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Abstract. Spurious long-term solutions of a finite-difference method for a hyperbolic conserva-
tion law with a general nonlinear source term are studied. Results are contrasted with those that
have been established for nonlinear ordinary differential equations. Various types of spurious behav-
ior are examined, including spatially uniform equilibria that exist for arbitrarily small time-steps,
nonsmooth steady states with profiles that jump between fixed levels, and solutions with oscillations
that arise from nonnormality and exist only in finite precision arithmetic. It appears that spuri-
ous behavior is associated in general with insufficient spatial resolution. The potential for curbing
spuriosity by using adaptivity in space or time is also considered.
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1. Introduction.

1.1. Background. There is a growing interest in the analysis of time-stepping
methods for the long-term solution of nonlinear evolutionary equations. In partic-
ular, the propensity for widely used methods to generate spurious steady states is
receiving much attention. In the context of ordinary differential equations (ODEs),
many examples of spurious behavior have been identified [6, 12, 24]. Theoretical work
in this area includes the study of spurious fixed points for small time-steps [10], the
identification or construction of methods that guarantee to avoid spurious fixed points
[7, 12], and the use of bifurcation theory to study routes to spuriosity [13, 20]. In
[1] the potential for spurious behavior with an adaptive ODE algorithm was inves-
tigated, and both positive and negative results concerning the effectiveness of error
control were derived.

Our aim in this work is to analyze spurious behavior arising from a discretized
hyperbolic partial differential equation (PDE) of the form

ut + (f(u))x = g(u), 0 < x < 1, t > 0,(1)

where the flux f and the source term g are nonlinear. Motivating this work is our
desire to highlight new features that arise from the introduction of a spatial derivative,
and hence to contrast the results with those that have been established for ODEs.

Difficulties arise in the numerical solution of (1) when the source term is “stiff”;
that is, the time scale associated with reaction is very much shorter than that associ-
ated with advection. One of the most common problems addressed in the literature is
that of incorrect speed of propagation of waves; see, for example, [3, 5, 15, 23]. This
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has lead to the development of methods, often implicit or semi-implicit, for time-
accurate solutions. In this work we are concerned with the amplitude of the waves,
rather than with the speed.

1.2. Model problem. To simplify the presentation, we focus on the case of
linear advection, so that the model problem becomes

ut + aux = g(u), 0 < x < 1, t > 0,(2)

where a > 0 is constant and the source term g is nonlinear. In section 6 we indicate
how our results carry through to the more general nonlinear flux case (1). For the
purpose of illustration we will frequently refer to the logistic source term

g(u) = αu(1− u),(3)

where α > 0 is constant. This prototypical nonlinear function has been used in many
studies of the dynamics of numerical methods.

Making the change of coordinates s = x− at, τ = t transforms (2) to

du

dτ
= g(u).(4)

Hence, along the characteristics, where x−at is constant, solutions solve the ODE (4).
(The underlying ODE (4), will, of course, also play an important role in the analysis
of numerical methods for (2).) For the logistic function (3), given uτ=0 = u0, (4) has
the solution

u(τ) =
u0

u0[1− exp(−ατ)] + exp(−ατ)
.

Hence, when the initial condition is positive the solution tends to the stable fixed
point u ≡ 1 as τ → ∞.

We consider both the periodic initial value problem (PIVP) and the initial bound-
ary value problem (IBVP) for (2). In the PIVP case, we are given u(x, 0) for 0 < x < 1
and u is assumed to be periodic in space: u(1+x, t) = u(x, t). It is clear from the dis-
cussion above that with g given by (3) and positive initial data, the solution converges
to the fixed point u ≡ 1 as t → ∞.

In the IBVP case we are given u(x, 0) for 0 < x < 1 and u(0, t) for t > 0.
For simplicity, we will assume a constant boundary condition, u(0, t) ≡ u0. With
the logistic source term (3), if the initial and boundary data are positive, then the
solution tends to a (generally) nonuniform steady state with profile

u(x, t) =
u0

u0[1− exp(−αx/a)] + exp(−αx/a)
.(5)

1.3. Numerical method. If the spatial derivative in (2) is approximated using
first order upwind differences [21], then we obtain an ODE system of the general form

Ut = − a
∆xAU+ g(U) + a

∆xb =: S(U),(6)

where ∆x is a spatial meshsize and Uj(t) ≈ u(j∆x, t). Here, g(U)j = g(Uj). We let
N = 1/∆x, so that U(t) ∈ R

N . For the PIVP we have

A =


1 −1

−1 1
. . .

. . .

−1 1

 , b ≡ 0,(7)
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while for the IBVP

A =


1

−1 1
. . .

. . .

−1 1

 , b =


u0

0
...
0

 .(8)

To approximate the semidiscrete system (6) we consider a general explicit, two-
stage, second order Runge–Kutta (RK) formula [14, p. 154] with tableau

0 0
1/(2θ) 1/(2θ) 0

1− θ θ
.

Here θ �= 0 is a free parameter and we always assume that 0 < θ ≤ 1. Common
choices are θ = 1

2 and θ = 1, giving the improved Euler and modified Euler methods,
respectively. These time-stepping methods are widely used in the finite-difference
discretization of advection problems; see, for example, [11].

Letting ∆t denote the time-step, the RK method applied to (6) produces approx-
imations Un ∈ R

N with Un
j ≈ U(j∆x, n∆t) according to

Un+1 = Un +∆t
[
(1− θ)S(Un) + θS(Un + ∆t

2θ S(U
n))

]
.(9)

2. Fixed points of the semidiscrete problem. Although we are mainly con-
cerned with the numerical solutions generated by the overall algorithm, a useful start-
ing point is to study the fixed points of the system (6).

2.1. Initial BVP. For the IBVP (6) has a fixed point when

Uj−1 = Uj − ∆x
a g(Uj), j = 1, 2, . . . , N,(10)

with U0 = u0. Maps of this type have received considerable attention in the literature;
see, for example, [16]. Generically, there are parameter ranges for which periodic
cycles of any period may be generated.

The following results give insight into the behavior of the map (10) around a zero
of g.

Theorem 2.1. Suppose g ∈ C1 with g(β) = 0 and g′(β) < 0 for some β ∈ R.
Let I ⊆ R be an open, connected interval containing β such that g′(u) < 0 for all
u ∈ I. Then, if U0 ∈ I, there exists a solution sequence {Uj}Nj=0 of (10) in which
the components Uj approach β monotonically as j increases. Furthermore, this fixed
point of the semidiscrete IBVP (6) is linearly stable.

Proof. Consider the general case where Uj−1 ∈ I with Uj−1 �= β. Define hj−1 :
R �→ R by

hj−1(u) = u− ∆x

a
g(u)− Uj−1.(11)

Then, using the mean value theorem,

hj−1(Uj−1) = −∆x

a
g(Uj−1) = −∆x

a
(g(Uj−1)− g(β)) = −∆x

a
g′(ξj−1)(Uj−1 − β),

where ξj−1 ∈ I. Hence, hj−1(β)hj−1(Uj−1) = (∆x/a)g′(ξj−1)(Uj−1 − β))2 < 0; so
there is a zero Uj of hj−1 between Uj−1 and β.
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The Jacobian of the ODE (6) at this fixed point is lower triangular with strictly
negative diagonal entries. Hence, the fixed point is linearly stable.

Theorem 2.1 gives the reassuring result that there are stable, smooth, fixed points
of (6) that mimic those of the underlying PDE. The next result shows that unstable,
oscillatory, fixed points may also exist if the spatial resolution is inadequate.

Theorem 2.2. Suppose g ∈ C1 with g(β) = 0 and g′(β) > 2a/∆x for some
β ∈ R. Let I ⊆ R be an open, connected interval containing β such that g′(u) > 2a/∆x
for all u ∈ I. Then if U0 ∈ I and U0−∆xg(U0)/a ∈ I there exists a solution sequence
{Uj}Nj=0 of (10) in which the components Uj approach β as j increases, with successive
components lying on opposite sides of β. Furthermore, this fixed point of the semi-
discrete IBVP (6) is linearly unstable.

Proof. Consider the general case where Uj−1 ∈ I with Uj−1 �= β, and let Wj−1 :=
Uj−1 −∆xg(Uj−1)/a ∈ I. From the mean value theorem,

(Wj−1 − β)(Uj−1 − β) = (Uj−1 − β)2(1−∆xg′(ξj−1)/a) < 0,

where ξj−1 ∈ I. Hence, Uj−1 andWj−1 lie on opposite sides of β. Let hj−1 be defined
by (11). Then h′

j−1(u) < −1 for all u ∈ I.
Now, consider the case where Uj−1 < β. Note that hj−1(β) > 0. For any u ∈ I

with u > Uj−1 we have

hj−1(u) = hj−1(Uj−1) +

∫ u

Uj−1

h′
j−1(u) du < hj−1(Uj−1)− u+ Uj−1.

Putting u = Wj−1 gives hj−1(Wj−1) < 0. Hence, hj−1 has a root Uj ∈ (β,Wj−1).
Also, we note that Wj := Uj −∆xg(Uj)/a = Uj−1 ∈ I.

In the case where Uj−1 > β, a similar argument shows that hj−1 has a root
Uj ∈ (Wj−1, β).

Linear instability follows by observing that the relevant Jacobian of the ODE (6)
is lower triangular with strictly positive diagonal entries.

For the logistic source term (3), these results lead to the following corollary.
Corollary 2.3. Consider the semidiscrete IBVP (6) with logistic source term

(3).
If U0 ∈ (1/2,∞), then there exists a linearly stable fixed point {Uj}Nj=0 of (6) for

which the components Uj approach 1 monotonically as j increases.

If 0 < ψ < 1/2 and (1−ψ−
√
1− 3ψ2)/2 < U0 < (1/2)−ψ, where ψ := a/(α∆x),

then there exists a linearly unstable fixed point {Uj}Nj=0 of (6) for which the components
Uj approach zero as j increases with successive components lying on opposite sides of
β.

A spatially uniform fixed point (SUFP) has the form U = βe, where e =
[1, 1, . . . , 1]T . It is clear from the form of (6) that such a fixed point exists only
if g(β) = 0 and u0 = β. In this case, βe is a discrete analogue of a fixed point of (4),
and hence of the problem (2). (Note that strict spatial uniformity requires the appro-
priate boundary condition to be specified. However, as illustrated by Theorems 2.1
and 2.2, fixed points that are almost spatially uniform arise generically.)

The Jacobian of the ODE (6) at a point U = βe is g′(β)I − (a/∆x)A. This
matrix is lower bidiagonal, and hence, it has the single eigenvalue λ = g′(β)− a/∆x.
This implies that a fixed point U = βe is stable for

g′(β)− a
∆x < 0,(12)
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a condition that is automatically satisfied if g′(β) ≤ 0 and a > 0. However, the Jaco-
bian may be highly nonnormal, leading to extreme transient growth of perturbations
in (6) and a negligible basin of attraction for the fixed point. In this case it is more
profitable to study the pseudospectrum of the Jacobian [17]. Omitting the details,
the pseudospectrum of this matrix in an appropriate limit is given by (see [18])

g′(β)− a
∆x (1− z), z ∈ C, |z| ≤ 1.

In order to have stability in a practical sense when N is large, it is necessary that
the pseudospectrum lie in the left half of the complex plane. This reduces to the
condition g′(β) < 0, which is identical to the corresponding constraint for the PIVP
(see section 2.2).

2.2. Periodic IVP. The PIVP version of (6) has a fixed point when (10) holds,
with the interpretation that U0 ≡ UN . As in the IBVP case, we may study fixed
points that are close to a zero of g. The arguments used in Theorems 2.1 and 2.2
remain valid, and, because of the “wrap-around” effect, the following stronger result
holds.

Theorem 2.4. Suppose g ∈ C1 with g(β) = 0 for some β ∈ R.
If g′(β) < 0, let I ⊆ R be the largest open, connected interval containing β such

that g′(u) < 0 for all u ∈ I. Then the only fixed point of the semidiscrete PIVP (6)
for which U0 ∈ I is the linearly stable SUFP βe.

If g′(β) > 2a/∆x, let I ⊆ R be the largest open, connected interval containing β
such that g′(u) > 2a/∆x for all u ∈ I. Then the only fixed point of the semidiscrete
PIVP (6) for which U0 ∈ I and U0 − ∆xg(U0)/a ∈ I is the linearly unstable SUFP
βe.

3. Fixed points of the overall algorithm.

3.1. Time-stepping on the underlying ODE. We begin this section by ex-
amining fixed points of the underlying RK(θ) method on the scalar ODE ut = g(u).
Introducing z to represent an intermediate stage value, a fixed point β of the RK(θ)
scheme must satisfy

β + ∆t
2θ g(β) = z,(13)

(1− θ)g(β) + θg(z) = 0.(14)

It is clear that if g(β) = 0, then z = β is a solution—so that fixed points of the ODE
are inherited by the RK scheme. (This is true for all RK schemes [12].) However, for
general nonlinear g, spurious fixed points, where g(β) �= 0, may be admitted.

It is possible to make some general comments about spurious fixed points in (13)–
(14). (Recall our assumption that 0 < θ ≤ 1.) First, from (14), there must be at least
one zero of g between z and β. Moreover, if u is such that g(u) = 0, g′(u) �= 0, and
β = u+ c1ε+ c2ε

2 + · · · for some small parameter ε and constants c1, c2, . . ., then

(1− θ)β + θz = u+O(ε2).

This tells us that z is better than β as an approximation to u when θ ∈ (1/2, 1] and
ε is small.

Fixed points arising with the logistic nonlinearity (3) have been studied by many
authors. For any 0 < θ ≤ 1, the fixed point u = 1 is stable for 0 < ∆t < 2. Letting
r := α∆t, the following results about spurious fixed points are known for the popular
choices of θ = 1/2 and θ = 1, [6].
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θ = 1: spurious fixed points u = 1+2/r and u = 2/r exist for all r. The former
is stable for 0 < r < −1+√

5, and the latter is stable for 2 < r < 1+
√
5.

θ = 1
2 : spurious fixed points u = [2 + r ±√

r2 − 4]/(2r) exist for r > 2 and are

stable for 2 < r <
√
8.

Two points are worth emphasizing.
• In these examples, spurious fixed points either cease to exist or become arbi-
trarily large in modulus as ∆t → 0. Humphries [10] proved a general result
in this vein—for any RK formula and any locally Lipschitz g, a spurious fixed
point that persists for small ∆t must blow up as ∆t → 0.

• The θ = 1 case above shows that although spurious fixed points must blow
up as ∆t → 0, they may remain stable for arbitrarily small ∆t.

3.2. Spatially uniform fixed points of the PIVP. For the PIVP it is
straightforward to confirm that βe is a fixed point of the overall algorithm if and
only if β is a fixed point for the RK method on the scalar ODE ut = g(u). Hence,
the question of existence of SUFPs has been answered in the previous subsection.
Stability, however, is a separate issue.

Suppose first that βe is a nonspurious SUFP, so that g(β) = 0. Then we know
from [12, Theorem 3] that the appropriate condition for linear stability is |R(z)| < 1 for
every z = ∆tλ, where λ is an eigenvalue of −aA/∆x+g′(β)I and R(z) = 1+z+z2/2.
The matrix A has eigenvalues 1 − exp(iϕ), where ϕ ≡ ϕj = 2πj/N , j = 1, 2, . . . , N .
Treating ϕ ∈ [0, 2π) as a continuous variable (which may be justified when N is large),
it follows that the spectrum of A lies on a circle centered on the negative real axis.
It may then be shown that the real eigenvalues of A always dominate the stability
condition and the required constraint may be written

0 < −∆tg′(β) < 2− 2c.(15)

For the logistic source term (3) with β = 1, this becomes 0 < r < 2 − 2c, where
r = α∆t. This region is shown in light gray in the plots of Figure 1.

Generally, writing the map (9) as Un+1 = G(Un), after some manipulation the
Jacobian of G at a point U = βe may be written in the form

G′(βe) = (1 + ρ− 1
2γ

2)I + 1
2 (cA− γI)2,(16)

where

γ = 1 + 1
2∆t(g′(β) + g′(z)),(17)

ρ = ∆t((1− θ)g′(β) + θg′(z) + 1
2∆tg′(β)g′(z)),(18)

with z defined in (13). We use c := a∆t/∆x to denote the Courant number [21].
For the logistic source term it is possible to determine the stable parameter ranges
of the spurious fixed points corresponding to each value of θ. This leads to “almost
triangular” regions with a vertical edge determined by the eigenvalue λ(A) = 0 and
the “hypotenuse” by λ(A) = 2, (ϕ = π). The remaining eigenvalues reduce the
regions by rounding the apex in such a way as to create a C1 smooth boundary. The
details are omitted in view of their complexity. These regions are shown in darker
gray in Figure 1 for θ = 1/2, 3/4, 1.

Two key points arise from Figure 1. First, for θ > 1
2 it is possible to choose

parameter values where both the correct and spurious fixed points are stable. In such
cases, the choice of initial data will determine which, if either, of the two steady states
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Fig. 1. Stable parameter ranges in the (r, c)-plane for steady states of the RK(θ) methods with
θ = 0.5, 0.75, 1.0 on the PIVP with (3). On the bottom row the vertical axis shows the magnitude of
the steady state solution.

is computed. A numerical illustration of this effect is given in section 3.4. The second
point concerns the stability of spurious fixed points for small ∆t. We know from
section 3.1 that for θ = 1 on the scalar ODE the spurious fixed point u = 1 + 2/r is
stable for 0 < r < −1 +√

5 ≈ 1.2. This stability interval is seen along the c = 0 axis
at the base of the dark shaded θ = 1 region in Figure 1. However, it is clear that if
we increase c beyond zero, moving from the ODE to the PDE, then the spurious fixed
point is always unstable for small r, that is, small ∆t. We now develop some theory
to show that this behavior is generic.

The lemma below concerns the scalar ODE.
Lemma 3.1. Consider the RK(θ) method (9) (with 0 < θ ≤ 1) applied to the scalar

ODE (4). Suppose that g : R �→ R is bounded and differentiable on every bounded
interval, the zeros of g are separated, and g(u) is monotonic for all |u| sufficiently
large. Suppose further that for sufficiently small ∆t there is a spurious fixed point
β = β(∆t) with β depending C1 continuously upon ∆t and with g(β) bounded away
from zero for small ∆t.

(1) For θ = 1, we have g′(β) < −2/∆t for sufficiently small ∆t.
(2) For 0 < θ < 1, the fixed point β of the method (9) is linearly unstable for

sufficiently small ∆t.
Proof. Let z = z(∆t) be defined by (13). Note that if β is bounded as ∆t → 0,

then ∆tg(β) → 0, so that z → β in (13). In this case, from (14), g(β) → 0. This
contradicts the assumption that g(β) is bounded away from zero for small ∆t, and
hence, we must have |β| → ∞ as ∆t → 0.

For the remainder of the proof we assume without comment that ∆t is sufficiently
small for our arguments to hold. We use a dot to represent differentiation with respect
to ∆t so that, for example, β̇ denotes dβ/d∆t.

For θ = 1 we have g(z) = 0 from (14). Hence, z is fixed as ∆t → 0. It follows
from (13) that βg(β) < 0 and hence, from the monotonicity of g, that g′(β) < 0.
Differentiating (13) with respect to ∆t gives

ββ̇(2 + ∆tg′(β)) = −βg(β) > 0.(19)

Now β2 increases as ∆t → 0, so d(β2)/d∆t < 0; that is, 2ββ̇ < 0. Using this in (19)
gives g′(β) < −2/∆t.

For 0 < θ < 1 it follows from (14) that g(β) and g(z) are of opposing sign.
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From the boundedness and monotonicity assumptions on g, we must have |z| → ∞
as ∆t → 0, with zβ < 0. In (13) we then find that

β2 +
∆tβg(β)

2θ
= zβ < 0,

and hence, βg(β) < 0. The monotonicity of g then forces g′(β) < 0.
Now (13) and (14) give

2(1− θ)z +∆tg(z) = 2(1− θ)β.(20)

Differentiating (13) and (20) with respect to ∆t gives

(2θ +∆tg′(β))β̇ + g(β) = 2θż,

(2− 2θ +∆tg′(z))ż + g(z) = 2(1− θ)β̇.

This may be written[
2θ +∆tg′(β) −2θ
−2(1− θ) (2− 2θ +∆tg′(z))

] [
β̇
ż

]
= −

[
g(β)
g(z)

]
.(21)

The determinant of the two-by-two matrix in (21) is 2ρ, where ρ is defined in (18).
Hence,

2ρ

[
β̇
ż

]
= −

[
(2− 2θ +∆tg′(z))g(β) + 2θg(z)
(2− 2θ)g(β) + (2θ +∆tg′(β))g(z)

]
.

Using (14), this simplifies to

2ρ

[
β̇
ż

]
= −

[
∆tg(β)g′(z)
∆tg(z)g′(β)

]
.

Thus, multiplying the first component by β gives

ρ
dβ2

d∆t
= −∆tβg(β)g′(z).(22)

Our earlier arguments showed that βg(β) < 0, and since z and β tend to ±∞ in
opposite directions, it follows from the monotonicity of g that g′(z) < 0. Hence, the
right-hand side of (22) is negative. Since d(β2)/d∆t < 0, we deduce that ρ > 0. This
gives G′(β) > 1 in (16) (with the dimension set to N = 1 and with A = 0), and
therefore, the spurious fixed point is unstable.

We now use Lemma 3.1 to establish a result about the stability of spurious SUFPs
of the semidiscrete PDE. The theorem below applies to a general class of semidiscrete
problems, for which the PIVP (6) is a special case. (Adding this level of generality
makes the theorem more widely applicable and does not complicate the proof.) The
result shows that stable, spurious SUFPs occur only where there is a lack of spatial
resolution.

Theorem 3.2. Consider the RK(θ) method (9) (with 0 < θ ≤ 1) applied to an
ODE system of the form

Ut = − a
∆xmAU+ g(U),(23)

where a,∆x > 0 and g(U)i ≡ g(Ui) with g satisfying the assumptions in Lemma 3.1.
Suppose that A ∈ R

N×N satisfies Ae = 0 and has an eigenvalue 0 < λ ∈ R. Consider
a spurious SUFP βe, where β = β(∆t) depends C1 continuously upon ∆t, with g(β)
bounded away from zero for small ∆t.
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(1) For θ = 1, such a SUFP cannot be stable for small ∆t if

∆xm <
aλ

g′(z)
,(24)

where the intermediate stage value z is defined in (13).
(2) For 0 < θ < 1, such a SUFP cannot be stable for small ∆t.
Proof. First, note that since Ae = 0, if βe is a SUFP for the RK(θ) method on

(23), then β is a fixed point for the same method on the scalar problem (4). Hence,
we may appeal to Lemma 3.1.

Stability of the SUFP βe is determined by the spectrum of the matrix G′(βe) in
(16)–(18), with c := a∆t/∆xm. Since A has an eigenvalue λ ∈ R, G′(βe) has a real
eigenvalue of the form

µ = 1 + ρ+ 1
2c

2λ2 − γcλ.

Instability of the SUFP βe follows if we can show that µ− 1 > 0.
Consider first the case θ = 1. It is straightforward to verify that

µ− 1 = 1
2 (λc−∆tg′(β)− 2)(λc−∆tg′(z)),

where, from Lemma 3.1, the first factor on the right-hand side is positive for small
∆t. Consequently, µ − 1 > 0 if λc > ∆tg′(z), from which, using c = a∆t/∆xm, we
obtain (24).

The result for 0 < θ < 1 is almost immediate from Lemma 3.1. Since µ > 1 when
c = 0, it follows by continuity that µ > 1 for small c.

For the picture in the top right-hand corner of Figure 1 we have θ = 1, λ = 2,
m = 1, β = 1 + 2/(α∆t), z = 0, g′(0) = α > 0. So the condition in Theorem 3.2 for
no stable spurious SUFPs when ∆t is small becomes ∆x < 2a/α; that is, c > r/2.
Figure 1 shows this bound to be sharp.

3.3. Spatially uniform fixed points of the IBVP. For the IBVP the PDE
has a SUFP if and only if g(u0) = 0. In this case, the map (9) inherits the fixed
point βe, with β = u0. The Jacobian of the map at this point is lower triangular with
Toeplitz form. The matrix has a single eigenvalue, which is real, and restricting this
to lie in the interval (−1, 1) produces the stability condition

0 < c−∆tg′(β) < 2.(25)

The left-hand inequality requires ∆xg′(β) < a, which forces ∆x to be sufficiently
small when g′(β) > 0, but imposes no restriction when g′(β) < 0. The right-hand
inequality then requires

∆t <
2∆x

a−∆xg′(β)
.(26)

However, since the Jacobian is (potentially) highly nonnormal, eigenvalues may be
misleading indicators of stability. This phenomenon is well known in the analysis of
linear stability of PDE methods [17] and corresponds to the classical result [19] that
stability of the PIVP is a necessary condition for stability of the IBVP.

We now show the nonexistence of spurious SUFPs.
Theorem 3.3. For the IBVP, when N ≥ 3, the numerical method (9) does not

admit a spatially uniform, spurious fixed point.
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Fig. 2. Spurious and correct steady states for the PIVP.

Proof. If βe is a SUFP, then

(1− θ)S(βe) + θS

(
βe+

∆t

2θ
S(βe)

)
= 0.(27)

From the form of S in (6), considering the jth component of (27), where j > 2 leads
to the condition

(1− θ)g(β) + θg

(
β +

∆t

2θ
g(β)

)
= 0.(28)

This shows that β must be a fixed point for the RK(θ) method applied to the under-
lying scalar ODE. Now, taking the second component in (27) and using (28) gives

u0 − β = 0.(29)

Finally, using (28) and (29) in the first component of (27) shows that

a∆t

2∆x
g(β) = 0.

Hence, g(β) = 0, and the fixed point is not spurious.
From the proof of Theorem 3.3 it is clear that if β is a spurious fixed point for the

RK(θ) method applied to the underlying scalar ODE, then βe satisfies the conditions
required for a fixed point on the IBVP problem, except near the boundary j = 0. We
will see in the next section that it is possible for the method to settle to a fixed point
that is close to β except near the left-hand boundary.
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Fig. 3. Spurious nonuniform steady state for the IBVP.

3.4. Numerical examples and further analysis. We now present some nu-
merical results. All computations used a = 1 in (2) and θ = 1 in (9). We be-
gin by illustrating that stable spurious and stable correct fixed points may coex-
ist. Figure 2 shows the first 20 time-levels for the PIVP using ∆x = 1/N = 1/40,
∆t = 0.1∆x and with α = 400 in the logistic source term (3). This gives r = 1
and c = 0.1, and we see from the top right-hand picture in Figure 1 that the fixed
points U = βe with β = βcorr := 1 (correct) and β = βspur := 1 + 2/r = 3 (spu-
rious) are stable. The upper picture in Figure 2 was generated using initial data
u(x, 0) = 0.7βspur + 0.4 sin(2πx)

2, and the solution is attracted to the spurious level.
The lower picture used u(x, 0) = 0.5βspur + 0.4 sin(2πx)

2, which is seen to be in the
basin of attraction of the true fixed point.

The upper picture in Figure 3 gives the result when the same parameter values
as above are used on the IBVP with initial data u(x, 0) = βspur + 0.3 sin(2πx)2 and
a boundary condition of u0 = βspur. In this case, most components have settled
close to the spurious level βspur, but there are oscillations at the left-hand boundary.
(For clarity, the boundary value is not plotted.) The overall solution is period two in
time. The lower picture in Figure 3 gives the two profiles between which the solution
oscillates. Note that Theorem 3.3 shows that a spatially uniform spurious fixed point
cannot be computed for the IBVP.

In the course of our experiments, we found that, on both the IBVP and PIVP,
it was common for the solution to settle down to a stable steady state that consisted
of disjoint “locally uniform” patches that mix together spurious and correct levels.
Figure 4 gives an example. This stable steady state arose on the PIVP with the same
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parameters as above; we simply changed the initial condition to u(x, 0) = 0.6βspur +
0.3 sin(2πx)2. In this example, some initial data has been attracted to the spurious
level βspur and some to the correct level βcorr. The lower picture in Figure 4 gives the
profile of the steady state.

The profile shown in Figure 4 can be analyzed further, as follows. Writing the
map (9) as Un+1 = G(Un), a fixed point must satisfy U = G(U), which reduces to
a set of scalar equations for the components:

− a

∆x
[Uj − Uj−1] +

a2∆t

2∆x2 [Uj − 2Uj−1 + Uj−2]− a∆t

2∆x
[g(Uj)− g(Uj−1)]

+ g

(
Uj − a∆t

2∆x
(Uj − Uj−1) +

∆t

2
g(Uj)

)
= 0,

for j = 2, 3, . . .. Hence, the sequence {Uj}Nj=0 satisfies a two-step recurrence that we
may write as

q(Uj−2, Uj−1, Uj) = 0.(30)

Note that as an equation for Uj (given Uj−2 and Uj−1), (30) is implicit. On the other
hand, if we regard (30) as an equation for Uj−2 (given Uj and Uj−1), then the map is
explicit.

With the logistic source term, to explain the upward jumps in Figure 4 we look
for a solution sequence for (30) of the form

. . . , 1, 1, 1 +
2

r
+ c2V0, 1 +

2

r
+ c2V1, 1 +

2

r
+ c2V2, . . . .(31)
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Since q(1, 1, 1+2/r) = 0, we take V0 = 0. The equation q(1, 1+2/r, 1+ 2
r + c2V1) = 0

has a solution V1 = −2/(r2(r + 2)) + O(c). Generally, assuming that the {Vj} are
small and linearizing produces the relation

Vj (r + 2 + c) (r − c) + 2cVj−1 (1 + c)− c2Vj−2 = 0.(32)

The characteristic polynomial of this recurrence has roots −c/(r−c) and c/(r+2+c).
Since r > 0 and c > 0, it follows that Vj → 0 as j → ∞ in (32) if r > c, with very
rapid convergence when r � c.

Next we look for a downward jump solution of the form

. . . , 1 +
2

r
, 1 +

2

r
, 1 + V0, 1 + V1,1 + V2, . . . .(33)

Setting q(1 + 2/r, 1 + 2/r, 1 + V0) = 0 gives the quadratic

V 2
0 r2 + V 2

0 r (r + c− 2)− 4c.

We will take the smaller root, for which V0 =
4c

r(r−2)+O(c2). Linearizing q(1+2/r, 1+

V0, 1 + V1) gives

V1 ≈ 2c
r2V0 + rcV0 − c− V0r

(r + c− 2) r (r + rcV0 + c)
.

Generally, linearizing the equation g(1+Vj−2, 1+Vj−1, 1+V j) = 0 gives the recurrence

Vj (r + c) (r + c− 2)− 2cVj−1 (c− 1 + r) + c2Vj−2 = 0,(34)

whose characteristic polynomial has the roots c/(r + c), c/(r + c− 2). It follows that
a sufficient condition for Vj → 0 as j → ∞ in (34) is r < 2− c.

The existence of the c2 factor in the sequence (31) suggests that upward jumps
settle to the new level more rapidly than downward jumps. This agrees with the
profile in Figure 4.

Next, we show that for small c it is generic to have steady states profiles of the
type pictured in Figure 4, that is, profiles that jump between levels, with each level
corresponding to a stable (correct or spurious) fixed point for the RK map on the
underlying scalar ODE. Note that this result formalizes an argument given in [4].

Theorem 3.4. Suppose g ∈ C1. Regard ∆t and ∆x as fixed and allow c =
a∆t/∆x to vary. Suppose U∗ ∈ R

N is such that every component of U∗ is a stable
(correct or spurious) fixed point of the RK(θ) method on the underlying scalar ODE
(4). Then there exists c∗ > 0 such that for all 0 ≤ c ≤ c∗ there is a stable fixed point
U = U(c) of the RK method on the PIVP (6), where U(c) depends continuously upon
c and U(0) = U∗.

Proof. Write the RK method on the PIVP (6) as

Un+1 = Un +∆tH(c, Un).(35)

We know that H(0,U∗) = 0. At c = 0 the map (35) uncouples; the Jacobian
∂H(0,U)/∂U is diagonal. Since each component of U∗ represents a stable fixed
point on the underlying scalar ODE, we have∣∣∣∣∣1 + ∆t

(
∂H(0,U∗)

∂U

)
i,i

∣∣∣∣∣ < 1, 0 ≤ i ≤ N.
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It follows that each element on the diagonal of ∂H(0,U∗)/∂U is nonzero, and hence,
the Jacobian is nonsingular. The implicit function theorem may therefore be invoked,
to show that there exists c∗ > 0 such that for all 0 ≤ c ≤ c∗ there is a solution U(c)
of the nonlinear system H(c,U(c)) = 0, where U(c) depends continuously upon c and
U(0) = U∗. Since the eigenvalues of a matrix depend continuously upon its entries, it
follows that by further reduction of c∗, if necessary, we can ensure that the eigenvalues
of I +∆t∂H(c,U(c))/∂U remain inside the unit disc for all 0 ≤ c ≤ c∗.

4. Nonnormality in the IBVP. We now describe a type of spurious behavior
that arises on the IBVP in the presence of finite precision and nonnormality. The
effect is linear, in the sense that the same behavior can be seen when the logistic
source term is replaced by α(1− u).

Figure 5 shows the results of a computation on the IBVP with the logistic source
term (3) using α = 400, ∆x = 1/N = 1/40, and ∆t = .97∆tlim. Here, ∆tlim :=
2∆x/(1 + α∆x) is the eigenvalue stability limit, that is, the time-step beyond which
the correct steady stateUn = e becomes linearly unstable. We took u(x, 0) = 1+10−8

for the initial data and u0 = 1 as the boundary condition. The upper picture in
Figure 5 shows the solution evolving over the first 120 time-steps (with every fourth
time level plotted). In this regime, small oscillations are growing in magnitude and
moving to the right. The lower picture in Figure 5 shows time-levels n = 4010 to
n = 4040. This illustrates the typical long-term behavior: there are O(1) oscillations
around the right-hand boundary that persist for all time.

This type of behavior arises only when (a) the time step is chosen near the linear
stability limit, and (b) the initial data and boundary condition are close to the true
steady state. In such circumstances the numerical solution was observed either to
blow up or tend to a state of the type illustrated in Figure 5.

Spurious behavior of this form was first described on a slightly different model
PDE in [9], and the following simple argument explains the broad details.

After linearizing the problem, the iteration (9) has the form En+1 = BEn, where
En = Un − e and B = G′(e). The matrix B has a spectral radius of .94, and hence,
in exact arithmetic we have En → 0 as n → ∞. However, in the presence of rounding
errors the appropriate model is En+1 = B̂nEn, where B̂n is a perturbation of B. In
our case, B is highly nonnormal and so the eigenvalues of B̂n may be very different
from those of B. If B̂n has an eigenvalue close to the boundary of the unit disc, then
En will not decay, and hence, Un will not approach the steady state e. In our example
B has a single eigenvalue .94, but there is a perturbation of Euclidean norm 10−15

that produces an eigenvalue with real part beyond +1. What we observe in the lower
picture in Figure 5 are pseudoeigenvectors of B; that is, eigenvectors of perturbed
matrices B̂n.

5. Adaptivity. So far, we have analyzed a finite difference scheme on a uniform
grid. In this section we ask whether adaption in either space or time is inimical to
spuriosity.

5.1. Adaptivity in space. First, we consider a “static” spatial equidistribution
algorithm of the type described in [2, 22]. The algorithm proceeds as follows. Suppose
that at time-level n we have an approximation Un on a spatial mesh given by ∆xn

i :=
xn
i+1 − xn

i . Then the finite difference scheme (9) (with appropriate modifications of
the spatial differences to accommodate the nonuniform mesh) is used to produce an
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Fig. 5. Spurious long-term behavior on the IBVP caused by nonnormality.

approximation Ûn+1 at time-level n+ 1. We then form the weights

wn+1
i :=

√
1− µ+ µ(dn+1

i )2,

which involve the gradient approximations

dn+1
i :=

Ûn+1
j+1 − Ûn+1

j

∆xn
i

and the parameter µ ∈ [0, 1]. The new mesh {∆xn+1
i } is found by setting wi∆xn+1

i

equal for all i. This represents a linear system to be solved for the new mesh. The
final numerical solution Un+1 is obtained by piecewise cubic interpolation from the
original data {xn

i , Û
n+1} to the new mesh {xn+1

i }. The motivation for this algorithm
is that the weights measure the “sharpness” of the solution, and so the sharpness per
unit interval is fixed. In this way, the algorithm aims to place more meshpoints in
regions of x where there is rapid spatial change in the solution. The choice µ = 1

2
equidistributes a discretization of the arclength, while µ = 0 gives a uniform mesh.

In experimenting with this algorithm, we fixed a = 1 and at each time-level chose
a value 0.1mini{∆xn

i } for the time-step. In this way the Courant number is bounded
above by 0.1.

It is immediately clear that the equidistribution algorithm described above cannot
eliminate spatially uniform, spurious fixed points. (Inserting a SUFP Un = βe,
with ∆xn

i ≡ 1/N , we see that the solution, the spatial mesh, and the time-step are
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unchanged at the next time-level.) Analyzing the stability of such a fixed point is
a complicated process, since the solution, the spatial mesh, and the time-step may
be perturbed. Also, the stability potentially depends upon the fine-details of the
algorithm, such as the choice of µ and the type of interpolation process used.

In our tests, we found that some of the spatially uniform spurious fixed points
that we identified for a fixed spatial mesh in section 3.2 were stable as solutions for the
equidistribution algorithm. Hence, the algorithm can be made to compute spurious
fixed points. However, because of the Courant number control, this behavior only
arose when the initial data was close to the uniform spurious level. For other types
of initial data, spatial variation of the solution caused a reduction in mini{∆xn

i }, and
hence, in the time-step, and this in turn forced the numerical solution away from the
spurious level.

We also found, as we intuitively expected, that the equidistribution algorithm
eliminated spurious solutions with “jumps” of the form illustrated in Figures 3 and 4.

In summary, although the spatial mesh movement offered an improvement, it did
not completely eliminate the potential for spatially uniform spurious fixed points.

5.2. Adaptivity in time. We now consider adaptation of the time-step as a
means to eliminate spurious behavior. In the context of ODE solvers, this issue has
been looked at in [1], and positive results have been obtained about the benefit of
error control.

We will analyze the standard approach of using an embedded pair of formulas for
the system (6). We assume that the spatial mesh remains uniform. The second order
RK formula in (9) is coupled with Euler’s method, which is first order, to give

Un+1 = Un +∆tn
[
(1− θ)S(Un) + θS

(
Un +

∆tn

2θ
S(Un)

)]
,(36)

Un+1
E = Un +∆tnS(Un).(37)

The secondary formula (37) is used only in the estimation of the error and selection
of a new time-step.

The step is regarded as acceptable if

‖Un+1 − Un+1
E ‖∞

∆tn
≤ τ,(38)

where τ > 0 is the error tolerance. If the error criterion (38) is not satisfied, then
the step is retaken with a smaller ∆tn. The details of how the time-step is altered
after successful or rejected steps will not affect our conclusions. Also, we mention that
changing the norm in (38) or using the error-per-step alternative ‖Un+1−Un+1

E ‖∞ ≤
τ would not impact the results greatly.

We first prove a result that holds when the RK pair (36)–(37) is used to solve a
general ODE system. We show that any fixed point cannot be genuinely spurious, in
the sense that the residual is bounded by the error tolerance.

Lemma 5.1. Suppose that the pair (36)–(37) subject to the error criterion (38)
is used to solve a general ODE system Ut = S(U). If Un = Un+1 = U∗, then
‖S(U∗) ‖∞ ≤ τ .

Proof. If Un = Un+1 = U∗, then from (36)

S(U∗) = θ

[
S(U∗)− S

(
U∗ +

∆tn

2θ
S(U∗)

)]
.(39)
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However, the error criterion (38) ensures that∥∥∥∥θ [S(U∗)− S

(
U∗ +

∆tn

2θ
S(U∗)

)]∥∥∥∥
∞

≤ τ.(40)

Combining (39) and (40) gives the result.
This result is closely related to those proved for regular RK pairs in [8]. In fact,

(36)–(37) is a very special case of a regular pair and the result is therefore stronger
than those in [8]. (In particular the residual bound does not involve a Lipschitz
constant of S.)

Lemma 5.1 translates immediately into a result about SUFPs of the PIVP. How-
ever, the following result is more widely applicable.

Theorem 5.2. Suppose that the pair (36)–(37) subject to the error criterion (38)
is used for either the IBVP or PIVP. If, for some j ≥ 2, Un

j−1 = Un
j = Un+1

j = β,
then |g(β)| ≤ τ .

Proof. Since Un+1
j = Un

j , we have

(1− θ)S(Un)j + θS

(
Un +

∆tn

2θ
S(Un)

)
j

= 0.

Hence,

S(Un)j = θ

[
S(Un)j + S

(
Un +

∆tn

2θ
S(Un)

)
j

]
.

So the error criterion (38) ensures that

|S(Un)j | ≤ τ.(41)

Since Un
j = Un

j−1 = β and j ≥ 2, using the form of S we find

S(Un)j = g(β).(42)

The result follows from (41) and (42).
Note that this result requires only a very weak type of spatial uniformity and spu-

riosity: a single component must be constant locally across space and time. Hence, in
addition to ruling out SUFPs on the PIVP, this type of error control is also guaranteed
to eliminate “jagged” spurious fixed points of the type illustrated in Figure 4.

In our experiments with the tolerance set to τ = ∆x, no spurious fixed points
were encountered.

We remark that the design of error control strategies for time-dependent PDEs
involves many considerations, in particular with regard to the balance of spatial and
temporal errors. Theorem 5.2 illustrates that a simple ODE-based approach offers
immediate advantages from a spuriosity perspective. We are currently investigating
the use of more sophisticated adaptive procedures.

6. Nonlinear flux. We briefly discuss how the results obtained in the previous
sections extend to the more general conservation law (1) with nonlinear flux. The
semidiscrete system (6) takes the form

Ut = − 1
∆xA f(U) + g(U) + 1

∆xb,
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where f(U)j = f(Uj). The matrix A given by (7) or (8) is based on upwind differ-
encing and it is therefore appropriate to assume that

∞ > f ′(u) ≥ a > 0.

The assumption that f ′(u) is bounded strictly away from zero is imposed to avoid
degeneracy at fixed points β, where f ′(β) = 0. The results of section 2 on existence
of SUFPs may then be generalized by replacing g by the composition ag ◦ f−1 (so
that g′ becomes ag′/f ′).

The Jacobian of the fully discrete system may, in this more general setting, be
defined by

G′(βe) = I +∆t ((1− θ)F ′(β) + θF ′(z)) +
1

2
∆t2F ′(β)F ′(z),

where F ′(u) = g′(u)I − (1/∆x)f ′(u)A. This reduces to (16) when f(u) = au. Our
main stability result, Theorem 3.2, then extends naturally and the condition (24) is
replaced by

∆xm <
λf ′(z)
g′(z)

.

7. Summary. This work concerns spurious behavior of finite difference schemes,
with emphasis on the new features that arise on moving from an ODE to a hyperbolic
PDE model.

For the case of uniform meshes, the main results may be summarized as follows:

• Theorem 3.2 for the PIVP shows that, unlike in the ODE case, as the mesh
is refined in a natural manner, spatially uniform spurious fixed points are
generically unstable.

• The computations and analysis in section 3.4 show that nonuniform spurious
fixed points arise naturally. In particular, Theorem 3.4 and the accompanying
analysis highlights the existence of stable nonsmooth steady states that jump
between levels.

• The discussion in section 4 shows how a different type of spurious solution
arises on the IBVP, as a consequence of nonnormality. This behavior exists
only in the presence of finite precision arithmetic.

Section 5 gives results for adaptive algorithms, where the mesh is varied to take
account of the solution. An equidistribution algorithm for the spatial grid offers some
help in the avoidance of spurious behavior but does not completely eliminate spatially
uniform spurious fixed points. In the case of a standard ODE-based time-step control,
Theorem 5.2 provides a rigorous bound on the level of spuriosity.
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