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MACCORMACK’S METHOD
FOR ADVECTION-REACTION EQUATIONS

David F. GRIFFITHS' Desmond J. HIGHAM

Abstract

MacCormack’s method is an explicit, second order finite difference scheme that is widely used
in the solution of hyperbolic problems. Here, we consider MacCormack’s method applied to the
linear advection equation with nonlinear source ferm. Various features of the method are analysed.
First, we show that the conventional implementation is not stable far Courant numbers close to
one unless a smiall time-step is used. A simple modification, based on source term averaging,
is shown to remove this defect. We then examine spurious fixed points that are inherited from
the underlying Runge-Kutta method. Next we consider adapting the time-step as a means of
improving the efficiency of the method. Theoretical analysis hased on the method of modified
equabions is combined with numerical tests on a travelling wave problem in order to give a feel for
how the time-step should be refined. An adaptive approach based on temporal local error control
is shown to have serious drawbacks. Much better performance is obtained with a modified error
measure that takes account of immanent spatial errors.

Key Words:  adaptivity, finite difference, modified equations, nonlinearity, source term, trav-
elling wave, spuriosity.

yse come in two modes. In both cases we have

ndl 1 741 n-t+iy a7
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1 INTRODUCTION

Our model problem is the partial differential equation

(PDE)
Inforward-backward (FB) mode, the intermediate val-
wes Z_?H and I/Vj”'M are defined as

ue +auy = glu), »,t>0, (4
with solution u(z,2), where a > 0 is constant and the
source term ¢ is generally nonlinear.

We are concerned with finite difference schemes
that produce approximations Uf rz uljAz,nAt) on a

mesh {(jAz,nAt)}; 150 The schemes that we anal-
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where ¢ = aAt/Ax is the Courant number and 4 is a
free parameter. In backward-forward (BF) mode, the
intermediate values become

ZJT_J.-]-I — U'JT_L ", C(U—J? . :-?;1}
£t @)g(U7) + do(U7.)]. 5)
Frl n+1 1
Wj = Djl - C(Zj-rl — Z}’.‘ )
+at|4g( 23R + (1 - 619027 ). (6)

In the absence of a source term (g{u) = 0) these meth-
ods reduce to conventional implementations of Mac-
Cormack’s method for hyperbolic equations [10, 12].
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The parameter ¢ introduces spatial averaging of the
source terin in an upwind/downwind manner consis-
tent with the approximation of the advection term.
The choice @ = § corresponds to sampling the source
terrn at a single point. We will show in section 2 that
such a scheme is non-optimal in that it is not stable
(in a von Neumann sense) for all Courant numbers
in the range 0§ < ¢ < 1. For this reason we will also
consider the choice ¢ = %, which maintains the order
of accuracy and will be seen to improve the stability
properties,

We concentrate on four particular schemes, which
will be referred to as

FBpoint: (2}, (3), (4) with ¢ =0
{forward-backward with point source)
FBave: (2), (3), (4) with ¢ = £
(forward-backward with averaged source)
BFpoint: (2), {5), (6) with ¢ =0
(backward-forward with point source)
BFave: (2), {3), (6) with ¢ = 3
(backward-forward with averaged source)

We also note that a finite volume approach fogether
with a natural treatment of the integration of the
source term over each control volume in space yields
a method with ¢ = £ [7].

‘ofe consider the periodic initial value problem (PIVP)
and the initial boundary value problem (1BvP) for (1).
In the PIVP case, we are given u(z,0) for 0 <z < 1
and  is assumed to be periodic in space: w{l+2,t) =
u{z, t), In the IBVP case we are given u{0,¢) for £ > 0
and u(z,0} for » in the spatial interval of interess.

A fintte difference scheme for (1) based on first or-
der upwinding in space and timestepping with a gen-
eral 2-stage, second order, explicit Runge-Kutta (RK)
method was analysed in {2] with an emphasis on spu-
rious solutions. In this work we study a higher order
finite difference schemne and consider a range of topics
that relate to long time behaviour; specifically, von
Neumann stability, spurious solutions, travelling wave
solutions and adaptivity.

In section 2 we perforin a von Neumann stabil-
ity analysis that justifies the choice ¢ = i‘ Sec-
tion 3 looks briefly at the existence of spurious fixed
points. Related work ‘in [2] studied an upwind dif-
ference scheme—the MacCormack type schemes anal-
vsed here may be regarded as using the § = :15
timestepping method of [2] with more accurate spa-
tial differencing. Previous work [1], devoted to ordi-
nary differential equations {0DEs}, showed that spuri-
ous hehaviour of RK methods iz essentially precluded
by standard time-step adaptivity. In sections 4 and
5 we extend these ideas to hyperbolic PDEs of the
type {1}, We begin, in section 4, with analysis devoted
to travelling wave solutions and show that in these

circumstances it is possible to determine an optimal
Courant mumber ¢ and, thereby, an optimal time-step
that depends on the spatial grid size Az, parameters
of the PDE and the exponential decay of the initial
data. Then, in section 5, we consider ways of auto-
matically choosing the time-step that will iead to the
eptimal value being achieved. We argue that a sim-
ple ODE approach cannot be successful, so we develop
and test a more promising strategy that takes account
of inherent spabial errors. This approach can be used
more widely for other PDEs and other methods.

We note that a brief summary of the material in
section 3 was given in the manuscript [3].

2 LINEAR STABILITY

In this section we examine the stability of the finite
difierence schemes with lnear source terms by taking
g{u) = bu. We assume that b < 0 so that u = 0 is a
stable fixed peint of the underlying contiaucus prob-
lem (1). Inserting U7 = £"e% into the resulting dif-
ference equations we obbain an expression for £ which
is required to satisfy von Neumann’s criterion for sta-
bility, namely {¢] < 1 for all § [10, 12). Both FBpoint
and BFpoint schemes [ead to the same condition

16 (cz —{r— 1)2) st 8rir — 2)@25
4r(r - 2) ((i - 1)% -+ 3) <, {7}

where r 1= ~bAt and s = sin® :i—@ ranges through the
interval [0}, I}. This leads to the stability conditions

< {(r - 1) 4 3)

= i

0<r<2,

and the corresponding region of the r-c plane is shown
in Figure 1. Note that when v = 0 this condition
reduces to & < ¢ < 1, which is the well-known stability
constraind for the Lax-Wendroff scheme on the linear
advection equation with no source.

We note that, when using finite difference schemes
of this form, it is typical to refine Az and At while
keeping ¢ fixed. It follows that there is a serious practi-
cal drawback resulting from the fact that the stability
region in Figure 1 is not convex with respect to hor-
tzontal lines. If we choose values of r and ¢ in the
stability reglon close tor =2 and ¢ = 1, say r = 1.95
and ¢ = (.95, then fixing ¢ and refining the grid takes
the scheme oufside the stability region, before even-
tually returning 1t to stability.

For the BFave and FBave schemes, von Neumann's
criterion for stahbility leads to

({r—2)% — 4c%) (v* - 4c*)s”
~2r{r = 2) {(r = 1)* —4c® 4+ 1) s
(= 2) {(r—1)% —!—‘3) <0
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Fig.1: Stalnlity region for BFpoint and FBpeoint.

for all 0 < s < 1. It is readily shown that this is
equivalent to the conditions 0 <7 <2 and 0 <c < 1.
We see that averaging the source term enlarges the
stability region and makes it convex. This ensures
that stability cannct be lost when the grid is refined
with ¢ fixed. Hence, the new BFave and FBave schemes
introduced here have a significant advantage over the
point source versions in terms of linear stability.

3 SPURIOUS SOLUTIONS FOR THE
PERIODIC INITIAL VALUE PROBLEM

In this section we concentrate on the PIve. We note
that if glu*) = 0 then (1) has a spatially uniform
fixed point (SUFP) u(z, i) = w* and the finite differ-
ence schemes have a corresponding SUFP Ur = u”
If g™} = 0 and ¢'(u*) < 0, so that the SUFP of
(1) is linearly stable, then the ven Neumann analy-
sts in section 2 determines the linear stability of the
corresponding discrete sUFp—take r = —¢'(u*)At in
Figure 1. ‘

We alsc note that if the nwmerical solution is spa-
tially uniform, then the finite difference schemes col-
lapse to the improved Euler methed for onEs, which
is known to adimif spurious fixed points. Hence, for
a given source term, all four schemes may produce
a spurlous SUFP; thab is, a solution UF = w* with
g(u™} # 0. The linear stability of such solutions is
analysed by first linearizing the finite difference equa-
tions around U = u™ and then applying von Neu-
mann’s method to the resulting constant coefficient
equations, The results of the analysis are the same
regardiess of whether BF or FB modes are used but
they do depend on whether or not the source term is
averaged.

To illustrate this effect, we consider the logistic

source term

glu) = au(l —u), a > 0 constant. (8)
In this case, it is well known (see, for example, [2, 5])
that the improved Euler method admits the spurious
fixed points

o 2frdri—g
r

for r > 2, (9

Tp, 5T eerrr—

* 5 ;

where r = aAt. These spurious fixed points are lin-
early stable for 2 < r < /&,

On examining the linear stability of the correspond-
ing SUFPs for each of the four MacCormack type
schemes, we find it convenient to work in the trans-
formed parameter space o-d, where d := /r? 4. The
w” branch for the FBpoint and BFpoint schemes is
found to be stable provided that

[dle+d—1)es+d{d— 2)dlc+d+1)es + d(d -+ 2)} -

<0 {10)

holds for all s € {0,1] (the variable s is defined fol-
lowing (7)). The individual factors on the left of (10)
must have a constant sign for s € [0, 1] and this leads
to the condition ¢ < (2 — d). For the u} branch we
replace d by ~d in (10) and find that the FBpeint and
EFpoint schemes are stable when ¢ < —;—d Figure 2
shows the regions of stability in the r-¢ plane for the
true fixed point w* = 1 and the spurious sUFps w?l of
the FBpoint and BFpoint schemes. B

Fig.2: Stability region for spatially uniform fxed
points with logistic source and point evaluation of the
source (BFpoint and FBpoint).

For the source term averaged schemes, FBave and
Bfave, we find that the stability inequality for the
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lower branch u¥ corresponding to {10) is

—[d{2 A+ d) ++ s(2¢ -+ d){2¢ — d — 2)][d(2 ~ d)
—s(2c—d+2)(2c+ d)] < 0.{11)

The first bracketed factor on the left changes sign for
s € (0,1) with 0 < ¢ < 1 and d > 0, whereas the
second factor is of constant sign. This means that
the fived point is stable to perturbations of certain
frequencies but is unstable to others and is therefore
unstable for 0 < ¢ < 1 and 4 > 0 (it is, however, stable
in the ODE case; this apparent paradox arises because
we then have ¢ = 0 and the first factor in {11) has its
zero at s = 1)

To address the stability of the upper branch u} we
again replace d by —d in (11) and find that it is stable
for 0 < ¢ < 1and 2 < r < /8. Pigure 3 shows the
regions of stability for the true fixed point w* = 1
and the spurious sUFPs uX of the FBave and BFpoint
schemes.

Fig.3: Stability region for spatially vuiform fixed
points of BFave and FBave with logistic source.

The von Neuwmnann analysis in section 2 implies that
source term averaging has the desivable effect of im-
proving the linear stability of true sUrpPs. Comparing
Figures 2 and 3 we see that, with the logistic source
term, averaging also has the negative effect of stabi-
lizing the upper spurious branch for all G < ¢ < 1 at
the v = 2 boundary.

Qualitatively similar results are valid for small per-
turbations of spuricus sUFPs u* for more general non-
linear source terms provided that ¢'(u*) # 0 {see {5,
Section 3] for the ODE case). Note that with the logis-
tic source term (8), the improved Euler method does
not admit spurious fixed points for sufficiently small
Aty namely At < 2/a. However, with other nonlin-
eal source terms it 1s possible for spuricus fixed points

to persist for arbitrarily small At For example, with
glu) = uful we find spurious fixed points uf = +1/A¢
for all At > 0. However, under mild assumptions, it
follows from [6] that any spurious fixed point that ex-
ists for arbitrarily small At must blow up as At — 0,
and, from a result of [2, Lemma 3], it mnay be deduced
that such a fixed point must be unstable for sufficiently
srrall At For the four MacCormack-type schemes, a
continuity argument may be applied to prove that the
corresponding spurious SUFP for the PIVP must be un-
stable for sufficiently small Az, See [2, Theorem 6] for
details of a similar continuity argument.

We conclude this section by showing the results of
some numerical experiments on the BFpoint scherne
that illustrate the analysis. (Similar experiments were
performed in [3] for the FBpoint scheme.) We consider
the PIVP with o = I using the logistic source term (8).
We choose parameters
1 Az
Ar = 3 ¢ T 0.3, r=adt=235
so that o = 300. These give u¥ = 1.2 and v = 0.0.
For this value of v the upper branch u* is stable for
8 < ¢ < 0.75 and the lower branch u* is stable for
0 < ¢ < 0.25 see, Figure 2. Hence, in these tests u¥
is stable and u¥ iz unstable,

To begin, we take initial dasa of the form

u(z,0) = uf + sin(27z), (12)

where v is a fixed parameter. We ohserved experimen-
tally that this initial data lies in the basin of atfraction
of the stable spurious SUFP u¥ when |7} <= 0.15. The
upper left-hand picture in Figure 4 shows the numer-
ical solution obtained with v == 0.1. We see that the
spuricus level of 1.2 is rapidly attained.
The upper right-hand picture in Figure 4 relates to
the unstable lower branch. We take initial data
w(x,0) = ut + vsin(27z)

with v = 0,001, We see that the numerical solution is
initially attracted to the fixed point w¥, but at later
time develops a high frequency spatial oscillation. A
study of the stability inequality (10} reveals that the
first factor changes sign at § = % from wlich we de-
duce that the fixed point Is unstable to high frequency
perturbations. When the solution develops a high fre-
quency component, due to rounding errors for exam-
ple, these modes prow to pollute the solution, We
note that nonlinear effects prevent the solution from
blowing up.

A related type of behavicur is illustrated in the
lower pictures in Figure 4. For the lower left picture
the initial data s given by (12) with v = 0.2 and we
see that some initial data has inifially been drawn to-
wards the solution of the previous case {upper right,
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Fig.4: Spurious soluticns with BFpeint on the pivpe.

oscillating around the unstable fixed point w* ) while

the majority of the initial data evolves towards u7.
For the solution shown in the lower right of Figure 4

the grid data are changed to

1 _Am

A:;;:r)?, c: = (0.2, ro=odt=222

v

from which it may be verified that both % and ull are

stable. The initial data is given by (12) with v = (.25
The stability of each of the spurious SUFPs leads to
smooth sections between “jumps” in contrast ta the
oscillatory behaviour around the unstable fixed point
observed in the previous case. An investigation into
this type of jump solution can be found in R

4 TRAVELLING WAVE PROBLEMS

We now consider wave-like solutions to the PDE {1).
Our interest in these types of solution derives from the
fact that we can perforin numerical experiments with
our MacCormack schemes and identify optimal time-
steps Af that minimize the phase error for given wave
speeds and given grid sizes Awz. This information will
then be used to test ideas on adaptive time stepping
that are described in the next section.

4.1 Travelling Wave Solutions
The ppE (1) has travelling wave solutions ufw,t) =
O{x — st) if D satisfies the GDE '

1
&' = ().

(13)

Thus, if the problem has a travelling wave solution
for one particular speed s # a, it will have a trav-
elling wave solution for every choice of wave speed,
the profiles in each case differing only in the scaling
of the independent variable. Waves of speed s = a,
the characteristic speed, correspond to profiles @ sat-
isfying g(®) = 0. These piecewise constant selutions
and their corresponding numerical solutions have been
studied in detail by LeVeque and Yee [0],

We are interssted only in solutions that have
bounded values at infinity and these values correspond
to zeros of g. For example, if g(u.) = glus) = 0,
where . < uy are simple zeros and g(u) has constant
sign for u. < u < uy, then profiles of the type illus-
trated in Figure 5 are possible depending on the sign
of g{u) /(e s} for u_ < w < uy. The profiles become
steeper as s approaches a. We focus on the case shown
in Figure 5(ii), correspending to g{u)/{a —s) < 0 and
§ > a > 0, so that the wave travels to the right.

‘With these assumptions © = uy and u = u_ are, re-

spectively, stable and unstable fixed points of equation
(13).

Fig.5: Travelling wave profiles for solutions @ of equa-
tion (13). Case (i) when g(u)/{a—s) >0 on u. <
u < us and case (ii) when g(u)/(a — §) <0,
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By linearizing this ODE around the fixed points we
find solutions of the form

g'lu-)

o6 =u-+dep(Ti2g (g

and
B(E) = uy + E’etp(” A *s) £), (15)

which give the asymptotic nature of the solutions at
£ = +oo and £ = —oo, respectively (A and B are
arbitrary constants). Qur assumptions regarding case
(ii) of Figure 5 tmply that g'(u-) > 0 and ¢'(u4) < 0:

These asymptetic results provide information on the
development of travelling wave solutions when using
more general initial data than uw{x,0) = &(x). All
initial data sabisfying v. < u{z,0) < us will evolve
to u(z, ) = uyp as ¢ — oo, II, additionally, u(x, 1)
is monotonically decreasing then a wave-like solution
will develop and the profile of this solution for large =
will depend on precisely how w{x, 0} tends to zero as
x — oo, Restricting ourselves to exponential decay,
so that

u(x, 0) ~ exp(—Aiz), A0, (16)

for large =, then, following Mwray [11, Chapter 11],
we find that

ule, t) ~ Blw — st),
where the speed s Is deduced by comparing she decay
vates in (14) and {16). This leads to

s=ad L <” ) (17)
The development of selutions with other types of de-
cay at infinity, such as algebraic decay, is more com-
plex and will not be considered here.

4.2 Numerical Solution of Travelling Wave
Problems

Onur aim in this subsection 1s to show that optimal grid
sizes can be identified when MacCormack schemes are
applied to travelling wave problems assoclated with
(1). Our analysis is based on the method of modified
equations (see [4, 13]), which first requires the frun-
cation errvors of tie methods to be computed.

In order to facilitate writing the rather curnber-

some expressions for the truncation errors we define
the nonlinear differential operator
— i
Fluy = uy + av, — glu)

and the linear differential operator

Lo = v, — ave + g (W),

where the subscript v emphasizes that the coefficients
depend on the function u{a, t). After tedious calcula-
tions we find that the leading terms in the truncation
errors, Tpp and Tgp, for FB and BF, can be written
as
TFB = {1+ $ALL,) Flu)
g (Whige — $(2¢ + c+ c"’“)g”(u)ui]
+ %ﬂ’ﬂf—'&f(c +d)g" (u)gu)u.
+ A8 [Fu — 3" (W) g (w)] + ... (18)

+ AL [au“*

and

Tgr = Trg + Axdt [50" (W, — dglu)] wa + ...,

(19)
where all functions are evaluated at (2, ¢) and the el-
Hpses denote higher order terms. We note that both
Trg and Tpp are second order when evaluated at the
solution u{x,t) of (1), confirming that the methods
are second order accurate.

The essence of the method of modified squations is
that, for small grid sizes, the partial differential equa-
tion obtained by neglecting high order terms in the
local truncation error provides a bLetter approxima-
tion of the bekaviour of the numerical scheme than
does the underlying PDE which is the luniting case
Az = At = (. For the FB method, the modified equa-
tion we obtaln is given by TFB = {) when the higher
order terms ((.ublc or higher in At and Az) are ne-
glected. This leads to a mther complicated nonlinear
PDE that is third order in space and time. We seek
travelling wave solutions of this equation in the man-
ner described in the previous section. The equation is
Lipeanized about a fixed point u* to give

- (nb.g’(uﬁ}“.u.t.}
; 2
— ‘é‘A?‘ ety

v+ ovy = ¢ (w6 — ﬂ_\z [ Gl

and, with v{z, 1) = exp(—A{z—sat)), we find that the
numerical wave speed, s, satisfies the equation

(sa —a)A = ¢ (u") = §R2A% (Mo — *s4 o) + 39g' (uh)] .

When v* = u¥, we can ensure that the numerical
wave speed sa coincides with the exact wave speed s
given by (17} if the Courant number is chosen so that

&= (f:i) f:m- +1- 36 (20)

1
L.
i
Using the relationship (19) we find that the linearized
PDE obtained for BF mode is identical to {20}. Con-
sequently, the numerical and exact wave speeds are
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the same when the Courant number is given by (20).
Thus, the optimal Courant numbers are

o ft!
(

These results are consistent with the fact thal, in the
absence of source terms (g{u) = 0, so that s = a), the
optimal Courant number is ¢ = 1, since, with constant
advective speed, the exact solution is reproduced.

)3 [3% 1} for FBave and BFave : ¢ =1,

)3

R [ R Y

(21)

We now present some numerical results that corrob-
orate these findings. The logistic nonlinearity (8) is
used and we solve the IBVP on the domain 0 < ¢ < 0.2,
0 <@ £ L with initial and boundary data supplied by
the travelling wave solution ;

u(r, 0) = $(z — a4), w(0,4) = @(~st— g},
where s is given by (see (17)) s = a + a/A. At the
right boundary point a first order upwind scheme is
employed. In our experiments we have taken q = 1,
L =23 and 2 = 0.3. Results are presented for the
parameter sets

Parameter Set 1: o =350, A=350 (s= 2),
Parameter Set 20 a=100, A=100 (s= 2),
Parameter Set 3: o =10, A=50 (s= £),

where the mesh spacings are determined from given
values of r and ¢ by At = r/o and Az = Atfe. The
computational domain is allowed to extend, if neces-
sary, beyond 2 = L by one mesh point. The error in
each computed solution is measured in the maximum
norm

e~ Ulle = mmax max

‘!‘!,L(jA.'L': nAL) -~ U;,’-ii ;
fnatL T 0<ine<L

(22)

though she conclusions are not strongly dependent on
the choice of norm.

The rectangle (0,2] x (0,1] in (r, ) is discretized by
a fine grid (in practice consisting of 32 x 45 points)
and the ervor llu — Ul in the numerical sclution is
computed for each of the four methods, for each the
parameter sets and for each value of (r,¢). It is then
possible to draw curves of equal accurscy in parameter
space, that is, points in the {r,¢) plane where

e = U = 107472, (23)

for k= 2,3,...,7, corresponding roughly to &/2 dig-
its of accuracy. The solutions take the form of trav-
elling waves of the type illustrated in Figure 5 hav-
ing unit amplitude. Thus, values of & smaller than

k=1 correspond to grossly inaccurate numerical so-
lutions. A typical situation is illustrated in Figure 6,
where the solid curve (compuied with BFpoint, param-
eter set 1) connects points in parameter space which

for FBpoint and BFpoint : ¢ = Olead to numerical solutions of equal accuracy, in this

tase k = 2 in (23). The computational cost for each
problem is proportional to the number of grid points:
Cost o {AzA2)™), that is ‘

C
Cost o
-

,-"‘Ccst =100

..--"Cosz =10 Ty & %
|
F

Fig.6: Hiustration of curve connecting points of equal
accuracy (solid curve), curves of equal cost {dotted)
and the refinement path ( arrow ) resulting from reduc-
ing At while keeping the spatial grid size Az fixed.

The (parabolic) curves of level cost are shown dot-
ted in Figure 6 in nominal units. In order to achieve
& given accuracy ab minimem cost, grids should be
chosen to correspond to {r,¢) values near the “tip”
of the level accuracy curves, shown by an asterisk in
Figure 6.

The level accuracy curves for FB methods are shown
in Figure 7 and those for BF methods in Figure 8. In
each of the four sets of fgures it is seen that, for a
given level of accuracy (contour), there is a clearly
defined Courant number that allows the largest value
of At to be chosen. This value agrees closely with the
optimal ¢ predicted by (20) and {21), which is marked
in the plots with a broken horizontal line. It is evident
from these results that BF methods are more accurate
than FB methods on the same grids. Averaging the
source term invokes a larger optimal Courant number
and greater computational cost, though it does lead
to greatey accuracy in BF methods.

5 ADAPTIVE TIME STEPPING

We now look at strategies for dynamically selecting
a suitable time-step sequence {A1"}, where A" =
£ — " and £* is the nth discrete time level Our
purposeis twofold. First, we wish to ascertain whether
adaptive time stepping can prevent the occurrence of
spurious solutions of the type discussed in Section 3.

b et ot g o sty e
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Second, we wish to consider whether adaptive meth-
ods can generate near-optimal grids for travelling wave
soiutions. We assume throughout this section that the
spatial grid remains fixed, Thus, since both ¢ and r
are proportional to At, the possible refinement paths
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Fig.7: Accuracy contours of FB method with FBpoint on the left and FBave on the right for the three parameter
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Fig.8: Accuracy contours of BF method with BFpoint on the left and BFave on the right for the three parameter

in the (r,c) plane are straight lines through the ori-
gin (illustrated by the arrow in Figure ). We focus
on ways of estimating the local error and give only a
brief discussion of implementation issues.
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5.1 Richardson Extrapolation

As & starting point, we consider the idea of local er-
ror control based on Richardson extrapolation. In a
conventional ODE setting the solution U™ computed
using a time-step A" is compared with that usimg two
steps of size $At™ [8, Section 5.10]. The difference is
& measure of the local error and the next time-sten
Is increased or decreased according to whether this
difference is smaller or larger than some user speci-
fied tolerance. For 0DEs, this approach is covered by
the analysis in [1] {since Richardson extrapolation is
a special case of using an REK pair}. It follows that
spurious solutions w* of the type discussed in Sec-
tion 3 are eliminated for small tolerances. However,
Richardson extrapolation is less successful at identi-
fying optimal time-steps. This is due to the fact that
it depends on the idea that the local error is propor-
tional to a power of AZ (the (p + 1)st power for a pth
order method), which implies that smaller tirne-steps
lead to smaller {global) errors. For owr MacCormack
schemes the truncation errors are given by expressions
(18) or {19) (with F(u) = 0), depending on the mode.
The leading terms are quadratic expressions in At {for
a fixed Au) which, in general cannot be driven to zers
by reducing At to zero. Both the analysis and the nu-
merical results of the preceding section supgest that
a tine-step At may be found for each travelling wave
solution which balances (the leading) spatial and tem-
poral errors and we now turn to two possible ways in
which this value may be sought.

5.2 An Embedded Method

One of the most popular techniques for controlling
the local error in ODE codes is to compute sofutions
by two different RK methods at each time step. Their
difference can then be used to measure the local error
and to adjust A#". The two methods are generally
of different orders and, for reasons of econormy, are
embedded so that they share the same intermediate
stage values {8, Section 5.10].

Our MacCormack schemes (2)-(6) each use two
stages (denoted by Z and W) in which the first stage,
Z, is a first order method. Hence, in the spirit cublined
ahove, the difference

ewa(80) = max (U7 - 27| (2

0<jhe s

may therefore be used as a basis for ervor control (the
maximum norm in space could be replaced by any suit-
able norm). This process actually estimates the local
error in the Z-values, giving a so-called “extrapolation
method”.

This appreach Is not successful in FB mede due, we
believe, to the fact that the Z-values are generated by
an unstable, downwind method. We therefore present
analysis and results only for BF mede.

We computed asymptotic estimates in the manner
of (18) and (18) for the difference Ut~ Z3* Lin-
earizing in the neighbourhood of the leading edge of
a travelling wave, we may deduce a value for ¢ that
minimizes the local error estimatae, By this process we
obtain

i
T —
e
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These values do not agree with those given by (21} and
hence this process cannot be expected to predict the
optimal time-step for travelling waves. Contours of
the quantity maxyc.asep lenvil, the estimate of the
accuracy, are shown in Figure §.

Comparing with corresponding contowrs of the ac-
tual global error shown in Figure 8 it is seen that the
predicted and actual optimal Courant numbers are not
too dissimilar, leading us to conclade that this tech-
nique may have some practical use. The agreement
between predicted and actual optimal Courant num-
bers is much closer with 8Fave than with BFpaint,

It is also observed from Figure 9 that the estimate of
the ervor increases with At and indicates that the nu-
merical solution has no correct digite as r approaches
r = 2, where spurious bifurcations occur. This stig-
gests that the presence of spurious solutions may be
detected by monitoring the difference {24,

5.3 A Residual Based Estimator

Our third method of error estimation is based on the
idea of using two separate schemes, one of which is of
MacCormack type. We choose the second scheme to
be the Box scheme which we express as being the so-
lution of the nonlinear equations R(U 1} = 0, where
the value of R at the grid point (z;, 1) is defined
by [112]

RISl =3 U+ UpH Uy, o)

] J+1 J
+be (U - U U, - 07)
=3 A (GUU) + U ) 4 (U2 ) + glU))
(25)

This is an implicit scheme which, like the MacCor-
mack schemes, Is a second order aceurate approxima-
tion of the PDE (1). The need to salve systems of
nonlinear algebraic equations at each time step can be
aveided by employing the schemme in an non-standard
manner. Rather than solving (25) at each time step
and using the difference hetween the resulting solution
and that of the MacCormack schemes as an error es-
timator, we substitute the MacCormack solution into
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Fig.9: Predicted levels of local error using first-crder embedding for the BF method with BFpoint on the left
and BFave on the right for the three parameter sets (see Figure 8). The broken lines denote the optimal values

of ¢ given by (21).

(25} and use the residual R as the estimate of local
error, '

Our frst observation is that inserting Ur=zuin
(25) gives g{u*) = 0, so spurious fixed points of the
type discussed in Section 3 are disallowed by the Box
scheme. Hence, for small tolerances this approach will
eliminate such spurious solutions.

An asymptotic estimate of R may be obtained by
substituting for U7 and U;fii from (2) and either
(3-4) {FB mode) or (5 -6) {BF mode} and then devel-
oping the result in Taylor series in the usual manner,
This leads to

1 . ;

R =7 [ AF(g ) (Bu, — g) + aAtAz(2¢ + chggu,
— A [(1 - czju_,,“ + {c+ Ze* 200" (1 Y
+(36 = 240 )] J

where we have ignored higher ovder terms. Then, for
the leading edge of a travelling wave, that is writing
u = u¥ + exp(~Az) near a fixed point u* and consid-

ering large values of x, we find that the leading term
in A vanishes when

o (E;"_)S (2@(2 ~ 1)+ 1) ,

- {( )2 for

@
il

i : (26)

win win

( )3 for ¢ =

The same result is also obtained for FB mode.
Comparing the values given by (26) with the opti-
mal Cowrant numbers in {21} it is seen that the value
predicted by (26) provides the correct estimate when
¢ = 0 (poi;lt evaluation of the source term) but not
when ¢ == +. This is confirmed in Figures 10 and 11
where the results of contours of the norm of the resid-
ual [|Blios are shown for the travelling wave solutions
introduced in Section 4.2. The optimal Courant mum-
ber in each case is shown by the broken lines. For the
results of the FBpoint methods shown on the left in
Figure 10 the optimal Courant oumber is discernible
though the minimum of the estimator may not be suf-
ficdently clear that it may be exploited for purpeses of
time-step selection.

The contours of the norm of the residual for BF
methods are shown in Figure 11. The optimal Courant
numbers predicted by BFpoint for each parameter set
are in close agreement with the values based on global
ervors {broken lines) as expected from our asymptotic
result (26). What is less expected is the close agree-
ment for the BFave method. This is perhaps fortu-
itous and comes about because the numerical values
produced by the formulae (21} and (26) are quite close
for the wave speeds s/a = 2,6 used in these experi-
ments.

In this section we have seen examples of ways of es-
timating the local ervor in MacCormack schemes, the
most successful of these being the residual based es-
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Fig.10: Predicted levels of local error using the norm of the residual in the Box scheme for the FB method with
FBpoint on the left and FBave cn the right for the three parameter sets {see Figure 7). The broken lines denote

the optimal values of ¢ given by (21).

timator for BFave. Exploitation of these estimates in
the PDE setting are more complex than in compara-
ble ODE settings since for ODEs it is only necessary
to reduce the time-step in order to reduce both local
and global errors {provided that the time-step is suf-
ficiently small to lie within the asymptotic region of
small step sizes). For MacCormack schemes the lead-
ing terms in the local and global errors are quadratic
polynomials in both At and Aw and the optimal time-
step has to be selected so as to minimize the norm of
the estimate. No problems are foreseen in devising
suitable algorithms for minimizing this norm for rela-
tively small time-steps (oAf < 1, say, i the context
of our travelling waves) since it is evident from our
results that the nerm is a smooth function in such
reglons. It is not so clear how to proceed when the
time-steps are so large that the norm of the estimate
is no longer smooth. We leave this issue for future
work.

6 SUMMARY

We have addressed several issues concerning the use of
MacCormack’s finite difference scheme for advection-
reaction equations. First, we showed that linear sta-
bility is improved by averaging the source term in a
manner that respects the symmetry of the spatial dif-
ferencing. We then looked at spurious solutions that
are inherifed from the underlying RK method. Stable,
spatially uniform spurious steady states are admitted

on the periodic problem, but these must blow up and
lose stability as the mesh is refined. It is also possible
for the numerical solution to evolve into a spatially dis-
continuous pattern that jumps between spurious lev-
els.

We then considered an adaptive version of Mac-
Cormack’s scheme. Analysis and testing on travelling
wave problems supported the use of time-step control.
In contrast with the case of embedded zk pairs for
ODE problems, use of the stage values of the scheme
to form an ervor estimate that represents the difference
of MacCormack’s scheme and one that is first order in
time and space was unsuccessful. Hence, we developed
a time-step selection strategy that attempts to balance
the temporal and spatial ervor contributions based on
the residual in the Box scheme. In this manner we
regard the fixed spatial mesh as determining the ac-
curacy of the scheme, and we aim to make the time-
step as large as possible without significantly degrad-
ing the error. The results presented have shown the
feasibility of the ideas developed here but further work
is necessary in order to create practical implementa-
tions. There are many open questions in the ares of
error control for evolutionary partial differential equa-
tions relating to, for example, higher space dimen-
sions, moving meshes, equidistribution and preserva-
tion of invariants. However, the idea of balancing er-
rovs in time and space is clearly a key element in all
these areas.



MacCormack’s Method for Advection-Reaction Equations

Fig.11: Predicted levels of local error using the norm of the residual in the Box scheme for the BF method with
BFpoint on the left and BFave on the right for the three parameter sets (see Figure 8). The broken lines denote

the optimal values of ¢ given by (21).
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