algorithm looks like the Newton correction δ

Newt
k , which satisfies Gkδ

Newt
k = −gk.

Let xNewt
k+1 = xk + δ

Newt
k . Also, let dk := xk − x∞, so that ek = ‖dk‖, ek → 0 as

k → ∞ in S̄, and, by the triangle inequality,

ek+1 ≤ ‖xk+1 − xNewt
k+1 ‖ + ‖xNewt

k+1 − x∞‖.(3.31)
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The quadratic convergence property of Newton’s method given in Theorem 2.1 implies
that for xk sufficiently close to x∞

‖xNewt
k+1 − x∞‖ ≤ A1e

2
k(3.32)

for some constant A1.
Expanding the other term in (3.31), we find

xk+1 − xNewt
k+1 = δk − δ

Newt
k

= −
[
(Gk + νkI)

−1 −Gk
−1

]
gk

= νkGk
−2gk + O(‖gk‖ν2

k).

Since gk = ∇f(x∞ + dk) = ∇2f(x∞)dk + O(e2
k) = Gkdk + O(e2

k), we find that

xk+1 − xNewt
k+1 = νkGk

−1dk + O(νke
2
k) + O(ν2

kek).(3.33)

Using (3.32) and (3.33) in (3.31) gives, for large k ∈ S̄,

ek+1 ≤ 1

µ̄min
νkek + A2e

2
k + O(ν2

kek),(3.34)

where A2 is a constant.
Repeating the arguments that generated the inequalities (3.29) and (3.30), we

can show that there is a neighborhood N around x∞ such that if xk,xk+1 ∈ N then
rk ≥ 3/4, so that νk+1 = νk/2. Hence, from (3.34), there is some k̄ ∈ S̄ for which
xk̄ ∈ N and the main sequnce lies in N for k ≥ k̄. So in the main sequence we have
xk → x∞, δk → 0 and rk → 1 as k → ∞, and νk+1 = νk/2 for large k.

Hence (3.34) may be extended to the bound

ek+1 ≤ A3
1

2k
ek + A4e

2
k for all k,(3.35)

where A3 and A4 are constants. Lemma A.1 now gives (3.26).
To obtain a lower bound on ek+1 we use the triangle inequality in the form

ek+1 ≥ ‖xk+1 − xNewt
k+1 ‖ − ‖xNewt

k+1 − x∞‖.(3.36)

From (3.32) and (3.33) we have

ek+1 ≥ A5

2k
ek −A6e

2
k,(3.37)

for constants A5 > 0 and A6. Lemma A.1 gives the required result.
We now list a number of remarks about Theorem 3.5.
1. The theorem shows that Algorithm 3.3 does not achieve a quadratic local

convergence rate. This is caused by the fact that νk does not approach zero
quickly enough. We have νk = O(2−k), which is reflected in the first term on
the right-hand side of (3.35). A straightforward adaptation of the proof shows
that by increasing the rate at which νk → 0, it is possible to make the second
term on the right-hand side of (3.35) significant so that quadratic convergence
is recovered. For example, this occurs if we alter the strategy for changing νk
so that νk+1 = min(νk/2, ν

2
k) when |rk − 1| < .0001 (and νk+1 = V (rk, νk) in

(3.3) otherwise). However, as explained in item 4 below, we would not expect
this change to improve performance in practice. Quadratic convergence is
also discussed in item 5 below.
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2. The power k2/3 appearing in (3.26) and (3.27) has been chosen partly on the
basis of simplicity—it is clear from the proofs of Lemma A.1 and Theorem 3.5
that it can be replaced by ak2 for any a < 1/2. (This will, of course, cause
the constant C to change.)

3. It is also clear from the proof that the result is independent of the precise
numerical values appearing in the algorithm. The values 1/4 and 3/4 in (3.3)
can be replaced by any α and β, respectively, with 0 < α < β < 1 and the
factor 2 in (3.3) can be replaced by any factor greater than unity. If the
factor 1/2 in (3.3) is replaced by 1/K, for K > 1, then the statement of
the theorem remains true with powers of 2 replaced by powers of K. (The

changes mentioned here will, of course, alter the constants C, C̃, C̄ and Ĉ.)
4. Theorem 3.5 shows that ek+1/ek → 0, and hence the convergence rate is

superlinear. However, the geometrically decreasing upper and lower bounds
on ek+1/ek in (3.28) give us much more information. Asymptotically, while
Newton’s method gives twice as many bits of accuracy per step, the bound
(3.28) corresponds to k more bits of accuracy on the kth step. In both cases,
the asymptotic regime where ek is small enough to make the convergence rate
observable, but not so small that rounding errors are significant, is likely to
consist of only a small number of steps.

5. Several authors have found conditions that are sufficient, or necessary and suf-
ficient, for superlinear convergence of algorithms for optimization or rootfind-
ing. The most comprehensive result of this form is the Dennis–Moré char-
acterization theorem [4], [5, Theorem 8.2.4], and [6, Theorem 6.2.3]. Also,
section 11.2 of [18] analyzes a class of rootfinding algorithms that employ
“consistent approximations to the Hessian,” and this approach may be used
to establish superlinear convergence of Algorithm 3.3. However, these refer-
ences, which cover general classes of algorithms, do not derive sharp upper
and lower bounds on the rate of superlinear convergence of the type given in
Theorem 3.5. In the terminology of [18, section 11.2], Algorithm 3.3 uses a
strongly consistent approximation to the Hessian and superlinear convergence
is implied by νk → 0. It also follows from [18, Result 11.2.7] that quadratic
convergence arises if we ensure that νk ≤ C‖gk‖ and convergence at R-order
at least (1 +

√
5)/2 occurs if νk ≤ C‖xk − xk−1‖ for some constant C.

Overall, Theorems 3.4 and 3.5 show that the algorithm has essentially the same
basic properties as the trust region radius-driven alternative [6], without the require-
ment that an extra nonlinear equation be solved at each step.

4. Timestepping.

4.1. Gradient systems. If we identify the trust region parameter νk with the
inverse of the timestep ∆tk, then the linearized implicit Euler method (2.5) is identi-
cal to the updating formula in Algorithm 3.3. Hence Algorithm 3.3 can be regarded
as an adaptive linearized implicit Euler method for gradient ODEs, and the conver-
gence analysis of section 3 applies. For completeness, we rewrite Algorithm 3.3 as a
timestepping algorithm.

Given ∆t0 > 0 and x0 (= xinit), a general step of the algorithm for the gradient
system (1.1) with F(x) ≡ −∇f(x) proceeds as follows.
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Algorithm 4.1.

Compute fk := f(xk), gk := ∇f(xk) and Gk := ∇2f(xk)
If λmin(Gk + I/∆tk) ≥ ε

Solve (Gk + I/∆tk)δk = −gk

Compute ∆fk := fk − f(xk + δk)
Compute ∆qk := fk − qk(δk)
Compute rk := ∆fk/∆qk
Set ∆tk+1 = W (rk,∆tk) using (4.1)

else
set rk = −1, ∆tk+1 = ∆tk/2 (and regard δk as zero)

end if
If rk ≤ 0

set xk+1 = xk

else
set xk+1 = xk + δk

end if
The appropriate analogue of (3.3) is the function

W (r,∆t) =





1
2∆t, r < 1

4 ,

∆t, 1
4 ≤ r ≤ 3

4 ,

2∆t, 3
4 < r.

(4.1)

The following result is a restatement of Theorems 3.4 and 3.5 in this context.
Theorem 4.2. Suppose that Algorithm 4.1 for (1.1) with F(x) ≡ −∇f(x) pro-

duces an infinite sequence such that xk ∈ B ⊂ R
m and gk 6= 0 for all k, where B is

bounded and f ∈ C2 on B. Then there is an accumulation point x∞ that satisfies the
necessary conditions for a local minimizer in Theorem 1.1.

If the accumulation point x∞ also satisfies the sufficient conditions for a local
minimizer in Theorem 1.1, then for the main sequence δk → 0, ∆tk → ∞ and rk → 1.
Further, the displacement error ek := ‖xk − x∞‖ satisfies

ek ≤ C

2k2/3
(4.2)

for some constant C, and if ek > 0 for all k,

C̃

2k2/2
≤ ek ≤ C

2k2/3
,(4.3)

C̄

2k
≤ek+1

ek
≤ Ĉ

2k
(4.4)

for constants C̃, C̄ > 0, and Ĉ, but the ratio ek+1/e
2
k is unbounded.

4.2. General ODEs. We conclude with a discussion of Algorithm 4.1 in relation
to general purpose adaptive timestepping algorithms.

The rule for changing timestep is different in spirit than the usual local error
control philosophy for ODEs [9, 10]. This is to be expected since the aim of reaching
equilibrium as quickly as possible is at odds with the aim of following a particular
trajectory accurately in time. The timestep control policy in Algorithm 4.1 is based on
a measurement of closeness to linearity of the ODE across the current timestep, rather
than smallness of the local error. We also note that local error control algorithms
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typically involve a user-supplied tolerance parameter, with the understanding that a
smaller choice of tolerance produces a more accurate solution. Algorithm 4.1, on the
other hand, involves fixed parameters.

The results in [13] showed that, for a special class of gradient systems, conven-
tional local error control will eventually force the numerical solution to within O(τ)
of a fixed point, where τ is the tolerance parameter. This is the best that can be
expected in general, since Hall [11] showed that explicit Runge–Kutta pairs admit
long term solutions that remain O(τ) away from a stable fixed point. Hence, timestep
control based on the concept of local error is not the most efficient tool for capturing
long term dynamics of gradient systems.

Kelley and Keyes [16] recently studied theoretical aspects of timestepping to
steady state. They analyzed a family of adaptive algorithms based on linearized
implicit Euler. As in Algorithm 4.1, the underlying idea in [16] is to increase the
timestep where appropriate, in order to pick up the attractive convergence properties
of Newton’s method. Algorithms that are linearly, superlinearly, and quadratically
convergent were identified in [16]. In the quadratically convergent case, the process
switches to Newton’s method when a preset timestep threshold is exceeded. Since
[16] applies to general ODEs, the results are weaker than those for Algorithm 4.1,
which is customized for gradient systems. In particular, the convergence result in [16]
requires the initial timestep to be sufficiently small.

As a final point, we note that Algorithm 4.1 requires a check on the positive
definiteness of the symmetric matrix Gk + I/∆tk. This is an unusual requirement
for a timestepping algorithm; however, an inexpensive and numerically stable test
can be performed in the course of a Cholesky factorization [14, p. 225]. If this check
is omitted from Algorithm 4.1, then the local convergence rate is unaffected, but
the global convergence proof breaks down. Without an eigenvalue based test, there
is a danger of convergence to an unstable fixed point. This can be regarded as a
consequence of the fact that the implicit Euler method is overstable in the sense that
the absolute stability region contains the infinite strip {z ∈ C : <{z} > 1} in the
right-half of the complex plane; see, for example, [17, p. 229]. Another explanation is
that Newton’s method for optimizing f is identical to Newton’s method for algebraic
equations applied to ∇f = 0; see, for example, [5, p. 100]. Hence, unless other
measures are taken, there is no reason why stable fixed points should be preferred. In
Algorithm 4.1 for gradient ODEs we check that λmin(Gk + I/∆tk) ≥ ε and rk > 0,
which helps to force the numerical solution to a stable fixed point. It is likely that
traditional ODE error control would also direct the solution away from unstable fixed
points, and hence the possibility of combining optimization and ODE ideas forms an
attractive area for future work.

Appendix A. Convergence rate lemma.

Lemma A.1. Let P,Q, T ≥ 0 and R > 0 be constants. Suppose ek ≥ 0 for all k,
ek → 0 as k → ∞, and

ek+1 ≤ P

2k
ek + Qe2

k for all k.(A.1)

Then

ek ≤ C

2k2/3
for some constant C.(A.2)
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Further, if ek > 0 for all k, then

ek+1

ek
≤ Ĉ

2k
for some constant Ĉ,(A.3)

and if, in addition,

ek+1 ≥ R

2k
ek − Te2

k for all k,(A.4)

then

ek ≥ C̃

2k2/2
and

ek+1

ek
≥ C̄

2k
for constants C̃, C̄ > 0,(A.5)

but the ratio ek+1/e
2
k is unbounded.

Proof . Choose C > 0 such that

1
2 + CQ ≤ 1.(A.6)

We first prove a result under restricted circumstances and then generalize to the
full result. We assume that

P ≤ 1
2 and ei ≤

C

8
, i = 0, 1, 2, 3.(A.7)

Our induction hypothesis is

ei ≤
C

2i(i−1)/2
.(A.8)

Note that, from (A.7), this holds for i = 0, 1, 2, 3. If (A.8) is true for i = k ≥ 3, then,
using (A.1),

ek+1 ≤ P

2k
C

2k(k−1)/2
+ Q

C2

2k(k−1)
≤ PC

2k(k+1)/2
+ Q

C2

2k(k+1)/2

(since k(k + 1)/2 ≤ k(k − 1) for k ≥ 3). Hence, using (A.6) and (A.7),

ek+1 ≤ C

2k(k+1)/2
(P + CQ) ≤ C

2k(k+1)/2
.

Therefore, by induction, (A.8) is true for all k, if (A.7) holds.
Now, consider the shifted sequence êk := ek+N , for some fixed N . We have

êk+1 := ek+N+1 ≤ P

2k+N
ek+N + Qe2

k+N =
P

2N
1

2k
êk + Qê2

k.(A.9)

Since ek → 0 as k → ∞, it is possible to choose N such that

P

2N
≤ 1

2 and êi := ei+N ≤ C

8
, i = 0, 1, 2, 3.(A.10)

From (A.9) and (A.10), the result (A.8) holds for this shifted sequence, so

êk ≤ C

2k(k−1)/2
for all k.(A.11)
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Translating this into a result for the original sequence, we find that

ek =: êk−N ≤ C

2(k−N)(k−N−1)/2
=

C

2N2+N

1

2k2/2−k(2N+1)/2
for k ≥ N.

Relabelling C as C/2N
2+N and letting N̂ = (2N + 1)/2, we have

ek ≤ C

2k2/2−N̂k
for k ≥ N.

Now k2/2 − N̂k ≥ k2/3 for k ≥ 6N̂ . Hence,

ek ≤ C

2k2/3
for k ≥ 6N̂ .

Clearly, by increasing C, if necessary, the result will also hold for the finite sequence
e0, e2, . . . , e6N̂

. Hence, (A.2) is proved. The inequality (A.3) follows after dividing by
ek in (A.1) and using (A.2).

Now, (A.4) gives

ek+1 ≥ ek
2k

(R− 2kTek).

From (A.2), for sufficiently large k we have 2kTek ≤ R/2, so that

ek+1 ≥ ek
2k

R

2
=:

ek
2k

C̄.(A.12)

Clearly, by reducing C̄, if necessary, this result must hold for all k. Now, reduce C̄, if
necessary, so that 0 < C̄ < 1. From (A.12),

ek ≥ 1

2k−1
ek−1 ≥ 1

2k−1

1

2k−2
ek−2 ≥ · · · ≥ 1

2k(k−1)/2
e0.

So letting C̃ = e0 we have

ek ≥ C̃

2k(k−1)/2
≥ C̃

2k2/2
.(A.13)

Inequalities (A.12) and (A.13) give (A.5), as required.
Finally, using (A.2) and (A.5) we find that

ek+1

e2
k

≥ C̃

C2
2(k2−6k−3)/6 → ∞ as k → ∞.

Appendix B. This work has benefited from my conversations with a number
of optimizers and timesteppers, most notably Roger Fletcher and David Griffiths. I
also thank the editor and referee for useful feedback and the editor for pointing out
reference [16].
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