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DEFECT ESTIMATION IN ADAMS PECE CODES*

DESMOND 1 HIGHAMT

Abstract. Muany modern codes for solving the aonstift initial value problieny ¥ () = flx viv) =0, plad
given, ¢ 5 & 2 b, produce, in wddition (o a discretised solution, a function pix} that approximutes ylx} over
[ ). The associated defeer 8 x)= p v}~ fTx, plad) bs u natural measure of the error. ln this paper the
problem of reliably estimating the defect in Adams PECE methods is considered. Attention is focused on
the widely used Shampine-Gordon variable order, variable step code fitted with a continuously difterentiable
interpolant p(x) duc to Watts and Shampine {S/AM A Sci, Starist, Comput, 7 {1986}, pp. 334-345]. It is
shown thal over each step an asymptatically correct estimate of the defect can be oblained by sampling at
a single, suitably chosen point. 1Uis also shown that a valid “free” estimate can be formed withour recourse
to sampling. Numerical results ase given to support the theory.

Kev words. Adams PECE method, interpolant, defect
AMS(VMOS) subject classification. 65103

C.R. classification. G.1.7

1. Introduction. We consider the numerical solution of the nonstiff initial value
problem

Vix)=f(x, vix), ylay=y,, a=x=h

{1.1) N N
[iR»xRY »R™

in addition to a discretised solution, many modern codes produce a function p{x) that
approximates y(x) over [, b]. The associated defect,

8(x) = p'(x) =fx, plx)),

is a natural measure of the error, and an estimate of the defect can provide valuable
information about the accuracy of the solution. Indeed it has recentiy been suggested
that a defect estimate may be used as an alternative to the traditional local error
estimate in the stepsize control mechanism {1}, {2]. In this paper we are concerned
with the problem of estimating the defect when a variable order, variable step Adams
PECE method is used. We restrict our attention to the latest DEPAC code {81, 121,
hut our results can be adapted for other implementations.

In the next section we make use of some analysis {rom Stetter {97 o obtain an
asymptotic expansion for the defect over a step from x, to x,+4h,. . We find that,
asymptotically, the shape of the defect is determined only by the current order and
the local stepsize pattern. This means that a valid estimate of §(x) over [x,, x, t h,i1]
can be formed by sampling at a singie point. In particular a technique for approximating
Max e e, 18] is given that is a more sophisticated version of that in [7].
Practical details are discussed further in § 3. In §4 we show that an estimate of the
jeading term in the expansion of the defect can be formed from quantities available
in the code. This gives a “free” estimate of the defect——no extra function evaluations
are needed. The final section describes the results of some numerical experiments that
test the two approaches.

* Received by the editors July 11, 1988: accepted for publication (m revised formj Octaber 26, 1985,
This work was supported by a Natural Sciences and Engineering Reseurch Council Research Studentship,
“ Department of Mathematics, University of Manchester, Manchester M13 921, United Kingdom,
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2. The defect. We begin this section with a brief description of the variable order,
variable step Adams PECLE method implemented, and extensively documented, by
Shampine and Gordoen | 7]. An updated version of the code forms part of the DEPAC
ODE solving package [8]; see also [12].

The basic aim is to produce discrete solution vectors y, == p{x, } by stepping along
a mesh a=x,<x,<- . Given y, = yix,} and the past f values

_3(;;;; _,Ef(xzn%x is Yian ,); =1, !ks

vix,, ) is formed according to the kth order Adams-Bashforth formula,

pn il W,VII-{_J‘ Pi'\,n('r_) d!,

where £, (1) denotes the unigue interpolating polynomial of degree = & — 1 that satisfies
Pk.n(-xn+l--;):‘]{;:%!7{'5 J':]sak

The new approximation v, is then formed using the (k+ 1)st-order Adams-Moulton
formula,

(2.1

Vs
E3
Vi1 = Vo 'J*'jr Pl () de
N

Here P}, (1) denotes the polynomial of degree = k satisfying
Py Xy ) =fosigy =1Lk
and
P nix ) = 0= fxeny, Poids
The term PECE is used to indicate the four stages -+ predict the value p,.,, evaluate

fP.,, correct to give y,,,, and then evaluate f,.,, which is needed for the next step.

From (2.1), a natural way to approximate the solution at a point x € {x,, x,,) is
to use the function

{2.2a) n(.x}xyn‘i“J- P atr) di
that may also be written
{2.2b) 7{x) ﬂym-l*"J Pleiatiyde

The polynomials n(x) from each step can be joined together to give a globally
continuous approximation to y{(x} over [a, b]. However, because n'{x,.,} matches

F{xnity Pusy) and not flx,.p, Vueid, there is a discontinuity in the first derivative at

each meshpoint.
An obvicus alternative to P¥,, (i) in {2.2) is the polynomial Py, ,4.(7} that
satisfies

i)f\'rl‘ni'l(‘xli+E —}):f'nil e ]":Ua T, k.

This leads to the approximations

{2.3) ‘S(X}2,3)11+J Poov it de

{24) ./"”f(x)._}"nilmiyj Pf‘-ul,,:;(!) d[

(32407702464
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DEFECT ESTIMATION IN ADAMS PECE CODES 3

Note that §4x)= y,(x) and hence §{x} and y,(x} differ only by a constunt term. When
we use {2.13 and the Lagrangian form of the interpolating polynomials, it is easy fo
show that

P G, ) s

;
]lf.-.] (X””"",\',,J] {}

(2.5) S(.\’}_,l’J(-X}:{.f;:rt_‘.f‘,’:el}

Since y,{x,)# v, and S{x,,,}# y, .., the corresponding piecewise polynomigls over
[a, b] both have jumps at the meshpoints, although the first derivatives are continuous.

The interpolant y,{x) was implemented in the original Shampine-Gordon code
and in early versions of the DEPAC Adams code. However, the latest version of
DEPAC uses a higher degree poiynomial interpolant due to Watts and Shampine [12]
that has betier continuity properties. This interpolant, which is a peiynomial of
degree =k +2 over [x,, X,.], can be written

P{x})

T(x)= S5(x) F [ Yo = S50x,4 )j([)(\' }

where

d)(x}"‘l’\. IL! ("wxn-ii—i) dt,

%, i=0

It is clear that T{x) satisfies the conditions
T(xn}::yna T(XH%"i)zyn'i'Is
T(x)=F,  T'OGe)=f,

and consequentty can be used to provide a giobal approximation to y(x} that is
continuously differentiable. We may regard T(x) as a slightly perturbed version of
S{x) {or y;{x)) with the smali perturbation added in order to force C' continuity.

We will denote the defect in n{x) by §"(x), that is,

87(x)=7n'(x) =[x, n(x}).

Similarly, §1(x}, 6%(x) and 57(x) will denote the defects in y;(x), S(x) and T(x},
respectively. We are mainly concerned with the defect in T(x), since this is the
interpotant currently used in DEPAC, but it will prove helpful and enfightening if we
also look at §"(x), §"{x} and §5(x). In performing an asymptotic analysis, we make
use of some results of Stetter [9]. Although Stetter’s main concern was to assess the
quality of the interpolants themselves, his analysis can be adapted in a straightforward
manner to give the desired information about the behaviour of the defect.

Constder taking a step of length #,., at order & from x, to x,,., =x,+h,.,. The
PECE formula uses information from the past k meshpoints {x,,, ... -, X,}. We
define the quantities o; by

{2.6) Xpapei =Xt il

For the step-changing strategy used in [7], the {o.})., can be bounded above and
below. This is discussed in more detail in the next section. We define the local solution
z{x) by

2{x) = flx, zlx}), z{x, b=y,
and the local error for the step as v, = z{x, ). For clarity we will drop the subscript

n+1from h, ., in the succeeding analysis. The basic approach in [97 s to assume that

03577702942
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the stepsize and error control mechanism keeps the local error at the same fevel over
§X, 0100, X0 ). Thea, assuming that f is sufficiently smooth, standard interpolation
theory is used to show that

(2.7) Pl b= O(h Y
and

(2.8) Yoo 2y, ) = O,
Furthermore, at a point xe[x,, x,.,1,

(2.9) i) —z(x) = O(h* )

and

(2.10) S(x)—z(x}= O(h**7).

We can use {2.7)-(2.10) to deduce similar resulits for y,(x} and T(x). From (2.5},
h I:r i ;}, (o — o) da
l—i i\::l (1 e (f{)

Employing a Lipschitz condition on f, (2.7} and (2.8), and the fact that o, oy, - -+, o,
are nonpositive and bounded below it follows that

S(\} 7}}1‘(-_'(} = {}{H‘: [ :7,'0'1}

(2-1) | S(x) =y, (x) = O(h*"7),
Hence, from (2.10)
(2.12) ,VJ(,-\'}*Z(X)ﬁO(hm'z).

Also, writing x = x,, + sh, we have

f;n:o(ufmgj} dov
.[(I)HLU(Q' -g',) dey

= O({| ypr = S(x ) D
= O™,

from (2.8} and {2.10}, and hence
Tix)=z{x)= O(h*"),

T{x) = S(x)=[rper = S{x,000]

Since we are assuming that [ is Lipschitzian, we have, using (2.9) and {2.2a},
8" (x)=n'{x) = flx, nix))
= n'(x)h- () flx, 2(000) — f(x, n(x))
=Pl xl—2' )+ ORS),
Using an expansion of P¥,, {x}—z'{x) from {9] we find that

Z{kfzj(xt:-r'-ij

M x, +sh)= h“‘{w{s)

) (k415!
(2.13) . .
B 7}(‘(’_)&"*'2“ A, 4&’?:}4; z ('\n~] }} + O(h“:)

where

i L 1 I

aisi= || (s—o), ws)=]] (s—er), E”H_FJ i) da,

i T i [

0145701868
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DEERCT BETIMATION IN ADAMS PECE CODRES 3

and f, 1s the Jacobian of f. Similarly,
55 (x) = §'(x) = 2’0+ flx, 200y = [l S())
= I);\ Tim 1-i(x) — Zi(A\»\} 4 (')(h;‘; i j)’

and using Stetter’s asymptotic result for Py, (x)— 27(x) we have
214 55‘( . hy = [M: i H‘*:‘{-'Y’LLL;}_JrO [M?,
{2.14) (x,+shy=—h ﬂr(,s)4—~(k+}}! {h"").

Asymptotically, the defect in y,(x) is the same as that n &%(x). This follows from
87(x) = i) 2 (x)+ O
and
yile) =81x) = Py padxlh
Finally, an expression for 6 ' (x) can be deduced from (2.14). We have

5 1x) = T'(x) = Z(x)+ OLh™™)

. . D'(x) \ L
:S(xH[y,H,—Sfx,r«.;)}g(xuw—z(XHO{h’ %)
! } . Px) 2
= 55(-“*{}%4-1 *S(Xn-i-l}j(p(x”;r)"l’ O(hk .

Using (2.14) this may be written

Z”ﬁ 35(_-Xﬂ'!'l) ” [.“.H'H Ws(x"ﬁ-l)}
(k—é—l)T q)(xn+l)

(215 & T{x,]-’rsh}—#i“'(s){ }+O(h”3)-
The key point arising from this analysis is that the defects in S(x), ¥, (x) and T(x}
are all of the form

(2.16) 5(x, + sh) = Alh)m(s) + O(h* ")

where A(R) is O(h**'} and independent of 5. Recalling that =(s)=[]"_, (s~ &), we
see that, asymptotically, the shape of the defect over {x,, X,+11 18 determined by the
local stepsize pattern oniy. The practical importance of this result is that by sampling
the defect at an internal point x, + §h, an approximation &(x,+sh)/ = (§) = A{h} can
be formed. Hence an estimate of 8{x, + sh) for s € [0, 1] is available and so any desired
measure of the defect can be estimated. In particular, to approximate max g, o{x, +
shyll for any vector norm | - |, we simply form fé(x, +s*h)} where s* in [0, 1]
maximises | (s)|. This approach is discussed in more detail in the next section. We
mention that the idea of estimating the maximum defect in y,(x} by sampling at a
single point was proposed in {7, p. 122]. Shampine and Gordon suggest sampling at
the midpoint on keuristic grounds; the defect is zero at the two meshpoints. We will
show that whilst this is never a bad choice, it is only optimal when the lowest order
k=1 1s used for the step.

The expression for 8 "{x} in {2.13} is of a slightly different form from (2.16). The
teading term in (2.13) is a problem-dependent linear combination of #{s) and 7{s).
in this case two samples would be needed to form an estimate of the defect over a step.

To conclude this section we mention some related work by Hanson and Enright
151, In its simplest Torm, the error central mechanism used in [7] ensures that on each

step
(2]7,) ;;."!nll_.“fﬂl(k”

L= TOL

03297702792
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for some user-supplied parameter TOL. Here v,. (k) denotes the resuit of an Adams-
Bashlorth predictor of order k foilowed by an Adams-Moullon corrector of order k.
Under certain reasonable assumptions, Hanson and Enright show that this strategy
indirectly controis the defect in S(x} and %{x}, in the sense that

1800 = (C + Ol JTOL  forall xela, b]

where ( is a constant that depends on f, and fi,,.=max, ., fi,.;. We note that a
similar relationship can be shown to hold for the more recent interpolant T(x). This
follows because & ' {x) is an O{h**") perturbation of §*(x) and the left-hand side of
(2.17) is also O{h*™). The numerical tests of § 5 confirm that the tolerance parameter
can he used to control the defect in T{x), albeit in a problem-dependent manner,

3. Location of s*. In the last section we have shown that an asymptotically valid
estimate of max;. |8 T(x, - sh,0)] is given by sampling at x, +5%h,,, where 57,
which we will call the optimal sampie point, satisfies |m{s¥)] = max;g, | 7{s)]. We now
examine the practical details of computing s* and gain some insight into the behaviour
of 5% in the course of an integration,

Recall that after a kth order step from x, to x, +h,,,,

k

)=} (s—a)

FEEH
where

Xpit1—i 7 Xn

o=

hn%l

Note that o, <oy, < <o, =0<c¢,=1. By Rolle’s Theorem, #'(s} has roots in
(o, a,_,), fori=1, - k and because #'(s} is a polynomial of degree k, each interval
must contain exactly one root. Since w{#) = =(1)=0 the point s¥ that we require is
the root of #(s) in (0, 1). To compute 5%, given that ='(s) and 7"(s) are inexpensive
to evaluate, a straightforward application of Newton's method is sufficient, The fact
that s* is the largest root of a polynomial with purely real roots implies that, providing
the initial guess is greater than s¥, the Newton iterates converge monotononicaliv and
quadratically to s* (see [10, p. 272]). In particular, convergence is guaranieed if we
start at the point s =1, but later we will show that a better choice is available.

The following theorem gives & usefu! characterization of s,

TueOREM 1. For k=2, the point s* defined above is the solution in (0, 1} of

1-2s oo

(3.1 S(S“"l):,ggS*Uf,

and for k=1, s* =1
Proof, When k=1, 7(s)={s~1}s and the resuit is trivial, When k=2 we have

ais)={(s—1isls—oy) - {50y,

s that
i =s(s—oy) - {s—o ) H{s—1s—os} - ls— oy}
{3.2)
N i (s~ 1D)s{s—ey) o (s=oy)
Pt &=
in {0, 1), Defining
u’{ﬁ')

(3.3 e{y) = : ,

J g(s) (v —1ra) {5 —)

(03637702965
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we note that the zeros of gi{s) in {0, 1} are precisely the zeros of 7'y) in {0, 1) From
(3.2) and (3.3},

Fogly—1
gls)=25—1+ 3 — !
R iy
and the result Tollows. a
The left-hand side of (3.1}, which is independent of {er}F ., is plotted in Fig. 1.

=

Since the right-hand side is positive in (0, 1), it Tollows that s¥=1/2 for k=2, To
obtain more precise bounds for s* we must use information about the step-changing
mechanism. First we give a corollary to the theorem.

CoroLLARY 1. For k=2 if the two seis {3}, and (&} satisfy

o =60 =2,k
r 3 E b )

1

then the corresponding optimal sample points, § and §%, satisfy §% = 5%
Proof. For se (0,1},

(3.4)

The intersection of if‘? 1/(s— &,y and (1 —2s5)/s(s — 1} will therefore be to the left of
the intersection ofif;z 1/(s~¢}and (1—25)/s(s— 1} (see Fig. 1), [

50 ¥ T T

40|

3¢+

i
i
:
H
{

0.3 0.4 0.5 0.8 0.7 c.B 0.9 i

]
Fic, I Qisi=(1—2¢)/5{s— 1L

The code we are considering uses a variable order 1 = k = 12 and a variable stepsize.
However, for several reasons {an important one being {0 ensure numerical stabifity)
the ratio of successive stepsizes is bounded in the following way (7, p. 64}]:

01767701575
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for all 1, excepl, possibly, those for which the step involving k; 15 taken ol order one.
The right-hand inequality is extremely unbikely to be close {o equality in practice [7,
p. 1171 From the delinition of {o}r 3t foliows that on a general step of order & we
have

TiEgE ] Q=0 -k
where the upper and lower bounds are defined by
L e ;=87 -8)
= und oim—
2 7

o

Denofting the corresponding optimal sample points by ™ and ', it follows frem the

corollary that

The values of s* and s* for k=1,---,12 are giver in Table 1. Note that since s*"
is an upper bound for 5%, it may be used as the initial guess in the Newton iteration
that we discussed earlier.

TABLE 1
Vadues of 5% 5% and s*°™ a1 order k.

k 1 2 3 4 3 f 7 8 9 140 H 12
s* SO0 318 sle 517 817 ST7 5170 517 BB Y VS IV A
§F 5000 608 672 717 50 a7 799 817 83 844 833 865
gEoa 5000 577 BIR 644 663 678 690 699 T08 0 718 0N 726

In addition to bounding the extreme values of s, it is possible to say something
about the typical behaviour of s*. Although the code allows the stepsize to vary, it is
strongly biased against doing so. This reduces the overheads involved in the formation
of p,+; and y,.,. Another reason for the bias is that the order changing mechanism
is set up so that an increase in order is only considered if the past k+ 1 steplengths
are equal. Consequently, the overall step pattern can usually be divided into a small
number of groups each with a constant steplength. When b, = h,q = = I, .,
the sigma values become

st

gi=0,  =1-], (=0, k

seonst

and the corresponding s values appear in Table 1,

4. The free estimate. The cost of taking a step with a discrete ODE method is
often measured in terms of the number of f evaluations required. Sampling the defect
at one intermediate point clearly increases this quantity by one. In the case of Runge-
Kutta-interpelation schemes, where a large number {usually = 6} of [ evaluations are
needed for each step, this increase in cost is relatively small. However, the PECE
method considered here uses only two evaluations and so the cost of sampling on each
step is more significant. in this section we show that it is possibie 1o form an estimate
of 3 "(x) without using any additional f evaluations. The basic idea is to approximate
the leading term in the expansion (2.15) of § " (x, + sh}. In particular, to obtain a valid

estimate of max;,,; |8 (x, +sh)[} it is sufficient to form an O/} accurate approxima-
tion to

3;:;-13‘-(’\,'“ I) 7l Hort _S{XHHJE}

) ia\ii ‘_=i: {
(4.1) st {k+ 1} Dix,. )

(3442703240
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and take its norm. To this end we Lensxdcr below the computation of $(x, . ),
Vo1 —S(x, ) and an approximation to 27 x, ). To keep the overall technigue as
simple as possible we will attempt to make use of quantities that have aircady been
computed during the course ol a step.

From Watts and Shampine [12, p. 3417, ®(x,.,) may be written

(I) 1r1l)w‘ﬁhzgﬁ'*--]‘2(l) H (Xntl_' xn-{] ;)
fe=1

where g, (1} is a certain double integral. The values of {X, 1 — X, JEL are immedi-
ately available, and the g, (1} term can be readily computed from guantities that
are used in the code. In Fact gy, 2, is formed in the interpolation routine, SINTRP,
where it is called GD1 (for more details see [11]).

The vector v,., is, of course, already available and S{x,.,} can be formed in 2
straightforward way (see [11]). However, the computed difference Pri1— S{Xpqy) 18
liable to suffer from catastrophic cancellation at stringent tolerances, To see this, we
observe from (2.8) and (2.10) that p,., ~ S(x,,,) is O(h*77), which is one order higher
than the quantity being controlled by TOL in (2.17). Putting x = x,,,, in {2.5) we obtain
the alternative representation

f”“ﬂ,_,(f ;i) I
H,-:,-;(\nﬂ Xyt i) ’

Yot ™ S(Y”‘*!)W{fﬂT" n i}

which may be written
n‘i S(xn l { fil)'%i_f;'l‘#i}ha(k—!_l)

where G{k+1}) is computed in the code. The difference [ —f,:( 13 O(h* Y and so
this representation should be less susceptible to cancellation.

To produce an estimate for z'*""{x,,,) we turn again to Stettes’s analysis [9].

Under the assumption that the stepsize and error control mechanism has kept the local
error at the same level over {x,,, ., X,4:], he concludes that

4-2) Sommi =X i) T Oh* ), i=0, -k
We need to extend the assumption o cover [x, .., X, ] so that
(4.3) Sok = 2'(X,- )+ OChST)

also holds. We use the standard notation f[ ] and z'[ ] for divided differences based

A

ot { foara b i and {2'(x, ., VL respectively; that s, flx,_.]1=f,.. and
.f‘[xn'ka”'n sk e i} f{ Xk | ”':xn——i\-v‘.]

,/‘[xn--ka T, xr1-—k+f}: ]

Xk 7 Xy ks

Using classical interpoiation theory (see, for exampte, {7, p. 3%]), we have

th2
z J(A\_n-rl)

PRI

b4 PN GO £

for sufficiently smeoth 2. Now, from (4.2} and (4.3), it can be proved by induction that
flxga, o X ]~ 2% 6, N )= Ot
Hence
2 )

j{xn ks Yo E] (A+i}f O( 1):

03127703025



(RN
1403

[ R
IRET
LiaIe
Ly
1000t
1:0H
[BON
103
(BT84
| trgs
s
bl
1118
1Y
T2t

12

tall
14123

1034

1130

HEAEH

ERURN)

148

FRD
et
IHIEH

[:1idd

HER R

331 550 1 4¢ 12 Galley 10 EEEE

10 13 b HIGHAM

and so it is reasonable to use the divided difference f{x, .+, X, ] to approximate
2Ny, k1 in (4.1). The DEPAC routine requires f[x, 4. - -, %, ] when
deciding whether to increase the order. An order increase is only considered when the
step size is iocally constant, that is when h o =hoo o0 =™ Moy, so the divided
difference is only available from the code in this situation. However, a scaled version
of flxn. i c. . Xpay] is always available and hence, by storing divided difference
information fram the previous step, the required guantity can be computed at little cost.

Finally we point out that there will be a small number of steps at the start of the
integration on which f{x,_.. ", X,.;] 18 not directly obtainable. On the first step
from x, to x,, for which the order k is always equal to ane, we require f{x.,, x,, X, ].
This term involves a function evaluation f_, that has not acrually be made. Similarly
if the order is increased to two for the next step, then at the end of that siep we need
fIx_;, xq, xy, x2]. Generally, f., remains until we step from X, to x,., with order k= n.
In the numerical testing described in the next section, rather than computing an extra
f value to act as [, we refrained from forming an estimate of the defect until nz k.

-

5. Numerical results. The techniques we have described produce estimates of the
defect that are valid asymptotically. In this section we investigate the accuracy of the
estimates in practical computations. To do this we used the DEPAC Adams package
in “single-step” mode by making repeated calls to the routines STEPS and SINTRP.
STEPS is the routine that advances the solution by a single step and, once a step has
been taken, SINTRP can be called to evaluate T{x} and T'{x} at some point within
the step. After advancing from x, to x,+h we formed

DEF, = max [ "{x,+jh/100}],

BEjm 0y
as a discrete approximation to max. ., §8 ' (x,+ sh)i|., along with
SAM,, =118 " (x,+ s* ),

and

(5.1)APPROX, =

2
A

+ {ff:q‘-l'"fn+l}G{k+l) j”
hgi"l.j(§ ) H?.-:; {xﬂﬁ—l ﬂxn-r-l—rf)

Th”’ﬁ(s")[f{xnwm T X

as discussed i §§ 3 and 4. We recorded the quantities

DEFMAY = max {DEF, },

N

DEF,,
SAMMAY = max { } ,
nz0 { SAM,

DEF,
AUNDERMAX == max {mmm},
nz0 { APPROX,

AOQVERMAX = max

70

{A?PROX”}
DEF, |

Hence SAMMAX measures the worst case of the sampled value underestimating DEF,.
Simitarly, AUNDERMAX and AOVERMAX measure the extreme cases of the free approxima-
tion under- and overestimating DEF,. We would like all three values to be as close to
one as possible.

(3667703208 27915
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We mention that in order to compute APPROX, using (5.1} an extra parvameter,
used to return f7, to the driver program, was added te the call list of STEPS. No
other changes were made to STEPS.

The following test problems were used:

(i} The orbit equations [3, Class D]

YT s, viil)=1—r¢,
-p; = Vi, '112[_()} e ()7
Y
[ e V() =0,
L (Pi +};5}\._ i ‘4( )
—¥a2 |+ (i) 2
e Ty W =t—1
Vi {}’;—'1'})5)3"7 ¥4(0) (2 .
0= x =20,
where values of .1, .5 and .9 were chosen for the eccentricity parameter £
(ii) A logistic curve [3, Probiem A4l
¥ Y
= f -0, w0Y=1, 0=x=20
) 4( 20) vi)
(iii) A problem due to Fehlberg that is used in {4, p. 174}:
¥, =2xy, fog (max (s, 107), n(0)=1,
yh=—2xp, tog {max (y,, 107}, V,(0) = ¢,
0=x=5.

In each case an absclute error criterion was specified with tolerances TOL = 1073,
1077, - -+, 107" Results are presented in Tables 2-6. We see that the SAMMAX values
are extremely good with the maximum over all problems and tolerances being 1.34.
In fact on the vast majority of steps the ratio DEF, /SAM, was less than 1.01. The sample

Tagel: 2
Ovbit problem, & = 1.

TOL 1o 7 i 90 i 16" 10 7 ot
DEFMAY 9E .2 1L-2  E-3 2E-4 DE-5  2E—-6  4E-7
SAMMAY .01 100 101 1O 1.02 1.02 KtH
AUNDERMAX b.5(1 218 2,36 234 432 3.28 5.03
AOVERMAX 1.7% 2.77 148 5.44 197 2.81 2467

Tantpe 3

Orhit problem, v = 5,

TOL 17 i T T 1w ) e
DEFMAX 25 R O Y Y §1i—-4  SE-S 6E -6  4E~T
SAMMAY, 104 140 P2 b0l 1.03 pA2 102
AUNDERMAX 3.47 2.66 2,59 6.41 5.05 818 5.75%

195 5149 4.51 5.63

AQVERMAX

281702316

2.04

134

382




hNIaH
HW
22004
RN
RATI]
R
AR
R
22003
R
26
MUY

18

22028

IR
2o003
x4
RETA
22024
2028
22029
Rt |
lixy |
kRN

13033

12004

RRIXE]

22139

RNyl
23042
220143
22444

22043

BE

22048
20

220568
RS
2R
VTS
A
2I0ES
2MAG
IR

22458

2MISY

Y6
I
2262
2a

e

43tk

M

331 55@ 2 48 12 Galley 2 EEEE

12 b HEGHAM

Tantt 4
Oebit problem, ¢ = 4.

TOL 17 T i f o ° I o’ DI
DEFMAY AE40 -1 9E-3 {E-2 8E~4 7E-5  TE-%
SAMMAY L9 1072 L7 1.0i 1.02 107 1.15
AUNDERMAY, 5,23 21.33 12.58 19.21 18.38 15.30 4.69
AOVERMAX 6.1 5.46 9.15 7.16 13.03 34,85 10.51

TanLy 5

Laogistic curpe,

TOL 1073 1o e s e 1677 I
DEFMAX TE-3  SE~4 SE~5 7E-6 6E-7 TE-8& TE~9
SANMAX 1.01 1.00 1.28 .01 1.05 1,06 1.34
AUNDERMAX 11.05 1.58 7 9.62 2.20 5.77 5.85 411
AOVERMAX 1.32 1.36 9.29 1.84 1.61 8.72 5.64

TABLE 6
Fehlberg probiem.

TOL 1077 197 10 167° 1070 1077 i
DEFMAY SE—1 1E—-1 2E-2 1E-3 ZZE—-4 2E-5 1E-6
SAMMAY 1.09 1.03 1.03 111 1.25 1.04 1.21
AUNDERMAX 5,33 6.84 14.07 26.06 11.89 932 4738
ACVERMAX 3.42 2.63 2.44 9.35 10,83 7.79 13,74

point 5% for each step was found to full accuracy (unit roundoff=~2x 107"} in the

manner described in § 3. The average number of Newton iterations required was five
and the maximum was six. The free approximation, whilst being less accurate, could
usually be relied on to give the correct order of magnitude of the defect over a step.
At more stringent tolerances of 107" and 167, however, we found that the AUNDERMAX
and AQVERMAX wvalues began to worsen considerably. This was caused by severe
cancellation in the formation of fi., ~/,+;. The problem only arose during the first
few steps of an integration; here the code appeared to use conservatively small stepsizes.

Throughout the testing we also sampled the defect at the midpoint of each step,
as suggested in [7], and computed

MIDPTMAX = max {—Uﬂi—}
- nzl ||§T(X,,+-5h)ufxv '

We found that although the midpoinf sample never gave a very bad estimate of DEF,,,
MIDPTMAX was always greater than the corresponding SAMMAX value and had an average
of 1.9. Generally, sampling at x, +.5h was least successful on steps where the order &
was high. This is to be expected from Table 1; at higher orders s* is likely to be further
from .5. Finally we mention that BEFMAX is seen to be controlled by TOL as predicted
at the end of § 2.

039632698
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In summary, we have given an asymptotic analysis of the defect associated with
some commonly used Adams-interpolation procedures and have presented two tech-
niques for estimating the defect in the DEPAC implementation. A reasonable orcier-of-
magnitude estimate can be formed at little cost, and for the price of one [ evaluation
per step an extremely accurate alternative is available. As well as being of interest n
their own right, these estimates may prove useful in the development of an error-control
scheme of the type discussed in [17, {21, [6] were the defect, rather than the local ervor,
is directly controlled.
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