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Abstract

The long-term dynamics of a discretized, nonlinear, mtegro-differential equation with convolution kernel are
studied. For a constant time-step algorithm the existence and stability of fixed and periodic points are investi cated.
A systemaltic treatment is given, which quantifies the effect of varying the quadrature rule and integratin g the kernel
exactly or approximately, Special attention is paid to spurious behaviour that occurs below, or around, the “natural”
time-step that corresponds to the linear stability limit for the correct fixed point. It is shown that spurious sofutions
exist, and can be computed, within this linear stability range. In addition to fixed points and period two solutions,
analysis is performed for a class of period three orbits that are observed to be relevant to the long-term dynamics.
Finally, an adaptive algorithm, based on local error control, is studied and a simple model describing its long-term
behaviour is developed. @ 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

A variety of mathematical models are used in the study of population dynamics. One model that has
been proposed [3,12,13] is an integro-differential equation (IDE), which in its non-dimensionalized form
can be written as

qb’(f):qb(t)(l——/.K(I-T)qﬁ{r)dr) fore = 0, (1.1)
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where ¢{1) is given for 1 < 0 and the kernel K1) satisfies

[

/ K{(s)ds =1,

0

Our aim in this work is to study the behaviour of a class of numerical methods for problems of the
form (1.1). We are particularly concerned with the way in which the long-term behaviour of the numerical
solution depends on the stepsize, and on the type of quadrature approximations used. Some initial analysis
was performed in [1] for the kernel

te=t/7
Kty="—03 (1.2)
Here we consider the alternative kernel
e /T
K(1) = e, 1.3
(== (13)

Both (1.2) and (1.3) have been used in population models {3,12,13], with the constant 7 > 0 regarded as
a delay parameter. The kernel {1.3) is easier to deal with than (1.2), and hence in this work we are able
to extend the type of analysis that appears in {1]. In particular, we analyze stability of periodic solutions
and also look at the impact of error control.

The IDE (1.1) has fixed points ¢(z) = {0, 1}, whose linear stability can been studied via the Laplace
transform [3,12]. It is straightforward to check that the zero fixed point is linearly unstable, and to
investigate the stability of the non-zero fixed point we set ¢(t) = 1 + £(z) and linearize to obtain

&'(t) = — / Kt —v)e(tydr + y (1),
0
where
wm=m/Ku+ﬂa—ww
0

involves the perturbation of the initial data. Stability of this linear convolution problem is equivalent to
the condition

z+K(2)#0 forallzeC with iz} 20, (1.4)

where K (z) is the Laplace transform
oG
K@) = f K(sye ™ ds.
9

For the kernel (1.3) condition (1.4) is equivalent to P(z) # 0 whenever R{z} = 0, where P(z) =
Tz> 4z + 1. This is satisfied for all T > 0. (If 0 < T < ﬁ then P has two negative real roots, and
P has complex conjugate roots with negative real part for T > é.) Hence the fixed point ¢ (1) = 1 of
the IDE (1.1) with kernel (1.3) is linearly stable for all T = 0. In this work we are concerned with
the existence and stability of the analogous non-zero steady state and other long-term solutions of
discretizations of this IDE.
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2. The discretization

We discretize the IDE (1.1} using Euler’s method with time-step A to approximate the time derivative
and a quadrature rule for the integral. The Fuler approximation gives

o0 (nm‘j_)h
@,?H_zé,,—i-h@n(} -y / K(nhws)cb(s}ds), (2.1
=00 i
where @(s) ~= ¢(s), P, = @ (mh) and we have vsed the integral identity

nh oo (n—J}h

[ Knh—1)®(r)dr =) / K (nh - s)®(s)ds.

o = i
Applying a simple quadrature rule to approximate the convolution integral in (2.1) leads to a recurrence
of the form

(o8}
CDH—H =@, + hq)n (} - ij (pn_f) . (22}
j=0
Here, the weights w; are determined by the choice of guadrature rule. We consider quadrature rules

that are found by assuming either a piecewise constant (PC) or a piecewise linear (PL) variation of the
solution @ over a time-step. This produces the infinite discrete map

Doyt z@n—g—hdﬁn(l =3 D, Wj-) (2.3)
j=0
for the PC case and
(pn—é—l = an_ + h(D” (l - Z [(] + I)W; - Vj] d)nkj + [Vj - jwj]¢nmjw—l) (24)
J=0

for the PL case. The terms W; and V; are found by either exact or approximate integration of the kernel:
(f+Dh (f+1M
W, =~ / Kis)ds, VJ%% / s K{(s)ds. {2.5)
in Jh
The kernel (1.3) 1s sufficiently simple to allow the integrals in (2.5) to be evaluated exactly. However, for
more complicated kernels a quadrature formula must be used. In our study, we consider exact integration

in (2.5) and also the case where the kernel is approximated by a piecewise constant or piecewise linear
function on each time-step. The relevant weights are

PC approximation: W, =rg’, Vi={j+ %) W, (2.6)
PL approximation: W, = g(qj +g’ "y, V= %((3]’ + Vg + (3 + g, (2.7)
exact evaluation: W, = g’ —qg’t, Vi=(j+ 1/rg’ —(j+1+ 1/rg/™, {2.8)

where r =h/T and g =™




4 M.A. Aves et al. / Applied Numerical Mathematics 32 (2000) 1-20

This results in six different approximations of the IDE (1.1) by independently choosing between
the two maps (2.3) and (2.4) and the three different ways of evaluating the weights (PC, PL or exact
integration). We label each of these approximations by a pair of letters from the set {C, L, E} (denoting
PC and PL quadrature and exact integration), with the first letter representing the type of approximation
used for the solution @ (i.e., C or L) and the second the way of calculating the weights (2.5) (i.e., C,
L or E}. Thus the different possibilities can be denoted by the set {CC, CL, CE, LC, LL, LE}, where,
e.g., CL. means that the approximation uses the map (2.3) with the kernel weights W, approximated by
piecewise linear functions and given by (2.7).

3. Fixed points of the discrete maps

The fixed points or steady states of the map (2.2) are found by setting the solution @; to be a constant
for all j. The map has two fixed points, @; € {0, &*}, where
o -1
Pt = (ij) : 3.0
j=0
For both the PC and PL solution approximations the non-zero fixed point (3.1) is given by

o~(51)

J=t)
Substituting the weight formulae (2.6)-(2.8) into Eq. (3.1) then gives the non-zero fixed point of the
infinite discrete map (2.2) as

{(1—g)/r forCCand LC,

2(1 - |

P* = 2 -q) for CL and LL, G2
r{l-+q)
1 for CE and LE,

where recall that r = /T and g = e, These are plotted against 7 in Fig. 1. Note that when the weights
(2.5) are evaluated exactly then @~ is the true fixed point of the continuous equation (1.1), while & — 1
as h — ( for the approximate weights.

3.1, Stability of the fixed points

It is easy to show that the zero fixed point of (2.2} is linearly unstable for any choice of weights w;.
We now examine the linear stability of the non-zero fixed point @* of the infinite map (2.2) for each of
the six choices of weights w; described in the previous section. To do this set @, = ®* + ¢, and linearize
to obtain the perturbation equation

o0
Enpt =8 —hD* Y w6, ;. (3.3)
j=0
As shown in [1}, a theorem due to Lubich [11] can be used to investigate the stability of the fixed point,
If the initial pertorbations are bounded, i.e., if

lenl € Emax <00 Toralln <0,
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Mon-zero fixed point

Fig. 1. Graphs of @ against # for the maps CC & LC (solid). CL & LL {dashed), and CE & LE (dotted).

then @~ is linearly stable if and only if
[~ h®"&(z) 4z forallz e Cwith |z] = 1. (3.4

Here, ci(z) denotes the Z-transform of the sequence {w;};

XK
w(z) = Z wn 2"
r2z=f)
The transform @(z) is only defined for |z} > 1/p where p is the radius of convergence of the power
series Zjio w;x’, and so for linear stability we only need to verify that if |z} > 1/p and z solves (3.4)
then |z| < 1. Note that this is equivalent to requiring any solution of (3.3) of the form ¢; = 2/ to satisfy
iz| < 1. This technique can also be used to analyze the stability of the zero fixed point and reveals that it
is unstable for all & > 0, irrespective of the way in which the solution weights are calculated.
We now examine (3.3) for each of the approximate maps derived in the previous subsection to find the
maximum time-step A% for which the corresponding fixed point @* is linearly stable.
The stability equation (3.4) for the approximations CC, CL and CE reduces to

e [l —e™) = (1+e "} +e" =0. (3.5)
For stability, we require that both roots satisty |z| < 1, i.e., Eq. (3.5} is a Schur polynomial {10, pp. 13—
14]. This is equivalent to the three inequalities below (which depend implicitly apon the delay through
r=~h/T)

0<2(1+e™)~ni{l—e"), (3.6)

0<2(1—-e™), 3.7

0<h(l—e"). 3.8)
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Linear stability of @
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Fig. 2. Graphs to show the dependence of the time-step limit 2™ on T' for linear stability of the non-zero fixed point
&* for the CC, CL and CE maps {black solid), L.C map (dotted), LL map (dashed) and LE map (grey solid).

Because T > 0, conditions (3.7) and (3.8) are satisfied for all 2 > 0. The lmiting behaviour of (3.6)
at equality for T > 1 and T < 1 gives h* ~ 2/T and h* ~ 2, respectively. The stability bound can be
easily computed for general values of T (e.g., if T =1 then A" =2 - 399357281) and is shown as the
black solid line in Fig. 2.

The stability equation for the LC map is

27 +z{h(l —e ™) = 2(1 +e Y +h(l—e ") +2e =0 (3.9

The Schur conditions for this reduce to A* = 2 for all values of the delay, i.e., the fixed point is linearly
stable for all & € (0, 2). This is shown as the dotted line in Fig. 2.
The situation in the LL case is more complicated. The stability equation is

3(1+e )+ h2+e)(1—e) =3(1+e)2
+h(14+2e 7} (1—e7) + 37 (14e7) =0, (3.10)

and the Schur conditions for stability when s > 0 are
T+ey? 14+e™
h<6( ) and h<3(iji-~;>.
I—e 1+ 2e™
For h, T > 0, the second condition is always more restrictive and the stability boundary is shown as the

dashed line in Fig. 2. The limiting cases T — O and T — oo, give ™ — 3 and h* — 2, respectively.
The stability equation for the LE case is

Pazlh—1—e" + T ~ 1) +e T A-h+T{1-e"), (.11
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and this is Schur for all b > 0 satsfying the pair of inequalities

he2+ 207D b - (e - 1), (3.12)
P+e
For T > 1 the second inequality is more restrictive and 2" — 2 as T — oc. This inequality is satisfied
forall i > 0 when T < | and so the stability limit is governed by the first inequality in this case, and
h* — 2 from above as T — 0. The inequalities cross at 7"~ 1 - 10173 and the stability bound is shown
as the grey line in Fig. 2.
Overall, Fig. 2 summarizes the stability analysis from this section.

4. Numerical results

We now present some numerical results to illustrate the long-term behaviour of the map (2.2) with the
particular weights w; derived in Section 2. In order to do this we approximate (2.2) by the finite map

Nl
Dy :®pr+h®fi(1mz@n—jwj): 4.1

=0

where N 1s a large, fixed number chosen to make the difference between the infinite and finite sums
small. All the figures presented here were produced using N = 100; and this gives bifurcation plots that
are visually identical to those produced using &N = 50. The map (4.1) has the non-zero fixed point

=

1

Clearly, @5 — @" as N — oo.

It is straightforward to show that for each map the weight functions w; for j > 0 all take the form
w; = aq’ for some a(r) > 0, where g is independent of j, @ = O(r) as r —» 0 and is an O(1) quantity
when r == O(1). Hence the ditference in the value of @, ; computed from the infinite map (2.2) and
truncated map (4.1) is bounded by

a(r)hc,.zqu
l-gq
where ¢, = max{|®;[: j < n}. Therefore for any fixed & and T the difference can be made arbitrarily
small by choosing N large enough. I r = &/ T is not too small then moderate values of N ensure that
the finite and infinite maps are the same up to machine precision (provided the @, stay bounded). For
example, if » = 0.5 and ¢, = O(1) then the difference between the finite and infinite maps can be made
1071® by choosing N = 80,

The bifurcation diagrams shown in Figs. 3 and 4 are computed by iterating the map (4.1) 300 times for
cach value of £ €[0.1:0.01 : 4] with constant initial data @, = ¢ for j = 1 — N : 0 for many different
values of ¢y € [0, 2]. The last 10 iterates {®;)°%,, are plotted on the graph. As expected. the bifurcation
diagrams reproduce the non-zero fixed point for i < h*, where 2" is the linearized stability limit shown
in Fig. 2. The fixed point of the CC, CL and CE maps appears to lose stability through period doubling,
and each plot shows complicated dynamical behaviour for some values of A. In particular, note that there

L]
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CCmap: T=1 CLmap: T=1
1 1
N,
&gl O e‘os\
£ £ ‘
o6 Los ;
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0.2 0.2
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h h
CEmap: T=2
1.5 1.5
E‘ -1 ‘6‘ 1 s
£ £
£ g
: >
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0 4]
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h h

Fig. 3. Bifurcation diagram for the finite CC, CL and CE maps. See text for details.

appear to be stable fow period orbits in the CE, LL and LE maps for & below the linearized stability

limit. In the following sections we examine the existence and stability of period-2 and -3 solutions of the
corresponding infinite maps.

5. Spurious period-2 solutiens

The bifurcation diagrams indicate that the fixed point of some of the finite maps loses stability to
period-2 solutions of (4.1). We now investigate this for the infinite map (2.2) by looking at existence and
stability of period-2 solutions,

Period-2 solutions have the form

for n even,
@z{”, e (5.1)
v formodd,
with u # v. Substituting this into (2.2) yields

v=u-+uh(l —ulip-—vx)

(5.2
u=v-+vh{l —vZy—uX
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Fig. 4. Bifurcation diagram for the finite LC, LL and LE maps. See text for details.

where the even and odd sums Xy and X, are defined by

e8]
By = szgw fora e {0, 1}
=0

Eliminating v from (5.2) gives the quartic polynomial in u:
wh{u(Zo + Z) — 1] [10°h* Z(Ey — Z1) = uh(h +20(Zy~ E) + h+2] =0. (5.3)

Note that two solutions are the fixed points O and @* of the map (2.2) whilst the period-2 solutions are the
roots of the quadratic factor, The discriminant of the quadratic factor must be positive for real period-2
solutions to exist, i.e.,

R+ 205 = ) (h(Ey — Z1) = 2Tg + T1)) > 0. (5.4)
The even and odd sums for the CC map are
P rg
Ly = s

= YR Efmw
(I =g)(1+4q) (I —g)(1+q)

(recall that r = h/T and g = e™"). Substituting into (5.4) gives the condition for real period-2 solutions
as

h(l—gq) —2(14+q) >0,
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and this 1s also the condition for the CL and CE cases. Comparing this with the stability inequality (3.6)
shows that period-2 solutions exist beyond the linear stability limit for these maps.
The odd and even sums for the LC map reduce to
P
21 —gq)

and so it follows from (5.4) that period-2 solutions do not occur for any h. Note that the stability equation
for this case at i = h* is 2> — 2gz + 1 = 0 and the roots are complex. Hence it is likely that the fixed
point experiences a Hopf bifurcation at the stability limit (see Fig. 4),

The condition for period-2 solutions of the LL map is & > 6(1 + ¢)?/(1 — g)*. This is not satisfied as
an equality when £ = A" and so the fixed point ¢ of this map does not bifurcate into period-2 solutions
at the stability limit 4™,

Bifurcation into period-2 behaviour is only possible for the LE map when the first condition of (3.12)
18 the more restrictive, i.e., for 7 < 21 . 10173, and the difference in behaviour is illustrated in Fig. 4
which shows the long-term behaviour of the finite LE map when 7' =1 and T = 2. There appears to
be a period-2 bifurcation when 7' =1 at h* = 3. 9, and the figure also shows a range of other periodic
solutions below the stability Limat,

Finally, we note that there are no period-2 solutions for values of /i below the linearized stability limit
h* for any of the six maps. (This follows immediately from comparing the Schur conditions for linear
stability of @* given in Section 3.1 with (5.4).)

Lo=2=

3.1 Period-2 stability

We now show how the stability of period-2 solutions of (2.2) can be analyzed. The first step is to
decide whether to perturb the period-2 solution for all » or just for n = 0. Since {®,}, n <0, may be
regarded as initial data, it makes sense just to perturb for n 2 0 (this also simplifies the calculations). We
inearize about the period-2 solution (u, v) from (5.2), setting @y, = u and @, 4, = v for m < 0, and
write Poy =t + 8, Popy1 = v+ £ for m 2 0. After some rearrangement this gives the linear system

O = by €4y — hv Zgwﬂcwl Bt + W22 Epmi]

= form >0

k=1

for the perturbations (8,,. &,,), where b} = v~ — Auwg and by = v~ 1.
Setting z, . = (8,,, &)’ allows the linear system to be writfen as

=S

1

FO 37:nm = Z Ff gmm_,i‘ (55)
j=t

in terms of matrices I'; € R*** which depend on the particular map under consideration. For example,
the CC map has

-1 0 hvrg  hur — by 2 fvg !t vyt :
= = - g =7
o ( by —i) ’ I (hurqz hurg ) ’ Fy=hrq w oug )’ ]z e
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CCmap T=1 Clmap: T=1

1.6%

2.4 25 2.8 2.7 2.8 2.9
h

CEmap: T=1 Cemap T=2

2.4 25 26 27 2.8 2.9 31 315 32 325 33 335
h h

Fig. 5. Graph of the stability coefficient A against time-step k for the CC, CL and CE maps. See text for details.

Eq. (5.5) can be written as
L = P, Zpo (5.6)

where the matrices P,, € R**? are defined recursively in terms of the I'; by

b
Po=1,  Pu=Iy'"> Py, mz1 (5.7)
j=i
It follows from (5.6} that the period-2 solution will be linearly stable to perturbations of this type (in
the sense that ||z, ||, /125!, is bounded for all m > 0) if the matrix 2-norm of the matrices P,, remains
bounded as m — oc. It can be verified numerically that for large m (m > 10 is big enough) [ P, |, o A"
(where A > (} depends on the map under consideration, T and /). Hence the period-2 solution is stable
provided & < 1. Graphs of X against & for the CE, CC and CL maps are shown in Fig. 5. The quantity
A 1s computed as the ratio || Py |5/ P |, for m = 50. There is good agreement between the time-step
range for which the solutions are predicted to be stable by this analysis (i.e, for which A < 1), and for
which period-2 solutions are observed for the finite maps in Fig. 3.
Fig. 4 shows the fixed point of the finite LE map with 7 = 1 losing stability to a period-2 solution at
A~ 3.9. The linear perturbation matrices P,, for this map are bounded for & between 4" = 3.9224 and
about 4.365, and the first plot of Fig. 6 shows a graph of | P, |, against m at 2 = 3.93. The period-2
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LE map: T=1,h=383 LEmap: T=1,h=393

T
" /- 1.06

2" G‘E 1 :

/

o _ DE5L WA} m
0.9 |
107 0.85
10 20 30 40 50 0 200 400 800 80C 1000
m n

Fig. 6. Graph of || P, ||; for the LE map (left plot). The black (grey) curves in the right-hand plot show the solution
@y, of the perturbed map when » is odd (even). The dotted lines are the period-2 solutions u < v.

solution appears to be very stable to random perturbations, as illustrated in the second piot of Fig. 6.
Here the solution of the finite LE map is computed with N = 100 and with the initial condition that

DPoggm P o= =@ rs=uand P_gy =P _g;=-.-=@_| = v, where (i, v) is the period-2 solution
and i < v. The iterates @, for n =1, ..., 700 are compuied using a perturbed version of (4.1) formed
by setting @41 = @1 + £,,.; at each stage, where the perturbations &, are chosen randomly to satisfy

e, ] < 1.5 x 107 for all n. The final 300 iterates are computed from the {unperturbed) map (4.1). The
solution wanders around close to one of the two levels of the period-2 solution and returns to it once the
perturbations are switched off. If smaller perturbations are used then the solution remains close to the
two values i and v for all ».

6. Spurious period-3 solutions

Many of the finite maps appear to have period-3 solutions in Figs. 3 and 4, with period-3 solutions
seeming to exist below the linear stability limit in the CE and LE cases. We now investigate the existence
and stability of period-3 solutions for the infinite maps.

Pericd-3 solutions satisfy

u ifn=3
Gy v fn=3+1, (6.1)
wo if a3 2,
Substituting this into the general infinite map (2.2) yields the equations
v=u+uh(l —uXy—wx; —vE,), (6.2)
w=v-+vh{l —vXy —ull, — wi), {6.3)
e+ whi{l —wiy —vE —uXs), (6.4}

where now the sums are given by

To= Y e, o €{0,1,2).
Fel)




MA. Aves et al. / Applied Numerical Mathematics 32 (2000) 1-20 13

Eqs. (6.2)~(6.4} can be solved for u to yield
w[u(Xo+ Ty + Z0) = 1] Flu, b, Ty, Xy, ¥2) =0, (6.5)

whete Fu, h, Xy, 2, X3) is a sixth order polynomial in # with real coefficients (again the two linear
factors correspond to the fixed points O and @ of (2.2)). Reducing the equations to this form is
complicated and was done using the symbolic manipulation package Map1e. Our approach is to obtain
w in terms of # and v from (6.2), and then substitute for w in (6.3) and (6.4) 1o obtain a pair of
quadratic equations in v whose coefficients are functions of u. Eliminating the terms in v? then results
in a linear equation for v in terms of u, and substituting for v in either of the quadratics and simplifying
results in (6.5). For general T and % the roots of F are complex, and the coefficient terms in F are too
complicated to enable us to find conditions on A that will guarantee that the period-3 solutions are real
and positive. Such conditions can be found however in the case where the period-3 solutions are repeated
roots of F, i.e., they correspond to the roots of the cubic polynomial p(u) satisfying F = p*. We now
state conditions for this case to arise in general.
Consider the general sixth-order polynomial with real coefficients

gy =x°+ gsx” + gux + g3 + gax? + g1x + go.

This will have three solutions of multiplicity two il it can be written as a cubic squared, ie., if
glx) = (x* + ax® + bx + ¢)? for real a, b and c. Equivalenty, the following conditions must be
satisfied:

g0 = ¢7, g, =2be, g = 2ac + b,
g3 = 2ab + ¢, ga=a" +2b, g5 =2a.
This gives the real coefficients in the cubic as
a=3igs.  b=gldg-gd),  c=-(8g —4ggs+gl),
and the additional conditions
2
0= 5%(8gs —dgegs +23) — g
0= g (48— 85) (88 —dgugs +23) — & (6.6)
2
0= j585(8gs —4gags +83) + g5 (42— 83) ~ &2

must also be satisfied.

The roots of the cubic p(x) = x* +ax? + bx 4 ¢ can be found by making the coordinate transformation
x=f— -_E;a, to give #* + Pt 4+ @ = 0. The roots of this transformed cubic can be characterized by
considering the quantity D = (1 P)’ + (30)?. Wehave a = Jgs. b= Lg4 — 1a® and c = } g3 — ab giving

D = 535 (2587 — 180g2 g4 + 320g3 g5 + 304g7 g% — 1152g58225 + 64g] + 864g2). (6.7

The cubic has real roots when I <L 0. If this condition is satisfied then the roots are positive provided the
coeflicients satisfy ¢ < 0, b > Qand ¢ < O

We have derived the general conditions for a 6th-order polynomial to have repeated real positive roots,
and we now look at the roots of the polynomial F for the six different infinite maps. The infinite sums
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Fig. 7. Graphs of time-step 4 for which there are repeated period-3 solutions for each map (black line). The linear
stability limit 2 of the fixed point is shown in grey for comparison.

for the CC case are X} == ¢ X and %) = ¢° X where Xy =r(1 — ¢*)~', and in this case the three terms
in (6.6) have the polynomial

Oc(T Wy =q"th+ 1) —4g° —2¢° (W + 30 + 6) +dg(h — 1) + K> -8

as highest common factor (hef). This is also the hef of these terms in the CL and CE cases. Hence there
will be a repeated period-3 solution of these maps if and only if Q-(T, h) =0.

The hef of the three terms in (6.6) for the LC, LL and LE maps are again polynomials in ¢ whose
coefficients are functions of 4 and r = 4/ 7. In the LC case the hef is a cubic, and the hefs for the LL
and LE maps are both (different) eighth order polynomials in ¢. In each case repeated period-3 solutions
are only possible for values of h that make the hef equal to zero for a given delay T'. Graphs of time-step
values for which there are repeated period-3 solutions for each of the maps are shown in Fig. 7. Note
that for each map there are values of T for which these period-3 solutions exist below the linear stability
limit 2*. We have checked the signs of D and the coefficients a, b, and ¢ at each value of T and k shown,
and in all cases the repeated period-3 solutions are real and positive.

If h is chosen to be slightly smaller than the time-step value for which there are repeated period-3
solutions then we found that £ has six complex roots (in all the cases we looked at), and so there are no
real period-3 solutions. Similarly, if # is chosen to be slightly larger than the time-step value for which




M.A. Aves et al. / Applied Numerical Mathematics 32 (2000) I-20 15

LG T=1,A=18.5074 LL:T=1,4=013847

10 10
1050 -EOO \
s ™
- 40 - ~20
o510 250
1% 107
10" 1%
) 10 20 30 40 50 0 10 20 30 40 50
m m
LE: T=1, 4 =0.090708 LE: T=2,4A=02278
20 20
10 : 10 ‘
10° ,
10" b
B -l \
- -20 —E
g0 o
N 107
1w
107 : ' 107% : :
o 10 20 30 40 50 0 10 20 30 40 50
m m

Fig. 8. Graphs showing || P, }}; against m for the repeated period-3 solations of the LC, LL and LE maps for the
values of 7' as Iabeled. The growth/decay rate A for each of these maps is given in the title.

there are repeated period-3 solutions then F always appears to have six real positive roots, corresponding
to two different period-3 solutions. The repeated solutions mark the transition between complex and real
roots.

Note that the period-3 solutions of the finite maps shown in Figs. 3 and 4 are first seen for values of
the time-step shown above to correspond to repeated period-3 solutions, and we now investigate their
stability.

6.1. Period-3 stability

The stability of period-3 solutions can be analyzed in the same way as the period-2 solutions in
Section 5.1, Perturbing the solution by setting @3, = # + 6y, Payy = U+ &, and @0 = w =+ ¥y,
for m = 0 (where the period-3 solution is (u, v, w) given by (6.1)) and linearizing leads to an equation
like (5.5}, except that now the perturbation vectors and matrices are z, = (3, &m, vu)' € R and
I'; € R***, This can be written more simply as

iy = Pf” Zge

where the matrices P, € B3 are defined recursively in terms of the I'; by (5.7). Hence a period-3
solution will be stable if || P, ||, remains bounded as m — o0.
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To compute the matrices P, for the repeated period-3 solutions (at fixed T') we first calculate (using
Map ] e) the time-step A for which they exist as shown in Fig, 7, and the coefficients «, b, and ¢ of the
cubic p{x). From this the three (real and positive) repeated period-3 roots can be computed and without
loss of generality we set u to be the minimum root. It is important to note that the ordering of the other
two roots does matter, since in general if 4 — v — w is a period-3 solution, then ¥ — w — v is not. In
all cases we have found the period-3 solution to be # — v — w with # < v < w. The matrices /7 can
then be found by straightforward substitution, and the P, computed from them using (5.7).

The linear stability matrices P,, for the repeated period-3 solutions are the same for the CC, CL and
CE maps at a fixed value of T, and their norms are found to decay like 2™ for A = 0.60694 when T =}
and A = 0.20969 when I' = 2. The matrices P, for the LC, LL and LE maps at the repeated period-3
solutions are all different. Graphs of || P, |}, against m for the maps and values of T corresponding to the
bifurcation plots of Fig. 4 are shown in Fig. 8. The corresponding time-step values can be found from
Fig. 7. The computed growth/decay rates # are given in the title of each plot.

7. An adaptive algorithm

So far we have studied fixed time-step discretizations of the IDE (1.1). In this section we look at a
variable time-step algorithm that is obtained by imposing a local error-control policy.

Following the standard practice for ODEs (see, for example, [5]) we set up an embedded pair of time-
stepping formulas. This is done by combining the main formula (Euler) with a second-order formula
(Improved Euler). A similar process has been examined in [7] for a delay differential equation.

The algorithm can be written in terms of the following guantities:

k=, (1 -5 q&,,_ja),-:n) , (7.1)
j=0

(pn-%-l =@, + hoky, (7.2}
ky =, (1 - Z ‘angjwj,n.ﬂ) , (7.3)
=0
€8ty 4 1= %hn tky — kyl. (7.4)
g 12
T
Apes ==y ( ) . (7.5)
e'Stn.-H

where the weights {®; ,} now depend upon » and satisfy

i ;
W; p R / K, —s)ds. (7.6)

Lo fone]

Note that the time-step h,, == i, — #, may now vary with n. The quantities k, and k, represent stage-
values for the two ODE formulae, est,; is the local error estimate for the step, v is a user-supplied error
tolerance, # € (0, 1) is a safety factor and /ey 18 the next time-step to be used. (When the time-step is
constant the formula for @, reduces 1o (2.2).)
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The overall algorithm for a single step from 1, to 1, + &, may now be written as
(1) Compute ky, @, 1, ky, est,y; and fpey.

(Zay Ifest,i; = v then reject the step. Set /i, = Apew and return to (1)

(2b) Otherwise (est;;; < 7) accept the step. Set A0 = hpey.

Here we are concerned with the long-term behaviour of numerical methods for (1.1). The variable time-
stepping algorithm is more complicated than the fixed-step discretizations analyzed in earlier sections;
however, by making appropriate assumptions it is possible to obtain some insights.

We have seen that the fixed time-step discretization permits spurious solutions. It is generally accepted
that conventional error-control algorithms are successful at suppressing such spurious behaviour and a
rigorous justification of this, for the case of GDEs, is given in [2]. Hence it is reasonable to assume that
the above algorithm computes a solution that is close to the correct steady state of ¢ () = 1. We will
therefore linearize perturbations about this solution and consider the problem

d t) = / K ds 7.7
EEW)"_; P()K{r —s)ds (7.7)

for the kernel (1.3).

The basic aim of the adaptive algorithm is to take the largest possible time-step, subject to the local
accuracy requirement, Hence, once the numerical solution has approached the steady state we would
expect the algorithm to choose time-steps that are roughly at the boundary of the interval of stability.
This type of behaviour has been studied by Hall {6] and Higham and Famelis [8] for ODEs and delay
differential equations, respectively. They showed that in certain circumstances, it is possible to define
equilibrium states where the method computes solutions that are within O(v) of the exact steady state
and with a time-step that is exactly on the stability boundary. We show below that this analysis carries
through to the Eq, (7.7).

First, we mention that it is important to perform the integration accurately in computing the
weights (7.6). If we were to use simple quadrature rules based on piecewise constant or linear
approximations of the kernel, then the steady state of the discrete method would not be a sufficiently
accurate approximation of the true steady state (see, e.g., Fig. 1). In this case the error control criterion
would require an extremely small time-step in order for the steady state to be resolved to within the
tolerance. In other words, the time-step would always be limited by an accuracy requirement, rather than
the stability constraint. Numerical experiments have confirmed this effect.

Henceforth, we assume that the weights in (7.6) correspond to the PC solution approximation and
are computed by integrating the kernel exactly (i.e., we consider the linearized CE map). Our approach,
based on insights from the delay-differential equation case [8] is to look for an equilibrium state of
the linearized version of the adaptive recurrence (7.1)—(7.5) with a constant time-step, h, = h, and an
oscillating solution ¢; = {(—1)/v. Substituting this into (7.1) and (7.2) for the linearized problem gives

[au}
—y =1 — th(—I)-f w;
j=0
(@}, = w; since the time-step A, is constant), which we write as

—y sy — hu( Xy — X)), (7.8)
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where the even and odd sums Xy and X, for the CE map are

1
Sp=—— and I e
1+g 1+gq
(recall that ¢ = e, r = h/T). Hence, in {7.8) we find the fixed time-step is given by
201+
pe 249 (7.9)
1—g

In order for a fixed time-step to be chosen by the algorithm, we require est,.; = 6 t in (7.5). We bave

oo
Za)j,n%

J=0

(ko — k| = ij‘n(dbnfj - ¢n.+1_j)! = =2|v},
]

j=t

so, using (7.4}, this requirement reduces to
At
R

In summary, Egs. (7.9} and (7.10) define a period-two equilibrium state of the numerical algorithm,
Note that the time-step in (7.9) precisely corresponds to the boundary of stability (3.6) for the CE map.
Hence, in this mode, the algorithm is taking the largest stable time-step. Also, note that (7.10) ensures
that &, is within O(r) of the correct steady state. In practice we would expect the algorithm to approach
this equilibrium state. If the equilibrium is stable—in the sense that it is locally attractive as a solution
to the discrete recurrence for {A,, @, }—then it should be observed exactly. However, in the case of
an unstable equilibrium we would expect the algorithm to exhibit small-scale fluctuations around these
values. Typically, the error-control process takes A, close to the value in (7.9), the instability with respect
to small perturbations causes A, to move away, and if /, becomes too large the error-control criterion
forces a reduction via a rejected step.

To illustrate the relevance of the equilibrium state, we present results for the adaptive algorithm apphied
to (1.1) with kernel (1.3} and T = 1 with the initial condition ¢{z) =0 for t < —10 and ¢ () = 2 for
—10 < r € 0. We chose a tolerance of T = 10~ and a safety factor of @ = (- 8. The problem was solved
for 0 < t < 500, and we present results for the last 100 steps, which typify the long-term behaviour.
The upper plot in Fig. 9 shows the departure of the numerical solution from the steady state ¢(1) = 1,
measured as y, := (P, — 1)/67. For the equilibrium state defined by (7.9) and (7.10), y, alternates
between 1/ 7%, where h* =2 . 399 is the time-step at the stability Iimit—these values are marked with
dashed lines on the plot. It is clear that the numerical solution is approximately following the quantities
defined by (7.9} and (7.10). The lower plot in Fig. 9 gives the time-steps, and it can be seen that the
values oscillate around A* (marked by a dashed line). Overall, the behaviour is consistent with an unstable
equilibrium of the map that takes {h,, @,} to {h,41, Pusi}); see, for example, the results reported in [6].
Approximately one in four steps is rejected and the numerical solution oscillates about the equilibrium
values,

vf = (7.10)

8. Summary

Our overall aim in this work is to study the behaviour of a discrete version of a nonlinear integro-
differential equation. As in the recent references [1,2,4,7,9], our results are derived from a numerical
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Fig. 9. Long time behavicur of the adaptive algorithm (see text for details).

analysis perspective with emphasis on spurious behaviour that arises below, or near, the linear stability
limit of the true fixed point. We believe this to be the first systematic study of the occurrence and stability
of low period spurious solutions for a nonlinear integro-differential model. The map produced is infinite,
in the sense that the approximation at £, depends on all earlier approximations, To specify a complete
algorithm requires choices to be made about

e the basic quadrature method,

e the accuracy with which the kernel is integrated, and

e the treatment of the infinite tail.

The zero fixed point of the underlying continuous problem ¢1.1), (1.3) is unstable. For each of the
numerical methods considered here the corresponding zero. fixed point is also unstable for all i > 0.
The time-step 4" at which the non-zero fixed point loses stability is plotted as a function of the delay
parameter T in Fig. 2. (Recall that the non-zero fixed point ¢ (r) = 1 for the underlying continuous
problem (1.1}, (1.3) is stable for all T = 0.) We also note the following key points,

e In the limit T — oo, the CC, CL and CE maps have a time-step restriction that is unbounded,

whereas the LC, LL and LE maps require b < 2.

e Previous studies on hereditary influences have produced examples where introducing a small delay
improves the stability (see, for example, {12]). From Fig. 2 we see that this behaviour also arises for
the CC, CL, CE and LE maps, but the converse happens in the LL case.

e The type of bifurcation at the stability boundary varies with the choice of quadrature and kernel
approximation.

The bifurcation diagrams Figs. 3 and 4 indicate that behaviour with respect to spurious low period

solutions depends strongly on the precise details of the discretization. We have therefore investigated
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period-2 and -3 solutions, showing that in some cases period-2 solutions can be ruled out, and in others
they exist only beyond the linear stability limit 2. We have developed a technique for studying the
stability of these period-2 solutions which involves the unusual recurrence (5.6), and the stability analysis
gives results that agree with the bifurcation diagrams. We have also been able to characterize a class of
period-3 solutions that are observable in practice. A stability analysis confirms the existence of stable,
positive period-3 solutions below the linear stability limit.

It is generally accepted that including an adaptive error control and time-step selection component
serves to eliminate spurious behaviour. Tests with the the variable time-step algorithm in Section 7 are
in agreement with this belief. Furthermore, insight into the performance of the algorithm can be found
by linearizing about the true fixed point, defining an equilibrium state, and studying its stability, Here
the concept of ‘stability’ relates to the local behaviour of the process around the correct fixed point—the
instability in the process leads to inefficiency (via rejected steps) rather than inaccuracy. Overall, the
adaptive process performs successfully, and in accord with the equilibrium analysis.
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