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THETA METHOD DYNAMICS

GRAEME J. BARCLAY, DAVID F. GRIFFITHS and DESMOND J. HIGHAM

Abstract

Long-term solutions of the theta method applied to scalar nonlinear
differential equations are studied in this paper. In the case where
the equation has a stable steady state, lower bounds on the basin of
non-oscillatory, monotonic attraction for the theta method are de-
rived. Spurious period two solutions are then analysed. Under mild
assumptions, precise results are obtained concerning the generic na-
ture and stability of these solutions for small timesteps. Particular
problem classes are studied, and direct connections are made be-
tween the existence and stability of period two solutions and the
dynamics of the theta method. The analysis is extended to a wide
class of semi-discretized partial differential equations. Numerical
examples are given.

1. Introduction

When applied to a scalar autonomous ordinary differential equation (ode)

u′ = g(u), u(0) = u0, (1)

the theta method takes the form

uj = uj−1 + 1t(1 − θ)g(uj−1) + 1tθg(uj ). (2)

Hereuj is the numerical approximation tou(j1t) and1t > 0 is a constant timestep. We
assume that the fixed parameterθ is chosen so that 06 θ 6 1. Forθ 6= 0 the formula (2)
is implicit in the unknownuj , and hence, in general, a nonlinear equation solver must be
used at each step. On a constant coefficient linear problem, whereg(u) = λu in equation
(1), we have

uj = R(λ1t)ju0,

where

R(z) = 1 + (1 − θ)z

1 − θz
(3)

is known as thestability functionof the method.
Note thatθ = 0 in equation (2) gives Euler’s method,θ = 1

2 gives the trapezoidal rule
andθ = 1 gives the implicit or backward Euler method; see, for example, [3]. Each of these
methods is widely used in the context of solving initial valueodes and, more generally, for
timestepping in the solution of partial differential equations (pdes). The trapezoidal rule is
a second-order method, whereas forθ 6= 1

2 first order is achieved. In some applications,
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Theta method dynamics

a value such asθ = 0.55 is used as a trade-off between extended stability and second-
order accuracy. Exponential fitting [6, 7], the technique wherebyθ is chosen so that the
numerical and exact solutions coincide wheng(u) = λu for given values ofλ and1t , leads
to θ ∈ [1/2, 1] for λ < 0. Liniger [7] also shows that the optimality criterion

min
θ

max−∞<z<0
|ez − R(z)|

leads to the valueθ ≈ 0.878.
Our aim in this work is to investigate the long-term solutions admitted by the theta

method. We focus on thebasins of attractionof fixed points and thestability for small1t

of spurious period two solutions; both topics have received little attention in the literature on
numerical dynamics. We then study problem classes where theinfluence of the period two
solutions on the long-term dynamicscan be established rigorously. The related paper [10],
which inspired this work, studied the theta method dynamics from a bifurcation viewpoint.
For results about the long-term behaviour of generalode methods, we recommend [2, 4, 5,
9]. The style of analysis in this work is related to that in [1].

The presentation is organised as follows. In Section2we give a lower bound on the basin
of attraction for fixed points of the theta method that correspond to stable fixed points of the
ode (1). Section3 concerns period two solutions and their long-term influence. We show
that for small1t these spurious solutions are generically unstable forθ < 1

2, and stable for
θ > 1

2. We then focus on certain classes ofode—positive superlinear, negative superlinear,
positive sublinear and negative sublinear. In these cases results about the dynamics of
equation (1) are readily found and we are able to quantify the corresponding behaviour of
the theta method and make clear the negative effect of the period two solutions. In Section4
the basic period two stability result is extended to a class of semi-discrete partial differential
equations. A summary and some conclusions are given in Section5.

2. Basins of attraction for fixed points

It is clear thatuj ≡ β is a solution to equation (2) if and only if g(β) = 0. In other
words, theode and the method have precisely the same fixed points. In the terminology of
[4, 5], the theta method is therefore said to beregular.

If g(β) = 0 andg′(β) < 0, then the fixed point of equation (1) is linearly stable. By [5,
Theorem 3], the corresponding fixed point of the theta method will be stable when1tg′(β)

lies in the linear stability interval{z : |R(z)| < 1}, where the stability functionR is defined
in equation (3). Straightforward analysis shows that

|R(z)| < 1 ⇔


−2
1−2θ

< z < 0, for 0 6 θ < 1
2,

z < 0, for θ = 1
2,

z < 0 or z > 2
2θ−1, for 1

2 < θ 6 1.

(4)

We see that forθ > 1
2, if u(t) ≡ β is stable for equation (1) thenuj ≡ β is stable for

equation (2), independently of1t . (This is a consequence of the A-stability property; see,
for example, [3].) However, forθ > 1

2, it is possible for the method to stabilize unstable fixed
points of theode: if g′(β) > 0 and1t > 2/(g′(β)(2θ − 1)) then equation (2) has a stable
fixed point. Forθ < 1

2, the method will not stabilize unstable fixed points, and will preserve
stable fixed points if the timestep is sufficiently small; namely if1t < −2/((g′(β)(1−2θ)).

In terms of capturing the qualitative behaviour of theode, it is also of interest to know
when the method will exhibit non-oscillatory, monotonic local convergence to a fixed point.
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Theta method dynamics

This requires the condition|R(z)| < 1 to be replaced by 0< R(z) < 1. It is easily shown
that

0 < R(z) < 1 ⇔ −1 < (1 − θ)z < 0.

Hence, ifg′(β) < 0 the method mimics the non-oscillitory local convergence of theode
when

(1 − θ)1t |g′(β)| < 1. (5)

We note, however, that linear stability results are concerned with local attractivity. They
deal with the existence of non-empty basins of attraction. It is also of interest to have
information about the actual basins of attraction of the fixed points. The next theorem shows
that if the condition (5) extends to an interval, then non-oscillatory, monotonic convergence
is guaranteed throughout the interval.

Theorem 1. Suppose thatg ∈ C1 with g(β) = 0 and g′(β) < 0 for someβ ∈ R. Let
I ⊆ R be an open, connected interval containingβ such thatg′(u) < 0 for all u ∈ I and
let g′

sup := supx∈I |g′(x)|. If

(1 − θ)g′
sup1t < 1, (6)

then for anyu0 ∈ I there exists a solution sequence of equation(2) in which the iteratesuj

lie on the same side ofβ and approachβ monotonically asj increases.

Proof. Note thatg has a unique rootβ in I .
Consider a general iterateuj−1 ∈ I . If uj−1 = β then, trivially,uj ≡ β and the result

follows. Hence, suppose thatuj−1 6= β. We definehj−1 : R 7→ R by

hj−1(u) := u − 1tθg(u) − uj−1 − 1t(1 − θ)g(uj−1). (7)

By construction, a zero ofhj−1 provides a solution to equation (2). We have

hj−1(uj−1) = −1tg(uj−1) = −1t
(
g(uj−1) − g(β)

) = −1tg′(ξj−1)
(
uj−1 − β

)
, (8)

whereξj−1 ∈ I and we have used the mean-value theorem. Similarly,

hj−1(β) = β − uj−1 − 1t(1 − θ)g(uj−1) = (
β − uj−1

) (
1 + 1t(1 − θ)g′(ξj−1)

)
. (9)

So, equations (8) and (9) give

hj−1(uj−1)hj−1(β) = 1t
(
β − uj−1

)2
g′(ξj−1)

(
1 + 1t(1 − θ)g′(ξj−1)

)
< 0,

where we have used the timestep restriction (6). Hence, there is a zero ofhj−1 between
uj−1 andβ.

The result follows by using compactness and monotonicity.

Note that the conditions in Theorem1 guarantee that for anyu0 ∈ I , u(t) → β

monotonically ast → ∞. The result establishes a timestep constraint under which the
numerical method mimics this behaviour.

Whenθ = 1, equation (6) imposes no restriction on the timestep. Also, in this case the
result is equivalent to [1, Theorem 1] (with1t replaced by1x/a).

Example 1. We now illustrate Theorem1 on the logisticode, whereg(u) = u(1 − u). In
this caseβ = 1 is a stable fixed point. Sinceg′(u) = 1 − 2u < 0 for u > 1

2, we must have
I ⊂ (1

2, ∞) and 1∈ I . To get the largest possible bound on the basin of non-oscillatory,
monotonic attraction, we chooseI to match the initial condition as follows.
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Theta method dynamics

If 1
2 < u0 < 1 then we may takeI = (u0−ε, 1+ε) for any smallε such thatu0−ε > 1

2.
Theng′

sup = 1+ 2ε and equation (6) becomes(1− θ)(1+ 2ε)1t < 1. This condition will
be satisfied for some smallε if (1 − θ)1t < 1.

For u0 > 1 we takeI = (1
2, u0) for which g′

sup = 2u0 − 1. The constraint (6) is then
(1 − θ)1t(2u0 − 1) < 1.

Overall, we have the following constraint

(1 − θ)1t <

{
1 for 1

2 < u0 < 1,
1

2u0−1 for 1 < u0.
(10)
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Figure 1: Boundaries for non-oscillatory, monotonic attraction: the dotted line is the com-
puted boundary, while the dash-dotted line is the lower bound

The left- and right-hand pictures in Figure1 show the constraint defined by inequality
(10) in the (u0, 1t) plane as a dash-dot line in the casesθ = 1

2 andθ = 3
4, respectively.

The dotted line is the corresponding numerically computed constraint. More precisely, the
dotted line was computed as follows. For each of a large number ofu0 values, a bisection
algorithm was used to compute the largest1̂t(u0) for which non-oscillatory, monotonic
convergence was observed for 06 1t 6 1̂t(u0). Non-oscillatory, monotonic convergence
was deemed to have occured if

uj ∈ R, (uj−1 − β)(uj − β) > 0, |uj − β| < |uj−1 − β|, 1 6 j 6 105
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Theta method dynamics

and|u105 − β| 6 10−3. In solving the quadratic polynomial (2) for uj , we took the root
closest touj−1.

We see from Figure1 that the constraint (10) does indeed give a lower bound on the
region of convergence, and the bound is fairly sharp in this example, especially foru0 ≈ β.

We have already observed from (4) that the theta method withθ > 1
2 may stabilize fixed

points that are unstable for the underlyingode. The following result, which is proved in a
different context in [1], applies to the caseθ = 1 and shows how the stabilizing condition
g′(β)1t > 2 can be generalized to give a lower bound on the basin of attraction.

Theorem 2. Suppose thatg ∈ C1 with g(β) = 0 and g′(β) > 0 for someβ ∈ R. Let
I ⊆ R be an open, connected interval containingβ such thatg′(u) > 0 for all u ∈ I and
let g′

inf := inf x∈I g′(x). Suppose thatθ = 1 and

1tg′
inf > 2. (11)

Then ifu0, u1 ∈ I , there exists a solution sequence of equation(2) in whichuj approaches
β asj increases, with successive components lying on opposite sides ofβ.

Proof. The result follows immediately from [1, Theorem 2].

3. Period two solutions and blow up

Although the theta method never generates spurious fixed points, it is known that spurious
period two solutions are admitted. It is demonstrated forcibly in [10] that such solutions,
whether stable or unstable, can have a dramatic impact on the long-term dynamics. In this
section we prove general results about the nature of period two solutions and, for certain
problem classes, quantify precisely their effect on the dynamics.

If (v, w), with v 6= w, is a period two solution of (2), then

w = v + 1t(1 − θ)g(v) + 1tθg(w),

v = w + 1t(1 − θ)g(w) + 1tθg(v).

These conditions are equivalent to

v + 1t(1 − 2θ)g(v) = w, (12)

g(v) + g(w) = 0. (13)

It follows immediately from equation (12) (and is shown in [10]) that period two solutions
cannot exist forθ = 1

2.
Writing the theta method asuj = S(uj−1), we have

S(u) = u + (1 − θ)1tg(u) + θ1tg(S(u)).

Hence, if 1− θ1tg′(S(u)) 6= 0,

S′(u) = 1 + (1 − θ)1tg′(u)

1 − θ1tg′(S(u))
. (14)

A period two solution(v, w) is linearly stable if|S′(v)S′(w)| < 1 and linearly unstable
if |S′(v)S′(w)| > 1. Since, by definition,v = S(w) andw = S(v), it follows that these
conditons may be written as

|R(zv)R(zw)| < 1 and |R(zv)R(zw)| > 1, (15)
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Theta method dynamics

respectively, wherezv = 1tg′(v) andzw = 1tg′(w) and the stability functionR is defined
in equation (3).

Example 2. For θ < 1
2, an example of a period two solution is given by

g(u) = −2u|u|, v = 1

(2θ − 1)1t
, w = −v. (16)

Similarly, for θ > 1
2

g(u) = 2u|u|, v = 1

(2θ − 1)1t
, w = −v, (17)

defines a period two solution. In both cases we find that

g′(v) = g′(w) = 4

(2θ − 1)1t
, and |R(zv)R(zw)| =

∣∣∣∣3 − 2θ

1 + 2θ

∣∣∣∣2 . (18)

Hence, these period two solutions are linearly stable if and only ifθ > 1
2.

This example has a number of features of interest: the period two solutions blow up
monotonically and in opposite directions as1t → 0, the derivative valuesg′(v) andg′(w)

blow up in the same direction as1t → 0, and there is a change in stability asθ crosses
1
2. In the analysis below we show that, with mild assumptions ong, these features can be
shown to be generic.

In Lemma3 below, we show that genuine period two solutions must exhibit a precise
form of blow up as1t → 0. (We note that the fact that|v|, |w| → ∞ was proved by a
different approach in [10] and also follows from the general theory of Humphries [4].)

Lemma 3. Consider the theta method applied to the scalarode (1), whereg is continuous.
Suppose that for sufficiently small1t , there is a period two solutionv = v(1t) and
w = w(1t) with v and w depending continuously upon1t and with g(v) and g(w)

bounded away from zero for small1t . Then as1t → 0

|v| → ∞, |w| → ∞, |g(v)| → ∞, |g(w)| → ∞.

Further, for small1t ,

vw < 0, (1 − 2θ)vg(v) < 0, (1 − 2θ)wg(w) < 0,

andv andw blow up monotonically.

Proof. Recall thatu andv must satisfy equations (12) and (13).
If v is bounded as1t → 0 then1tg(v) → 0, so thatw → v in equation (12). In this

case, from equation (13), g(v) → 0. This contradicts the assumption thatg(v) is bounded
away from zero for small1t , and hence we must have|v| → ∞ as1t → 0. Similarly,
|w| → ∞. Recalling thatg(v) andg(w) are bounded away from zero, it follows from
equation (13) thatvw < 0 for small1t . Subsequently, using equation (12),

|g(v)| = |v| + |w|
1t |1 − 2θ | → ∞, as1t → 0.

Similarly, |g(w)| → ∞ as1t → 0.
From equation (12) we have, for small1t ,

v2 + 1t(1 − 2θ)vg(v) = vw < 0
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Theta method dynamics

and so(1 − 2θ)vg(v) < 0. By symmetry,(1 − 2θ)wg(w) < 0.
Before proving monotonic blow up, we first show that

lim inf |v| = ∞ and lim inf |w| = ∞, (19)

where lim inf(·) means lim1t?→0(inf 0<1t<1t?(·)). For contradiction, suppose without loss
of generality that lim inf|v| < ∞. Then, in equation (12),

lim inf |v − w| 6 |1 − 2θ | lim inf 1t |g(v)| = 0.

By continuity, lim inf |g(v)−g(w)| = 0, and hence, using equation (13), lim inf |g(v)| = 0.
This gives the required contradiction.

Finally, we show by contradiction thatv andw blow up monotonically for small1t .
We assume without loss of generality thatv → ∞ andw → −∞ as1t → 0. Suppose
thatv loses monotonicity at some small timestep1t?. Then, if, at any timestep̂1t < 1t?,
v(1̂t) = v(1t?), it follows from equation (12) thatw(1̂t) > w(1t?). Similarly, if, at any
timestep̂1t < 1t?, w(1̂t) = w(1t?), it follows from equation (12) thatv(1̂t) < v(1t?).
This contradicts equations (19).

We now use this result to make general conclusions about the stability of period two solu-
tions. Note that the theorem below applies to the example (16)–(17) and to [10, Examples 2.1
and 2.2].

Theorem 4. Under the conditions of Lemma3, if g ∈ C1 then

1. for θ < 1
2 the period two solution is unstable for small1t , and

2. for θ > 1
2 the period two solution is stable for small1t .

Proof. Consider first the caseθ < 1
2. Appealing to Lemma3, and assuming without loss

of generality thatv → +∞ rather than−∞, we have

v → ∞, g(v) → −∞, w → −∞, g(w) → ∞.

Now consider a fixed, small1t > 0 with correspondingv andw. Perturb1t to1t−δt >

0, whereδt > 0 is small. This gives usv + δv andw + δw and, from the monotonicity
result in Lemma3, we haveδv > 0 andδw < 0.

Note from equation (12) that

g(v)

v − w
= −1

1t(1 − 2θ)
(20)

always holds. Hence reducing1t towards zero causes the left-hand side of equation (20)
to become more negative; that is,

g(v + δv)

v + δv − (w + δw)
<

g(v)

v − w
.

Hence, for sufficiently small perturbations,

(g(v) + δvg′(v))(v − w) < g(v)(v − w + δv − δw),

and so

δvg′(v)(v − w) < g(v)(δv − δw) = (v − w)
−1

1t(1 − 2θ)
(δv − δw),
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where we have once more made use of equation (20). This simplifies to

g′(v) <
−1

1t(1 − 2θ)

(
1 − δw

δv

)
. (21)

By symmetry, we find that

g′(w) <
−1

1t(1 − 2θ)

(
1 − δv

δw

)
. (22)

Recall that the conditions in inequalities (15) determine stability, and note that

R(zv)R(zw) − 1 = 1tg′(v) + 1tg′(w) + (1 − 2θ)1tg′(v)1tg′(w)

[1 − θ1tg′(v)][1 − θ1tg′(w)] .

It is straightforward to show that both the numerator and denominator are strictly positive
if inequalities (21) and (22) hold. Hence,|R(zv)R(zw)| > 1, as required.

For θ > 1
2 we may assume without loss of generality that

v → ∞, g(v) → ∞, w → −∞, g(w) → −∞,

and a similar analysis to that above can be performed, resulting in the inequalities

g′(v) >
1

1t(2θ − 1)

(
1 − δw

δv

)
(23)

g′(w) >
1

1t(2θ − 1)

(
1 − δv

δw

)
. (24)

It can then be shown that|R(zv)R(zw)| < 1, giving the required result.

We now study four problem classes for which the existence of period two solutions and
their effect on the long-term dynamics can be pinned down precisely.

Definitions

• Functiong is positive superlinearif g ∈ C1 andg′(u) → +∞ as|u| → ∞.

• Functiong is negative superlinearif g ∈ C1 andg′(u) → −∞ as|u| → ∞.

• Functiong is positive sublinearif g ∈ C1 and there exists a constantD such that
0 < g′(u) < D for all u.

• Functiong is negative sublinearif g ∈ C1, there exists a constantD such that
−D < g′(u) < 0 for all u andg(u?) = 0 for someu? ∈ (−∞, ∞). In this caseu? is
unique, and we assume for convenience thatu? = 0.

The following results are easily established.

Results
Suppose that equation (1) has a unique solution for allu0 ∈ R andt > 0.

• If g is positive superlinear then for|u0| sufficiently large in equation (1), |u(t)| → ∞
monotonically ast → ∞.

• If g is negative superlinear then equation (1) is dissipative in the sense that there exists
a constantK such that|u(t)| decreases monotonically witht whenever|u(t)| > K.

• If g is positive sublinear then wheneverg(u0) 6= 0 in equation (1), u(t) is monotonic
and|u(t)| → ∞ ast → ∞.

• If g is negative sublinear then all solutions to equation (1) satisfyu(t) → 0 ast → ∞.
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Theorem5 below shows that in the positive superlinear case, period two solutions exist
if and only if θ > 1

2, and the monotonic asymptotic blow up property of the problem (1) is
not captured whenθ 6= 0.

Theorem 5. Consider the theta method applied to the scalarode (1), whereg is positive
superlinear.

1. If and only ifθ > 1
2 do there exist for small1t period two solutionsv = v(1t) and

w = w(1t) with v andw depending continuously upon1t and withg(v) andg(w)

bounded away from zero for small1t . (Note that Lemma3 and Theorem4 apply to
these solutions.)

2. For θ 6= 0 there does not exist a numerical solution such that|uj | → ∞ asj → ∞
and{uj }∞j=0 is monotonic.

Proof. We begin by proving the ‘if’ implication of part1. Suppose thatθ > 1
2. We note

that sinceg is superlinear,g(u) is monotonic for large|u|, say|u| > L. We may redefine
g(u) for |u| < L without affecting the validity of the proof, and hence we suppose thatg(u)

is monotonic for allu.
It follows from equations (12) and (13) thatv, w with v 6= w is a period two solution if

g(v) − g(w)

v − w
= 1

1t( θ
2 − 1)

, (25)

g(v) = −g(w). (26)

Now consider the straight line through the origin of (positive) slope 1/(1t( θ
2 − 1)). Since

g is superlinear, for small1t there must be pointsv > 0 andw < 0 at which this line
intersectsg, so that equation (25) is satisfied. Now, sinceg is monotonic, by adding a
constant to the straight-line function we may alter the intersection points until equation (26)
is satisfied. This establishes the existence of a period two solution for all small1t . The
solution is clearly continuous in1t .

To prove the ‘only if’ implication of part1, suppose thatθ < 1
2. Note that sgn(g(u)) =

sgn(u) for large|u|, say|u| > M. We may redefineg(u) for |u| < M without affecting
the validity of the proof, and hence we suppose that sgn(g(u)) = sgn(u) for all u 6= 0. By
Lemma3, if (v, w) is a period two solution thenvw < 0, so that(g(v)−g(w))/(v−w) > 0,
which contradicts equation (25).

To prove part2 we letp : R → R be defined byp(u) = u−θ1tg(u). The theta method
(2) may then be written

p(uj ) − p(uj−1) = 1tg(uj−1).

From the mean-value theorem,

p′(zj )
(
uj − uj−1

) = 1tg(uj−1),

wherezj lies betweenuj−1 anduj . This means that(
1 − θ1tg′(zj )

) (
uj − uj−1

) = 1tg(uj−1). (27)

If |uj−1| and|uj | are sufficiently large and of the same sign, then 1− θ1tg′(zj ) < 0 in
equation (27), and the result follows.

Part1 of Theorem5 shows that stable period two solutions are generic forθ > 1
2 on

positive superlinear blow up problems. The proof of part2 shows that the solution sequence
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will increase monotonically until it reaches a point where 1− θ1tg′(u) < 0, after which it
may be expected to approach the stable period two solution. We illustrate this behaviour in
the caseg(u) = u ln(1 + |u|) with u0 = 1 and1t = 0.1. The upper and lower pictures in
Figure2 show{uj }300

j=0 for θ = 3
4 andθ = 1, respectively. For clarity, we plot the piecewise

linear interpolant through the data. The dashed lines show period two solutions that were
found by solving equations (12) and (13). In both cases, the numerical solution increases
monotonically until the condition 1− θ1tg′(uj ) > 0 is first violated. From this point
onwards the solution approaches the stable period two level.
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Figure 2: Theta method solutions withθ = 3
4 (upper) andθ = 1 (lower) for g(u) =

u ln(1 + |u|) with u0 = 1 and1t = 0.1.

We remark that a related area—finite time blow up—has been studied by Sanz-Serna
and Verwer [8]; for θ = 0, they tookg(u) = um (for m > 1) andu0 = 1. In this case,
solutions of problem (1) exist only for 0< t < 1/(m − 1), and it is shown that Euler’s
method mimics the correct behaviour as1t → 0.

Theorem6 below concerns the negative superlinear case. It shows that period two solu-
tions exist if and only ifθ < 1

2 and in this parameter range the dissipativity property of the
problem (1) is not captured.
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Theorem 6. Consider the theta method applied to the scalarode (1), whereg is negative
superlinear.

1. If and only ifθ < 1
2 do there exist for small1t period two solutionsv = v(1t) and

w = w(1t) with v andw depending continuously upon1t and withg(v) andg(w)

bounded away from zero for small1t . (Note that Lemma3 and Theorem4 apply to
these solutions.)

2. If θ < 1
2 then the theta method is not dissipative in the sense that there exists a

K = K(1t, θ) such that for everŷK > K there is a pairu0, u1 with |u1| > |u0| = K̂

that satisfies equation(2).

Proof. Part1 may be proved in a similar manner to part1 of Theorem5.
To prove part2, let θ = 1

2 − ε, whereε > 0. For a givenu0, let h0(u) be defined by
equation (7), so that

h0(u) := u − 1t

2
(g(u) + g(u0)) + ε1t (g(u) − g(u0)) − u0.

Note thath0(u) → ∞ asu → ∞ andh0(u) → −∞ asu → −∞.
Sinceg is negative superlinear, there is aK = K(1t, θ) such thatg is monotonic for

|u| > K and

|u| > K ⇒ g′(u) < 0, ug(u) < 0, |g(u)| >
|u|
ε1t

. (28)

Now, consider anŷu > K. If |g(̂u)| > |g(−û)| then it follows from inequalities (28) that,
with u0 = û,

h0(−û) = −2̂u − 1t

2
(g(−û) + g(̂u)) + ε1t (g(−û) − g(̂u)) > 0.

Hence, there is a zero ofh0 in the interval(−∞, −û). On the other hand, if|g(̂u)| < |g(−û)|
then it follows from inequalities (28) that, withu0 = −û,

h0(̂u) = 2̂u − 1t

2
(g(̂u) + g(−û)) + ε1t (g(̂u) − g(−û)) < 0.

Hence, there is a zero ofh0 in the interval(̂u, ∞).
Overall, we have shown that for everŷK > K there exists a pairu0, u1 with |u1| >

|u0| = K̂ that satisfies equation (2).

By Theorem4, the period two solution identified in part1of Theorem6must be unstable.
Hence, it is reasonable to regard the unstable spurious solution as the cause of the non-
dissipativity established in part2. To illustrate this idea, we consider the case whereg(u) =
−u(u+ 1)(u− 1). In this case a period two solution forθ < 1

2 can be found analytically—
the positive branch

√
1 − 2/(1t(1 − 2θ)) is plotted with the ‘◦’ symbol in Figure3 for

θ = 1
4. The dark and light regions in Figure3 show the timesteps and initial conditions in

the range 0.2 6 1t 6 1 and 06 u0 6 5, for which the theta method produced dissipative
and non-dissipative solutions, respectively. In these computations, a solution was regarded
as non-dissipative if max06j650 |uj | > 5000. We see that the unstable period two branch
clearly delimits the correct and incorrect asymptotic behaviour.

Lemma7 below shows that the result in part2 of Theorem6 does not extend toθ > 1
2,

and in this sense the cut-off for a guaranteed lack of dissipativity coincides with the cut-off
for the existence of period two solutions.
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Figure 3: Theta method withθ = 1
4 ong(u) = −u(u+ 1)(u− 1). The dark region leads to

dissipative solutions, the light region leads to non-dissipative solutions, and ‘o’ marks the
unstable period two branch.

Lemma 7. Suppose thatg ∈ C1 is odd andg′(u) < 0 for all u. Then, forθ > 1
2, any

solution sequence{uj }∞j=0 produced by the theta method has|uj | → 0 monotonically as
j → ∞.

Proof. First, we note thatuj−1 = 0 ⇒ uj = 0.
Now, suppose thatuj−1 > 0. If uj > 0 theng(uj ) < 0 andg(uj−1) < 0, and hence

uj = uj−1 + 1t
(
θg(uj ) + (1 − θ)g(uj−1)

)
< uj−1.

On the other hand, ifuj < 0 then suppose that|uj | > |uj−1|. We then haveg(uj ) >

−g(uj−1), and henceθg(uj ) > −(1 − θ)g(uj−1). This gives

0 > uj = uj−1 + 1t
(
θg(uj ) + (1 − θ)g(uj−1)

)
> uj−1 > 0,

which is a contradiction.
We have thus shown that

uj−1 > 0 ⇒ |uj | < |uj−1|.
Similarly, we can show that

uj−1 < 0 ⇒ |uj | < |uj−1|.
Hence|uj | < |uj−1| wheneveruj−1 6= 0.
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Since the sequence{|uj |}∞j=0 is bounded, it must have a convergent subsequence, with
limit u?. It follows from equation (2) thatg(u?) = 0, and hence thatu? = 0. The montonoc-
ity result then shows that the full sequence{|uj |}∞j=0 must have the same limit.

Theorem8 below concerns the positive sublinear case. It shows that for small1t , period
two solutions do not exist and monotonic asymptotic blow up is guaranteed.

Theorem 8. Consider the theta method applied to the scalarode (1), whereg is positive
sublinear.

1. Period two solutions do not exist for small1t .

2. If g(u0) 6= 0 then for sufficiently small1t , any numerical solution sequence{uj }∞j=0
is monotonic and satisfies|uj | → ∞ asj → ∞.

Proof. Note that if(v, w) is a period two solution thenθ 6= 1
2 and, applying the mean-value

theorem to equation (25),

g′(z) = 1

1t( θ
2 − 1)

, (29)

wherez lies betweenw andv. Sinceg is sublinear, this cannot hold when1t is sufficiently
small. This proves part1.

To prove part2we follow the proof in Theorem5, part2, and note that 1−θ1tg′(zj ) > 0
in equation (27) for small1t .

Theorem9below concerns the negative sublinear case. It shows that for small1t , period
two solutions do not exist, and convergence to a steady state is guaranteed.

Theorem 9. Consider the theta method applied to the scalarode (1), whereg is negative
sublinear.

1. Period two solutions do not exist for small1t .

2. For sufficiently small1t , any numerical solution sequence{uj }∞j=0 is monotonic and
satisfiesuj → 0 asj → ∞.

Proof. Part1 follows from equation (29).
To prove part2 we consider the nontrivial caseuj−1 6= 0. Sinceg is sublinear and

g(0) = 0,

|g(u)| 6 D|u|, for all u. (30)

Let

1t 6 1

2D
. (31)

From equations (27), (30) and (31) we have

|uj − uj−1| =
∣∣∣∣ 1tg(uj−1)

1 − θ1tg′(zj )

∣∣∣∣ 6 1t |g(uj−1)| 6 |uj−1|
2

. (32)

We deduce thatuj anduj−1 always have the same sign. It follows from equation (27) that
sgn(uj − uj−1) = sgn(g(uj−1)) = −sgn(uj−1). We conclude that|uj | < |uj−1|, which
completes the proof.
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4. Partial differential equations

We now generalize Theorem4 to cover a class of semi-discretized partial differential
equations. More precisely, we considerode systems of the form

U′ = − a
1xm AU + g(U) =: G(U), U(0) = U0 ∈ R

N, (33)

wherea, 1x > 0, m ∈ Z
+, A ∈ R

N×N andg(U)i ≡ g(Ui) with g : R 7→ R. Such
systems arise, for example, when a method-of-lines approach is used to solve a periodic,
initial-value problem that combines reaction with convection or diffusion in one or more
space variables. Here, the spatial derivatives are discretized using finite differences or finite
elements, with1x representing the spatial mesh size.

The theta method applied to system (33) takes the form

Uj = Uj−1 + 1t(1 − θ)G(Uj−1) + 1tθG(Uj ).

We will suppose that the matrixA in system (33) satisfiesAe = 0, wheree ∈ R
N is the

vector with all components equal to 1. In this case, fixed points or periodic solutions of
the theta method on the scalar problem (1) correspond to spatially uniform fixed points or
periodic solutions of the theta method on the system (33).

Theorem 10. Consider the theta method applied to the system(33), whereAe = 0 and
g ∈ C1 . Consider a spatially uniform period two solution{ve, we}, wherev = v(1t)

andw = w(1t) with v andw depending continuously upon1t and withg(v) andg(w)

bounded away from zero for small1t . Letc := a1t/1xm.

1. For θ < 1
2, independently ofc, this period two solution is linearly unstable for small

1t .

2. For θ > 1
2, this period two solution is linearly stable for smallc.

Proof. Writing system (33) asU′ = G(U), the Jacobian ofG at a pointue has the form

G′(ue) = − a
1xm A + g′(u)I. (34)

Writing the theta method asUj = S(Uj−1), the Jacobian ofS at a pointue has the form

S′(ue) = [
I − θ1tG′(S(ue))

]−1 [
I + (1 − θ)1tG′(ue)

]
,

and hence

S′(ve)S′(we) = [
I − θ1tG′(we)

]−1 [
I + (1 − θ)1tG′(ve)

]
× [

I − θ1tG′(ve)
]−1 [

I + (1 − θ)1tG′(we)
]
. (35)

If A has an eigenvalueλ then, from equations (34) and (35), S′(ve)S′(we) has an eigen-
value (

1 + (1 − θ)1t(− a
1xm λ + g′(v))

) (
1 + (1 − θ)1t(− a

1xm λ + g′(w))
)(

1 − θ1t(− a
1xm λ + g′(v))

) (
1 − θ1t(− a

1xm λ + g′(w))
) , (36)

which may be writtenR(̂zv)R(̂zw), where

ẑv = 1t(− a
1xm λ + g′(v)) and ẑw = 1t(− a

1xm λ + g′(w)). (37)

For θ < 1
2, inserting the eigenvalueλ = 0, and following the proof of Theorem4

establishes instability for small1t .
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For θ > 1
2, we know from Theorem4 that |R(1tg′(v))R(1tg′(w))| < 1 for small

1t . Sincêzv = 1tg′(v) + O(c) andẑw = 1tg′(w) + O(c), the required stability result
follows.

It is of interest to contrast Theorem10 with [1, Theorem 6]. In [1] a class of explicit
Runge–Kutta methods is studied, and spurious fixed points (of period one) are considered.
It is shown that although stable spurious solutions can exist for small1t on a scalarode,
these must necessarily be unstable as spatially uniform spurious fixed points of a method-
of-lines system (33). The theorem above, on the other hand, concerns a different class of
time-stepping methods, and involves period two solutions. The result shows that forθ > 1

2
stable spurious behaviour is generic for smallc.

The following example, to which Theorem10applies, is sufficiently simple that we can
compute precise stability constraints.

Example 3. Consider the system (33) with g(u) from equations (16)–(17), m = 1 and

A =


1 −1

−1 1
. . .

. . .

−1 1

 . (38)

This system arises when first-order upwind differences are used on the hyperbolic problem
ut + aux = g(u), with u(x, 0) given for 0< x < 1 and periodic boundary conditions. The
eigenvalues ofA are

λk = 1 − exp
(

2πik
N

)
, 1 6 k 6 N. (39)

We note that forz ∈ C, writing z = x + iy,

|R(x + iy)| < 1 ⇔


(
x + 1

1−2θ

)2 + y2 < 1
(1−2θ)2 , for 0 6 θ < 1

2,(
x + 1

1−2θ

)2 + y2 > 1
(1−2θ)2 , for 1

2 < θ 6 1.

(40)

Whenθ < 1
2 we considerk = N in equations (39). In this case, from equation (18), we

havêzv = ẑw = 4
2θ−1 which does not lie in the region given by implication (40). Hence,

the solution is is always unstable.
To study the caseθ > 1

2, we note from equation (18) that ẑv andẑw in equations (37)
lie on the circle (

x + c − 4
2θ−1

)2 + y2 = c2, (41)

wherec := a1t/1x is the Courant number. Comparing this with (40), we find that, asc
increases, stability can be guaranteed until the circle (41) intersects the circle(

x + 1
1−2θ

)2 + y2 = 1
(1−2θ)2 .

It follows that the period two solution is linearly stable ifc < 1
2θ−1.

5. Summary and conclusions

The popularity of the theta method is due in large part to its simplicity—making it (a)
easy to program and (b) efficient on large problems. In this work we aim to show that
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the simple structure of the theta method also makes its long-term dynamics amenable to a
detailed analysis.

Theorem1 shows how the linear stability property can be extended to give information
about the set of initial conditions and timesteps for which correct, monotonic convergence
to steady state is achieved. Theorem4 concerns spurious period two solutions for small
1t and shows that the kenspeckle valueθ = 1

2 forms a precise cut-off between instability
and stability. Theorem5 applies wheng in problem (1) is positive superlinear. In this case
the numerical method is simulating a monotonic blow up solution. The theorem shows that
period two solutions exist in, and only in, the stable caseθ > 1

2. These stable, oscillatory
solutions will clearly lead to a qualitatively incorrect approximation to monotonic blow
up, as illustrated in Figure2. In Theorem6, g is taken to be negative superlinear, so that
problem (1) is dissipative. The theorem shows that period two solutions exist in, and only
in, the unstableθ < 1

2 regime, where dissipativity is then lost. Figure3 illustrates this
phenomenon. These results formalize and extend some of the comments in [10, Section 1]
and the examples in [10, Section 2].

Loosely, on blow up problems a stable period two solution ensnares iterates into a
spurious oscillatory mode, and on dissipative problems an unstable period two solution
repels large initial data away from the correct attractor. In both cases the period two solution
is negatively impacting the dynamics.

For the sublinear cases in Theorems8and9, we see that for small1t period two solutions
do not exist, and the theta method behaves well.

Although the results in Section3are derived forodes, in Section4we extended the basic
stability cut-off to the case of spatially uniform period two solutions on a general class of
semi-discretisedpdes.
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