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Abstract.

This note extends and interprets a result of Saito and Mitsui [SIAM J. Numer. Anal.,
33 (1996), pp. 2254–2267] for a method of Milstein. The result concerns mean-square
stability on a stochastic differential equation test problem with multiplicative noise.
The numerical method reduces to the Theta Method on deterministic problems. Saito
and Mitsui showed that the deterministic A-stability property of the Theta Method
does not carry through to the mean-square context in general, and gave a condition un-
der which unconditional stability holds. The main purpose of this note is to emphasize
that the approach of Saito and Mitsui makes it possible to quantify precisely the point
where unconditional stability is lost in terms of the ratio of the drift (deterministic)
and diffusion (stochastic) coefficients. This leads to a concept akin to deterministic
A(α)-stability that may be useful in the stability analysis of more general methods. It
is also shown that mean-square A-stability is recovered if the Theta Method parameter
is increased beyond its normal range to the value 3/2.
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1 Background.

Consider an autonomous scalar Itô stochastic differential equation

dX(t) = f(X(t))dt + g(X(t))dW (t), t > 0, X(0) = X0,(1.1)

driven by the standard Wiener process W (t) [5, 7]. The semi-implicit Milstein
scheme [9] for computing approximations Xn ≈ X(tn), with tn = n∆t, takes the
form

Xn+1 = Xn + (1 − θ)∆tf(Xn) + θ∆tf(Xn+1) + ∆t
1
2 g(Xn)Vn

+ 1
2∆tg′(Xn)g(Xn)(V 2

n − 1),(1.2)

where each Vn is an independent Normal(0, 1) random variable. Here θ is a free
parameter and ∆t > 0 is the stepsize. We note that in the deterministic case
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g ≡ 0, (1.2) becomes the Theta Method [2, 6]. It is usual to apply the Theta
Method with 0 ≤ θ ≤ 1, but we will show that allowing θ > 1 in (1.2) offers
benefits in terms of stability.

To study the stability properties of the method (1.2) we introduce the test
equation where f(X(t)) ≡ λX(t) and g(X(t)) ≡ µX(t) in (1.1), so that

dX(t) = λX(t)dt + µX(t)dW (t), t > 0, X(0) = X0.(1.3)

Here, λ, µ ∈ C are constants and we assume that X0 �= 0 with probability 1. The
zero solution to (1.3) is said to be mean-square stable if limt→∞ E(|X(t)|2) = 0
[1, 7], where E(·) denotes the expected value. It is known [4, 9] that mean-square
stability for (1.3) is equivalent to

�{λ} + 1
2 |µ|

2 < 0.(1.4)

Applying the method (1.2) to the test problem (1.3) produces the recurrence

Xn+1 = (p + qVn + rV 2
n )Xn,(1.5)

where

p :=
1 + (1 − θ)∆tλ − 1

2∆tµ2

1 − θ∆tλ
, q :=

∆t
1
2 µ

1 − θ∆tλ
, r :=

1
2∆tµ2

1 − θ∆tλ
(1.6)

and we have assumed that 1−θ∆tλ �= 0. Mimicking the definition for the contin-
uous problem (1.3), we say that the method is mean-square stable for a particular
λ, µ and ∆t if limn→∞ E(|Xn|2) = 0. We may now follow standard numerical
analysis practice and compare the stability properties of the test problem and
the numerical method.

Note that setting µ = 0 reduces (1.3) to the classical deterministic test prob-
lem. In this case, the stability condition (1.4) becomes �{λ} < 0. We recall
that a numerical method is then said to be A-stable [2, 6] if

problem stable ⇒ method stable ∀∆t.(1.7)

The Theta Method is known to be A-stable for θ ≥ 1
2 [2, 6]. To accommodate

some useful deterministic methods that have good stability properties but are
not A-stable, the concept of A(α)-stability is also used. A method is said to be
A(α)-stable [2, 6] if, for some 0 < α < π/2,

problem stable and
∣
∣
∣
∣

{λ}
�{λ}

∣
∣
∣
∣ < tan(α) ⇒ method stable ∀∆t.(1.8)

Our aim here is to investigate the mean-square stability of the method (1.2)
on (1.3). The work is inspired by [9], which studies mean-square stability for
a number of methods. In [9], Saito and Mitsui derive a condition that char-
acterizes mean-square stability of (1.2) and they give a constraint on λ, µ and
θ under which unconditional stability holds. Our contributions are (a) to an-
alyze fully the general case λ, µ ∈ C, (b) to point out a natural A(α)-stability
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style interpretation of the stability properties, (c) to show that the mean-square
extension of A-stability is achieved for θ ≥ 3

2 , and (d) to show that with an
appropriate choice of variables the connection with A(α)-stability is particularly
striking when λ, µ ∈ R. We hope that this interpretation of stability properties
will prove useful in the analysis of more general methods.

We mention that removing the last term in (1.2) lowers the strong order of
the method and produces the semi-implicit Euler scheme, or Stochastic Theta
Method [4, 9]. This method was analyzed in [4], and was shown to inherit the
mean-square extension of deterministic A-stability for all 1

2 ≤ θ ≤ 1.
We also note that some authors have studied numerical methods applied to the

linear test equation with additive noise; that is, where the term µX(t)dW (t) in
(1.3) is replaced by µdW (t), see, for example, [1, 3, 5]. In this case, the stochas-
tic term has less influence than for the multiplicative noise problem (1.3), and
the stability properties of the underlying deterministic method tend to domi-
nate. See [8] for a comprehensive list of references on stochastic stability and a
discussion of the relevance of the multiplicative noise problem.

2 Mean square stability analysis.

Taking the expected value of the modulus squared in (1.5), using E(Vn) = 0,
E(V 2

n ) = 1, E(V 3
n ) = 0 and E(V 4

n ) = 3, we find that

E(|Xn+1|2) =
(
|p + q|2 + |q|2 + 2|r|2

)
E(|X2

n|).

We deduce immediately that mean-square stability is equivalent to

|p + q|2 + |q|2 + 2|r|2 < 1,(2.1)

which agrees with the condition obtained in [9, see (21) and (30)]. Using (1.6)
we may re-write (2.1) in terms of the problem parameters λ and µ, the method
parameter θ, and the stepsize ∆t. After some manipulation this leads to

�{λ} + 1
2 |µ|

2 + 1
2∆t{(1 − 2θ)|λ|2 + 1

2 |µ|
4} < 0.(2.2)

We note from (1.4) that the first two terms on the left-hand side of (2.2) govern
the mean-square stability of the test problem. Hence, the size and sign of the
third term, 1

2∆t{(1 − 2θ)|λ|2 + 1
2 |µ|

4}, determines whether the stability of the
method matches that of the test problem. The following result can be obtained
directly from (1.4) and (2.2).

Theorem 2.1. Consider the method (1.2) applied to the test problem (1.3)
and let

∆tS := 2

∣
∣∣
∣
∣

�{λ} + 1
2 |µ|

2

1
2 |µ|

4 + (1 − 2θ)|λ|2

∣
∣∣
∣
∣
.(2.3)

For 0 ≤ θ ≤ 1
2 ,

problem unstable ⇒ method unstable ∀∆t,(2.4)
problem stable ⇒ method stable for ∆t < ∆tS.(2.5)
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For θ > 1
2 , if

|λ|2 <
|µ|4

2(2θ − 1)

(diffusion term dominates) then implications (2.4) and (2.5) are valid, and if

|λ|2 ≥ |µ|4
2(2θ − 1)

(drift term dominates) then

problem unstable ⇒ method unstable for ∆t < ∆tS,(2.6)
problem stable ⇒ method stable ∀∆t.(2.7)

In the cases where the denominator vanishes in (2.3), we interpret the condition
∆t < ∆tS as meaning ∀∆t.

We remark that the implication (2.7) in Theorem 2.1 coincides with Lemma
5.1 (b) of [9] in the case λ, µ ∈ R.

The implications (2.4) and (2.5) are of the form often encountered in the
analysis of explicit methods for deterministic problems—the stability region for
the method is strictly contained in that for the problem. Theorem 2.1 shows that
this behavior extends to the method (1.2) with θ ≥ 1

2 when the diffusion term
dominates. However, Theorem 2.1 also shows that if the drift term dominates
then the unconditional stability condition (2.7) holds. This is analogous to
deterministic A(α)-stability, with |
{λ}/�{λ}| < tan(α) replaced by

|µ|2/|λ| ≤
√

2(2θ − 1).

The following corollary shows that for θ ≥ 3
2 , if the problem is stable then the

drift term automatically dominates, giving unconditional stability. Note that the
price to be paid for this property is the loss of positivity in the Theta Method
weights.

Corollary 2.2. Consider the method (1.2) applied to the test problem (1.3).
For θ ≥ 3

2 ,
problem stable ⇒ method stable ∀∆t.

Proof. The condition (1.4) implies that

|λ|2 >
|µ|4
4

≥ |µ|4
2(2θ − 1)

for θ ≥ 3/2. Hence, (2.7) in Theorem 2.1 applies.
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3 Real coefficients.

When λ, µ ∈ R it is possible to plot regions of stability. Saito and Mitsui [9]
gave plots in the x-y plane with x := −µ2/λ and y := ∆tλ. Following [4], we
find it natural to use x := ∆tλ and y := ∆tµ2. In this case, the conditions
(1.4) and (2.2) for mean-square stability of the problem and method become,
respectively,

x + 1
2y < 0(3.1)

and
2(x + 1

2y) + 1
2y2 + (1 − 2θ)x2 < 0.(3.2)

We let Rms(θ) := {x, y ∈ R : y ≥ 0 and (3.2) holds} denote the mean-square
stability region of the method (1.2). The region Rms(θ) is enclosed in the upper
part of an ellipse for 0 ≤ θ < 1

2 . At θ = 1
2 , Rms(θ) lies inside the parabola

x = − 1
4y2 − 1

2y. For 1
2 < θ < 3

2 the upper boundary of Rms(θ) is formed by two
separate branches of a hyperbola. At θ = 3

2 , Rms(θ) degenerates to the wedge
(3.1) in the left half plane and the wedge x− 1

2y > 1 in the right half plane. For
θ > 3

2 , Rms(θ) is enclosed by a single hyperbolic branch.
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Figure 3.1: Real mean-square stability region for test problem (light) and method
(dark). Here, x := ∆tλ and y := ∆tµ2.
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Figure 3.1 illustrates how Rms(θ) varies with θ. The light shading marks the
region (3.1) where the test problem is stable and the dark shading superimposes
Rms(θ) for θ = 0, 1

4 , 1
2 , 1, 3

2 , 2. (In the case θ = 2, the upper boundary of (3.1) is
marked with a dashed line.) Given parameters λ and µ, the test problem is stable
if (λ, µ2) lies in the light region, and the method is stable if (∆tλ, ∆tµ2) lies in
the dark region. The set inclusions implied by Theorem 2.1 and Corollary 2.2
can be clearly seen.

We finish by pointing out two connections between the real mean-square sta-
bility region Rms(θ), where x = ∆tλ ∈ R, y = ∆tµ2 ∈ R, and the correspond-
ing complex deterministic stability region, where λ ∈ C and x = �{∆tλ}, y =

{∆tλ} [2, 6]. First, we note that the intersection of Rms(θ) with the x-axis cor-
responds to the deterministic real stability interval (since µ = 0 there). Hence,
this intersection gives a finite portion of the negative x-axis for 0 ≤ θ < 1

2 and
contains the negative x-axis for θ ≥ 1

2 . Second, for θ > 1/2, we see from Theo-
rem 2.1, or from [9, Lemma 5.1], that the method is unconditionally stable for
all points (x, y) in the left half plane inside the wedge

|y/x| < tan(α), α = arctan
√

2(2θ − 1).

This is analogous to deterministic A(α)-stability (1.8) with the x and y axes
representing the real drift and diffusion coefficients, rather than the real and
imaginary parts of the drift. For θ ≥ 3

2 , the wedge |y/x| < tan(α) in the left
half plane contains the wedge |y/x| < 2, confirming the mean-square A-stability
property established in Corollary 2.2.
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