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Abstract. We use techniques from applied matrix analysis to study small world cutoff in a
Markov chain. Our model consists of a periodic random walk plus uniform jumps. This has a
direct interpretation as a teleporting random walk, of the type used by search engines to locate
web pages, on a simple ring network. More loosely, the model may be regarded as an analogue
of the original small world network of Watts and Strogatz [Nature, 393 (1998), pp. 440–442]. We
measure the small world property by expressing the mean hitting time, averaged over all states, in
terms of the expected number of shortcuts per random walk. This average mean hitting time is
equivalent to the expected number of steps between a pair of states chosen uniformly at random.
The analysis involves nonstandard matrix perturbation theory and the results come with rigorous
and sharp asymptotic error estimates. Although developed in a different context, the resulting cutoff
diagram agrees closely with that arising from the mean-field network theory of Newman, Moore, and
Watts [Phys. Rev. Lett., 84 (2000), pp. 3201–3204].
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1. Introduction. We show here that a small world cutoff arises in a simple ran-
dom walk setting that is amenable to rigorous analysis via matrix perturbation theory.
Our model is derived by adding uniform jumps to a periodic, one-dimensional random
walk. Increasing the jump probability allows us to interpolate between completely lo-
cal and completely global behavior. The small world property is then quantified by
the average or maximum of the mean hitting times.

Although it is simplistic, we believe that this model is relevant to many physi-
cal, sociological, epidemiological, and computational applications, as it combines the
traditional notion of diffusion on a lattice [3, 4, 16, 20] with the type of partially ran-
dom connectivity that has recently been used to describe complex, real-life networks
[6, 12, 15, 17, 18, 22, 23, 24]. In particular, we mention that the original work of
Watts and Strogatz [25] included a disease simulation that is in a similar spirit to our
model.

More specifically, the idea of taking a “random walk plus shortcuts” is used by web
search engines. Here, the fundamental task is to locate all web pages by following
hyperlinks. A simple random walk—finding all links out of the current page and
choosing one of them uniformly—is liable to reach a dead end or to cycle. To avoid
this, it is common to jump occasionally to a page chosen uniformly at random. Adding
jumps in this way is known as teleporting [10]. The search engine Google uses just
such an algorithm [14]. Our results apply directly to the case of teleporting on a ring
lattice and quantify, in terms of the teleporting parameter, the expected number of
links that must be followed to reach a given target.
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Although the correspondence is not exact, we originally developed this model by
analogy with the randomized network approach of Watts and Strogatz [25]. In that
work, the authors showed experimentally that by replacing a small number of con-
nections by new connections between randomly chosen nodes, that is, by randomly
rewiring a few times, the small world property is roused before the clustering prop-
erty is lost. They coined the phrase small world phenomenon to describe the unlikely
alliance of the clustering and small world properties. Initially, the small world prop-
erty was verified through numerical simulation. More recently, Newman, Moore, and
Watts [19] gave a semiheuristic analysis of a closely related model in the limit of large
network size. Here random links do not replace existing links but instead are added to
the network and are thus referred to as shortcuts. The resulting mean-field expression
for the path length is shown as a dashed line in Figure 3.3 below. An unsatisfactory
feature of the treatment in [19] is that it is designed to be valid for either a large or
small number of shortcuts, that is, x � 1 or x � 1 on the x-axis in Figure 3.3. This
does not cover the interesting cutoff region where the average path length sharply de-
creases as a function of the average number of shortcuts added. However, simulations
reported in [19] showed that the mean-field expression continues to give a reasonable
fit in this range. A fully rigorous analysis that applies only for a large number of
shortcuts (x � 1) has been given in [1].

For our random walk model, we measure the small world property as the maxi-
mum or average mean hitting time, rather than the expected path length. One of the
key advantages of this approach is that it permits a rigorous analysis in the asymp-
totic limit of a large number of states. Further, the analysis is sharp; we obtain
exact expressions for the leading terms in the expansions. Our results include what
appears to be the first rigorous analysis of a small world cutoff effect for the interest-
ing O(1) shortcuts regime. Quite remarkably, the analytical cutoff diagram that we
derive is in close agreement with the one that has been found experimentally for the
Watts–Strogatz network model.

In the next section we set up the random walk as a Markov chain and state results
about the mean hitting times. The results are interpreted in section 3. We show
that a certain scaling of the interpolation parameter (in terms of the chain length)
has a particular physical significance. For this scaling, we obtain a cutoff diagram
that illustrates the small world phenomenon and may be compared with that of the
Watts–Strogatz network model. Section 4 is the heart of the paper. Here we prove
the key results using techniques from numerical analysis to capture the effect of a
certain structured perturbation on a linear algebraic system. Because the perturbation
depends on the dimension of the system, the usual “(I + E)−1 = I − E + O(‖E‖2)”
expansion cannot be employed in general. Section 5 points to possible future work.

2. The Markov chain approach.

2.1. The model. We begin by setting up the relevant mathematical concepts.
A discrete time, finite state Markov chain is a stochastic process {Xn}n≥0 that can be
characterized by a transition matrix P . We suppose that there are N states, labeled
1 to N , so P ∈ R

N×N . The value pij specifies the probability that Xn+1 = j given
that Xn = i, that is,

P(Xn+1 = j|Xn = i) = pij ,

with all pij ≥ 0 and
∑N

j=1 pij = 1. We will always make the process start at state
1, so X0 = 1 with probability 1. The mean hitting time for state j is the average
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number of steps taken by the process before first reaching state j. More precisely, the
mean hitting time for state j is the expected value of the random variable hj(ω) :=
inf{n ≥ 0 : Xn(ω) = j}. We let z ∈ R

N−1 denote the vector of mean hitting times
for states 2, 3, . . . , N , so zj is the mean hitting time for state j+1. A standard result
that may be found, for example, in [20, Theorem 1.3.5] shows that z is the minimal
nonnegative solution to the system of linear equations(

I − P̂
)
z = e.(2.1)

Here, P̂ ∈ R
(N−1)×(N−1) is formed by removing the first row and column from P , so

p̂ij = pi+1,j+1, and e := [1, 1, . . . , 1]T ∈ R
N−1. We find it natural to use the mean

hitting time as an analogue of the path length in order to measure the “small world”
size of the Markov chain. We will consider the maximum mean hitting time

mhtmax(P ) := max
1≤i≤N−1

zi(2.2)

and the average mean hitting time

mhtave(P ) :=
1

N − 1
N−1∑
i=1

zi.(2.3)

We note that mhtave(P ) has the agreeable interpretation as the expected number of
steps between a pair of sates chosen uniformly at random. There are, of course, other
hitting time measures, such as the expected value of max1≤j≤N hj(ω), that may be of
interest. We focus on (2.2) and (2.3) because we believe them to be natural choices
and because they can be studied via matrix analysis.

By analogy with the basic ring network in [25], we consider the Markov chain
with transition matrix

P0 =



0 1
2

1
2

1
2 0 1

2

1
2 0

. . .

. . .
. . .

. . .

. . .
. . . 1

2

1
2

1
2 0


∈ R

N×N .(2.4)

Here, at each step the process moves to either of the two neighboring states with equal
probability (with 1 and N regarded as neighbors). This could also be described as
a symmetric, one-dimensional, periodic random walk. With this choice of transition
matrix, the system (2.1) becomes

Tz = e,(2.5)

where T := tridiag(− 1
2 , 1,− 1

2 ) and tridiag(a, b, c) denotes a tridiagonal Toeplitz matrix
of the form 

b c

a b
. . .

. . .
. . .

. . .

. . .
. . . c
a b


∈ R

(N−1)×(N−1).
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It is well known, and easily verified, that (2.5) has the unique solution zi = i(N − i).
Hence,

mhtmax(P0) :=
N2

4
+O(1) and mhtave(P0) :=

N(N + 1)

6
.(2.6)

Now we perturb the basic transition matrix P0 in (2.4) by resetting all zero entries
to ε > 0. This gives the transition matrix

Pε =



ε 1
2 − ε̂ ε . . . ε 1

2 − ε̂
1
2 − ε̂ ε 1

2 − ε̂ ε . . . ε

ε 1
2 − ε̂ ε 1

2 − ε̂
. . .

...
...

. . .
. . .

. . .
. . . ε

ε . . . ε 1
2 − ε̂ ε 1

2 − ε̂
1
2 − ε̂ ε . . . ε 1

2 − ε̂ ε


∈ R

N×N ,(2.7)

where in order to keep the row sums equal to one we require

ε̂ =
N − 2
2

ε,(2.8)

and in order to maintain nonnegative entries we require

ε ≤ 1

N − 2 .(2.9)

On each step the Markov chain with transition matrix Pε moves to either of the two
neighboring states with equal probability 1

2 − N−2
2 ε and to each nonneighboring state

with probability ε. This is precisely the teleporting idea described in section 1 applied
to a ring network and, more loosely, is analogous to the rewiring operation used to
generate small world networks. We may regard ε as a parameter that allows us to
interpolate between a local and a global process.

The main issue that we address in this work is how the mean hitting times are
reduced as ε is increased from zero. This leads to an interesting problem in matrix
perturbation theory. We will compute expressions for the maximum mean hitting time
reduction ratio

mhtmax(Pε)

mhtmax(P0)
(2.10)

and the average mean hitting time reduction ratio

mhtave(Pε)

mhtave(P0)
(2.11)

for small ε and large N . The constraint (2.9) shows that ε must scale with N , and
hence we consider the power law relationship

ε :=
K

Nα
for fixed K > 0 and α > 1 in the limit N → ∞.(2.12)

For reference, note that in the case where ε = 1/N , all entries of Pε are equal.
This is the fully global regime where the process moves to any other state with equal
probability. In this case, it follows from (2.1) (or from basic probabilistic arguments)
that the mean hitting time vector has all entries zj = N . Hence, from (2.6),

mhtmax(P1/N )

mhtmax(P0)
=
4

N
+O(N−3) and

mhtave(P1/N )

mhtave(P0)
=

6

N + 1
.
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2.2. Results. Theorems 2.1, 2.2, and 2.3 below completely characterize the re-
duction ratios for all ε in (2.12), to leading order in N . Proofs are given in section 4.

Theorem 2.1. For α > 3,

mhtmax(Pε)

mhtmax(P0)
= 1 +O(N3−α) and

mhtave(Pε)

mhtave(P0)
= 1 +O(N3−α).

Theorem 2.2. For α = 3,

mhtmax(Pε)

mhtmax(P0)
=
2
√
2√
K
tanh

√
K

2
√

2
+O(N−1)(2.13)

and

mhtave(Pε)

mhtave(P0)
=
6

K

( √
2K

2 tanh
√

2K
2

− 1
)
+O(N−1).(2.14)

Theorem 2.3. For 1 < α < 3,

mhtmax(Pε)

mhtmax(P0)
=
2
√
2√
K
N

α−3
2 +O(N−1)(2.15)

and

mhtave(Pε)

mhtave(P0)
=
3
√
2√
K
N

α−3
2 − 6

K
Nα−3 +O(N−1).(2.16)

(We remark that the second term on the right-hand side of (2.16) can be absorbed into
the final O(N−1) term for α ≤ 2.)

3. Interpretation and discussion. The theorems show that there is a thresh-
old at α = 3. For larger α values, the ε perturbation has no effect on the mean hitting
time reduction ratios in the N → ∞ limit. For α = 3, the reduction ratio has a fixed,
nonzero value for each K. For α below 3, the ε perturbation dominates the process,
giving a reduction ratio that is asymptotically zero.

In the case of networks, the small world phenomenon has been characterized by
expressing some measure of the average path length in terms of the expected number
of shortcuts added [19, 25]. An appropriate characterization in our Markov chain
setting is to measure the average mean hitting time, mhtave(Pε), as a function of the
expected number of shortcuts (teleportings) taken per random walk. (We say that a
shortcut takes place from step n to step n+ 1 if Xn+1 �= (Xn ± 1) mod N .) Now, on
each step, the probability of a shortcut is ε(N − 2). Define the process Mn by

Mn := (number of shortcuts up to step n)− nε(N − 2).(3.1)

Subtracting the drift in this way produces a martingale, that is, EMn = 0. Since hj

is a stopping time, the optional sampling theorem [11, Chapter 3, Corollary 3.1] may
be applied to give EMhj = EM0 = 0. Using this in (3.1), we find that the expected
number of shortcuts up to the hitting time for state j is given by ε(N − 2)Ehj . So
if we let Wε denote the average over all states of the expected number of shortcuts
taken per random walk, then Wε = ε(N − 2)mhtave(Pε). Applying Theorems 2.1–2.3
leads immediately to the following corollary.
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Fig. 3.1. Curves describing the vector of scaled mean hitting times with α = 3 for different
values of K in (2.12).

Corollary 3.1. The average over all states of the expected number of shortcuts
taken per random walk, Wε, has the following properties:

1. For α > 3, Wε → 0 as N → ∞.
2. For α = 3,

Wε =

√
2K

2 tanh
√

2K
2

− 1 +O(N−1).

3. For 1 < α < 3, Wε → ∞ as N → ∞.
Corollary 3.1 distinguishes α = 3 as the appropriate regime in which to search for

the small world phenomenon—it is only in this case that the ε perturbation introduces
a nonzero but bounded number of shortcuts. So henceforth we consider only the
case α = 3. Note that this scaling is easily arrived at via the following heuristic
arguments. Typical excursions on the basic ring take O(N2) steps. For the Pε model,
the probability of a shortcut on each step is (N−2)ε = O(N1−α). Hence, if the O(N2)
excursion length is preserved and a finite number of shortcuts are to be taken, then
a reasonable guess is to set O(N2)×O(N1−α) = O(1), giving α = 3. However, since
our analysis provides the coefficients associated with the leading order asymptotics,
we are able to investigate the model more closely.

Returning our attention to the individual mean hitting times, for α = 3 it follows
from the analysis in section 4 (more precisely, from (4.5), (4.11), and (4.15)–(4.17))
that zj is perturbed to zεj , where

zεj =
N2

√
2K tanh

√
2K
2

[
1− cosh

√
2K(xj − 1

2 )

cosh
√

2K
2

]
+O(N), with xj :=

j

N
.(3.2)

In Figure 3.1 we plot curves for the mean hitting time vector, as given by the first term
on the right-hand side of (3.2), scaled by N2. We show the cases K = 1, 5, 10, 20, 100.
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Fig. 3.2. Leading term in the maximum (solid line) and average (dashed line) mean hitting
time reduction ratios as a function of K, from Theorem 2.2.

(Note that components in the scaled vector zε/N
2 are found by evaluating the curves

at the equally spaced points 1/N, 2/N, . . . , (N−1)/N along the x-axis.) We have also
plotted the K = 0 case, that is, ε = 0, which corresponds to the parabola x(1 − x).
The outcome is intuitively reasonable—the mean hitting times decrease and the profile
flattens as K, and hence ε, increases.

Separate numerical testing indicated that (3.2) is sharp—the remainder term
behaves like a nonzero multiple of N .

Turning now to the mean hitting time reduction ratios, (2.10) and (2.11), Fig-
ure 3.2 plots the leading terms in (2.13) and (2.14) as functions of K. (Note that the
horizontal axis is logarithmically scaled in order to zoom in on the region of interest.)
We see that there is a rapid decay when K is increased beyond ≈ 1.

To look for the small world phenomenon, we now plot the average mean hitting
time reduction ratio, mhtave(Pε), as a function of the the average over all states of
the expected number of shortcuts taken per random walk, Wε. From Theorem 2.2
and Corollary 3.1, these may be computed via the parametric form

Wε =

√
2K

2 tanh
√

2K
2

− 1 and mhtave(Pε) =
6

K
Wε,(3.3)

with an error of O(N−1). The solid line in Figure 3.3 shows the resulting curve.
A sharp cutoff is noticeable as the number of shortcuts increases from around 1

2 to
50—the small world effect kicks in abruptly when only a small number of shortcuts
are taken.

It is possible to compare the behavior of this model with that of the k = 1
version of the Newman–Moore–Watts network model [19], which is closely related to
the corresponding Watts–Strogatz model [25]. In the network model, we begin with a
ring of N nodes, where node i is connected to node j if |i−j| = 1 mod N . This “local”
network is interpolated toward the “global” by adding shortcuts between randomly
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Fig. 3.3. Solid line is (3.3): x-axis is average number of shortcuts per excursion, Wε, y-axis
is reduction ratio for average mean hitting time, mhtave(Pε)/mhtave(P0). Dashed line is, from [19],
y = 4f(x) with f defined in (3.4): x-axis is average number of shortcuts per network, y-axis is
reduction ratio for average path length.

selected nodes. The mean-field expression in [19] for the average path length as a
function of the expected number of shortcuts is y = Nf(x), where

f(x) =
1

2
√
x2 + 2x

tanh−1 x√
x2 + 2x

.(3.4)

Since the average path length when there are no shortcuts is, to leading order, N/4,
the curve y = 4f(x) gives the reduction in the average path length in terms of the
average number of shortcuts. This is plotted with a dashed line in Figure 3.3. As we
mentioned in section 1, the authors note in [19] that their mean-field approximation
involves assumptions that are valid only for values that correspond to x � 1 and
x � 1 on the x-axis of Figure 3.3. However, simulations show that the curve also
gives quite an accurate description of the cutoff region around x = 1; see [19, Figure 2]
or [22, Figure 5].

Overall, although the two measures are fundamentally different, Figure 3.3 shows
that there is a remarkable qualitative and quantitative agreement between the small
world cutoff behavior in the Markov chain and randomized network models. In par-
ticular, the mean-field theory predicts that an average of 3.5 shortcuts per network
are needed to give a reduction of 1

2 in the average path length (consistent with the
simulations of [25]). The average number of shortcuts per random walk required to
give an average mean hitting time reduction ratio of 1

2 is 3.7. The corresponding
figures for a reduction of 1

10 are 44 and 28, respectively.
So far, we have focused on measuring mean hitting times by analogy with path

length. Is there a corresponding analogue of the clustering property? One possibility
is to consider how rapidly the Markov chain converges to its equilibrium distribution.
We may regard the chain as not being clustered if it tends quickly to equilibrium—
that is, transient behavior rapidly gives way to steady state behavior. The rate at
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which equilibrium is approached can be bounded above and below in terms of the
spectrum of the transition matrix; see, for example, [2, Theorem 10.3]. In our case
Pε in (2.7) is circulant, and hence its eigenvalues can be calculated explicitly. For
α = 3 we find that with N even there is an eigenvalue of modulus 1−K/N2 and with
N odd there is a repeated eigenvalue of modulus 1 − (K + π2)/N2 + O(N−4). We
may conclude that for large N the process is slow to approach equilibrium and hence
remains clustered. In this sense, when the cutoff in Figure 3.3 takes place we have
captured the small world phenomenon.

4. Proofs.

4.1. Preliminaries. Theorems 2.1–2.3 concern matrix perturbation theory. The
vector zε ∈ R

N−1 is the (minimal nonnegative) solution to

Tεzε = e,(4.1)

where Tε = T + tridiag(Nε
2 , 0, Nε

2 ) − εeeT . We have mhtmax(Pε) = ‖ zε ‖∞ and
mhtave(Pε) = ‖ zε ‖1/(N − 1), where ‖ · ‖∞ and ‖ · ‖1 are used to denote the vector
∞ and 1 norms and their induced matrix norms, respectively. We are thus concerned
with the normwise effect on the size of the solution when (2.5) is perturbed to (4.1).
For the α > 3 case, a standard expansion can be used; see section 4.2. However, for
α ≤ 3 this approach is no longer applicable—special care is needed to deal with the
dependence of the perturbation on the dimension N ; see section 4.3.

We find it useful to let

T̂ε = T +∆Tε,(4.2)

with

∆Tε = tridiag(
Nε
2 , 0, Nε

2 ).(4.3)

Note that T̂ε is diagonally dominant and hence nonsingular. We also let yε ∈ R
N−1

satisfy

T̂εyε = e.(4.4)

Now, we may use the Sherman–Morrison formula [9, p. 490] to deal with the rank

one perturbation that converts T̂ε to Tε. First note that the inequality 1− εeTyε �= 0
follows from the analysis below. (More precisely, it follows from (4.9) for α > 3 and

from (4.16) for 1 < α ≤ 3.) Hence, by the Sherman–Morrison formula, T̂ε in (4.2) is
nonsingular and

zε = T−1
ε e =

(
T̂ε − εeeT

)−1

e

=

(
T̂ε

−1
+
εT̂ε

−1
eeT T̂ε

−1

1− εeT T̂ε

−1
e

)
e

=
1

1− εeTyε
yε.(4.5)

We also note a few more facts. First, recall that A is defined to be a Stieltjes
matrix, that is, a symmetric M-matrix, if A−1 ≥ 0 and aij ≤ 0 for i �= j. (Inequalities
between vectors or matrices are understood to hold for all components.) Further, any
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strictly or irreducibly diagonally dominant symmetric A with aij ≤ 0 for i �= j and
aii > 0 for all i is a Stieltjes matrix; see, for example, [21, Theorem 6.2.17]. It follows

that T and T̂ε are Stieltjes matrices, and hence T
−1 ≥ 0 and T̂ε

−1 ≥ 0. Further,

‖T−1 ‖1 = ‖T−1 ‖∞ = ‖T−1e ‖∞ =
N2

4
+O(1).(4.6)

4.2. Proof of Theorem 2.1.
Proof. First, note that

‖∆Tε ‖∞ = ‖∆Tε ‖1 = O(N1−α)

and hence

‖T−1∆Tε ‖∞ = ‖T−1∆Tε ‖1 ≤ ‖T−1 ‖1‖∆Tε ‖1 = O(N3−α).

Since α > 3 we have ‖T−1∆Tε ‖∞ → 0 and ‖T−1∆Tε ‖1 → 0. We may thus appeal
to standard perturbation theory and expand (I + T−1∆Tε)

−1 in powers of T−1∆Tε;
see, for example, [5, Lemma 2.1]. We have

‖yε ‖∞ = ‖ (T +∆Tε)
−1e ‖∞

= ‖ (I + T−1∆Tε)
−1T−1e ‖∞

= ‖ [I − T−1∆Tε +O(‖T−1∆Tε ‖2
∞)
]
T−1e ‖∞)

= ‖T−1e ‖∞ +O(‖T−1∆Tε ‖∞‖T−1e ‖∞)
= ‖ z ‖∞

(
1 +O(N3−α)

)
.(4.7)

Similarly,

‖yε ‖1 = ‖ (T +∆Tε)
−1e ‖1 = ‖ z ‖1

(
1 +O(N3−α)

)
.(4.8)

Since yε = (T +∆Tε)
−1e ≥ 0, this also shows that eTyε = O(N3), and hence

1− εeTyε = 1 +O(N3−α).(4.9)

Using (4.5), this gives

zε =
(
1 +O(N3−α)

)
yε.

So, from (4.7)

‖ zε ‖∞ = ‖ z ‖∞
(
1 +O(N3−α)

)
and from (4.8)

‖ zε ‖1 = ‖ z ‖1

(
1 +O(N3−α)

)
,

as required.

4.3. Proofs of Theorems 2.2 and 2.3. We begin this subsection by discussing
the main ideas in the proofs of Theorems 2.2 and 2.3 and introducing some notation
before proving a lemma that formalizes the key steps.
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Note that by using the Sherman–Morrison formula to establish (4.5) we have
essentially reduced the problem to the study of yε in (4.4). This system may be
written as (

1

∆x2
tridiag(1,−2, 1)− 2εN3tridiag( 1

2 , 0,
1
2 )

)
yε = −2N2e,

where ∆x = 1/N . This may be interpreted as a finite difference formula applied to
the boundary value problem

y′′(x)− 2εN3y(x) = −2N2, 0 ≤ x ≤ 1, y(0) = y(1) = 0.(4.10)

The finite difference formula applies standard central differences to the y′′(x) term
but uses slightly unusual symmetric averaging for the y(x) term. The boundary value
problem (4.10) has solution

ybvp(x) =
1

εN

[
1− cosh γ(x− 1

2 )

cosh γ
2

]
,(4.11)

where γ :=
√
2εN3. We let ybvp ∈ R

N−1 denote the vector whose ith component is
given by ybvp(xi), where xi = i∆x.

If the finite difference method is successful, then we would expect ybvp to form
a good approximation to yε, and this is the basis of our analysis. We note, however,
that some care is required since, unlike in the scenario normally studied by numerical
analysts, the underlying problem (4.10) depends on the discretization parameter ∆x
(through N). However, by carefully adapting the traditional M-matrix type analysis
(see, for example [21, Chapter 6]) and exploiting the special structure of the problem,
it is possible to obtain a useful result. (As an aside, we mention that the original
system (4.1) could be analyzed through a finite difference framework by regarding eeT

as approximating a scaled integral operator. However, we found it more convenient
to invoke Sherman–Morrison.)

To proceed, we therefore define the truncation error vector τ ∈ R
N−1 by

τi :=
1

∆x2
[ybvp(xi −∆x)− 2ybvp(xi) + ybvp(xi +∆x)]

− γ2

2
[ybvp(xi −∆x) + ybvp(xi +∆x)] + 2N

2.(4.12)

Equivalently, we may write

T̂εybvp = e− ∆x2

2
τ .(4.13)

Lemma 4.1. Suppose 1 < α ≤ 3. Then the truncation error τ satisfies τi > 0 for
all i (for sufficiently large N) with

‖ τ ‖∞ = O(N3−α) and ‖ τ ‖1 = O(N
5−α

2 ).(4.14)

Further,

‖yε − ybvp ‖∞ = O(1)(4.15)
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and

1− εeTyε =
2 tanh γ

2

γ
+O(N−1).(4.16)

Proof. It follows from (4.11) that

‖ybvp ‖∞ = O

(
1

εN

)
= O(Nα−1).(4.17)

Also

eTybvp =
N − 1
εN

− 2

εN

∑N−1
i=1 eγ(i∆x− 1

2 )

eγ/2 + e−γ/2
.

By summing the geometric series and exploiting the fact that γ = O(N (3−α)/2) we
find

eTybvp =
1

ε
− 2 tanh γ

2

εγ
+O(Nα−1).(4.18)

(Note that for 1 < α < 3 the tanh γ
2 factor in (4.18) may be replaced by 1.)

To estimate τ , we note that since ybvp ∈ C4[0, 1], Taylor expansions give

ybvp(xi −∆x)− 2ybvp(xi) + ybvp(xi +∆x) = ∆x
2y′′bvp(xi) +

∆x4

4!

[
yIV
bvp(ξ

1
i ) + yIV

bvp(ξ
2
i )
]
,

ybvp(xi −∆x) + ybvp(xi +∆x) = 2ybvp(xi) +
∆x2

2

[
y′′bvp(ζ

1
i ) + y′′bvp(ζ

2
i )
]
,

where ξ1
i , ζ

1
i ∈ [xi−1, xi] and ξ

2
i , ζ

2
i ∈ [xi, xi+1]. It follows from (4.12) that

τi =
∆x2

4!

[
yIV
bvp(ξ

1
i ) + yIV

bvp(ξ
2
i )
]− γ2∆x2

4

[
y′′bvp(ζ

1
i ) + y′′bvp(ζ

2
i )
]
.

Now, since yIV
bvp(x) = γ2y′′bvp(x), we have

τi =
γ2∆x2

4

[
y′′bvp(ξ

1
i ) + y′′bvp(ξ

2
i )

6
− (y′′bvp(ζ

1
i ) + y′′bvp(ζ

2
i )
)]

.(4.19)

Another Taylor expansion gives

|y′′bvp(ξ
1
i )− y′′bvp(xi)| ≤ ∆x|y′′′(ξ1,1

i )| ≤ γ∆x|y′′(ξ1,1
i )|

for some ξ1,1
i ∈ [xi−1, xi], and thus

|y′′bvp(ξ
1
i )− y′′bvp(xi)| ≤ γ∆x

(
|y′′bvp(xi)|+∆x|y′′′(ξ1,2

i )|
)

≤ γ∆x
(
|y′′bvp(xi)|+ γ∆x|y′′(ξ1,2

i )|
)

for some ξ1,2
i ∈ [xi−1, xi]. Continuing this argument we find

|y′′bvp(ξ
1
i )− y′′bvp(xi)| ≤ |y′′bvp(xi)|

l∑
k=1

(γ∆x)k + (γ∆x)l+1 max
[xi−1,xi]

|y′′bvp(x)|

≤ |y′′bvp(xi)|
γ∆x

1− γ∆x
+ (γ∆x)l+1 max

[xi−1,xi]
|y′′bvp(x)|(4.20)



SMALL WORLD MATRICES 441

for any l ≥ 1. By taking l sufficiently large, we can make the second term in (4.20)
negligible, and hence

y′′bvp(ξ
1
i ) = y′′bvp(xi) (1 +O(γ∆x)) .

Similarly, this expansion holds for y′′bvp(ξ
2
i ), y

′′
bvp(ζ

1
i ), and y

′′
bvp(ζ

2
i ), so, in (4.19),

τi = γ2∆x2y′′bvp(xi)

(−5
12

+O(γ∆x)

)
.

Since y′′bvp(xi) < 0 for all i, the positivity of τi follows. Using max[0,1] |y′′bvp(x)| =
O(γ2/(εN)) = O(N2) we then find that ‖ τ ‖∞ = O(N3−α).

To bound ‖ τ ‖1 we note from (4.11) that

N∑
i=0

|y′′bvp(xi)| = γ2
N∑
i=0

[
1

εN
− ybvp(xi)

]
≤ γ2(N + 1)

εN
+ γ2‖ybvp ‖1.

From (4.18) we have ‖ybvp ‖1 = O(N3(α−1)/2), so

N∑
i=0

|y′′bvp(xi)| = O(N (3+α)/2)).(4.21)

Since |y′′bvp(x)| takes its extreme value over [xi, xi+1] at an endpoint, we have, from
(4.19) and (4.21),

‖ τ ‖1 ≤ γ2∆x2

4

(
1

6
+
1

6
+ 1 + 1

) N∑
i=0

|y′′bvp(xi)| = O(N (5−α)/2).

Now from (2.5) and (4.4) we have z− yε = T−1∆Tεyε. We know that T
−1 ≥ 0,

∆Tε ≥ 0, and yε ≥ 0 (because T +∆Tε is Stieltjes). Hence z− yε ≥ 0, that is,

T−1e ≥ T̂ε

−1
e.(4.22)

Then from (4.4) and (4.13) we have

yε − ybvp =
∆x2

2
T̂ε

−1
τ ,(4.23)

so, using (4.22),

|yε − ybvp| ≤ ∆x2

2
‖ τ ‖∞T̂ε

−1
e(4.24)

≤ ∆x2

2
‖ τ ‖∞T−1e.

Hence, using (4.6) and (4.14),

‖yε − ybvp ‖∞ ≤ ∆x2

2
‖ τ ‖∞‖T−1e ‖∞ = O(N3−α).(4.25)

We now refine this bound for α < 3. From (4.17) and (4.25) we have

‖ T̂ε

−1
e ‖∞ = ‖yε ‖∞ ≤ ‖yε − ybvp ‖∞ + ‖ybvp ‖∞ = O(N3−α) +O(Nα−1).(4.26)
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For 2 ≤ α < 3 the O(Nα−1) term dominates, and so after taking norms in (4.24) we
have

‖yε − ybvp ‖∞ = O(N−2N3−αNα−1) = O(N0).(4.27)

For 1 < α < 2, in (4.26) we have ‖ T̂ε

−1
e ‖∞ = O(N3−α). Using this in (4.24) gives

‖yε − ybvp ‖∞ = O(N−2N3−αN3−α) = O(N4−2α).

Hence,

‖ T̂ε

−1
e ‖∞ ≤ ‖yε − ybvp ‖∞ + ‖ybvp ‖∞ = O(N4−2α) +O(Nα−1).(4.28)

For α ≥ 5/3, the O(Nα−1) term dominates and we may use (4.24) to recover (4.27).

For 1 < α < 5/3, in (4.28) we have ‖ T̂ε

−1
e ‖∞ = O(N4−2α). Using this in (4.24)

gives

‖yε − ybvp ‖∞ = O(N−2N3−αN4−2α) = O(N5−3α).

Hence

‖ T̂ε

−1
e ‖∞ ≤ ‖yε − ybvp ‖∞ + ‖ybvp ‖∞ = O(N5−3α) +O(Nα−1).(4.29)

For α ≥ 6/4, the O(Nα−1) term dominates and we may use (4.24) to recover (4.27).

For 1 < α < 6/4, in (4.29) we have ‖ T̂ε

−1
e ‖∞ = O(N5−3α). Using this in (4.24)

gives

‖yε − ybvp ‖∞ = O(N−2N3−αN5−3α) = O(N6−4α).

Hence

‖ T̂ε

−1
e ‖∞ ≤ ‖yε − ybvp ‖∞ + ‖ybvp ‖∞ = O(N6−4α) +O(Nα−1).(4.30)

For α ≥ 7/5, the O(Nα−1) term dominates and we may use (4.24) to recover (4.27).
The pattern is now clear. Given any integer k ≥ 1 we can establish ‖yε −

ybvp ‖∞ = O(N0) for (k + 2)/k ≤ α ≤ 3, which confirms (4.15).
From (4.14), (4.15), (4.17), and (4.23) we have

‖yε − ybvp ‖1 ≤ ∆x2

2
‖ T̂ε

−1 ‖1‖ τ ‖1

=
∆x2

2
‖ T̂ε

−1
e ‖∞‖ τ ‖1

=
∆x2

2
‖yε ‖∞‖ τ ‖1

≤ ∆x2

2
[‖ybvp ‖∞ + ‖yε − ybvp ‖∞] ‖ τ ‖1

= O(N−2Nα−1N (5−α)/2)

= O(N (α−1)/2).

Since yε − ybvp =
∆x2

2 T̂ε

−1
τ ≥ 0, this is equivalent to

eT (yε − ybvp) = O(N (α−1)/2),
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which gives, using (4.18),

1− εeTyε = 1− εeTybvp +O(N (−α−1)/2) =
2 tanh γ

2

γ
+O(N−1),

completing the proof.
We are now in a position to prove Theorems 2.2 and 2.3.
Proof of Theorems 2.2 and 2.3. From (4.5), (4.15), (4.16), and (4.17) we obtain

‖ zε ‖∞ =
γ

2 tanh γ
2

‖ybvp ‖∞ +O(N).

For 1 < α < 3, ‖ybvp ‖∞ equals ybvp( 1
2 ) plus exponentially small terms, and for α = 3,

‖ybvp ‖∞ = ybvp( 1
2 ) +O(1). So

‖ zε ‖∞ =
γ

2 tanh γ
2

ybvp( 1
2 ) +O(N)

for 1 < α ≤ 3. This simplifies to

‖ zε ‖∞ =
γ tanh γ

4

2εN
+O(N).

Using ‖ z ‖∞ = N2/4 +O(1) we thus have

‖ zε ‖∞
‖ z ‖∞ =

2γ tanh γ
4

εN3
+O(N−1).(4.31)

For α = 3 we have ε = KN−3 and γ =
√
2K. Inserting this into (4.31) gives (2.13).

For 1 < α < 3 we have γ =
√
2KN (3−α)/2 and (2.15) follows.

For the 1-norm result, we first note that yε ≥ 0, ybvp ≥ 0 and yε − ybvp ≥ 0, so
that

‖yε ‖1 = ‖ybvp ‖1 + ‖yε − ybvp ‖1 = ‖ybvp ‖1 +O(N‖yε − ybvp ‖∞).
Using (4.5), (4.15), (4.16), and (4.18) we find

‖ zε ‖1 =
γ

2ε tanh γ
2

− 1

ε
+O(N2).

Scaling by ‖ z ‖1 =
(N−1)N(N+1)

6 and inserting γ =
√
2εN3 gives the estimates (2.14)

and (2.16).

5. Final remarks. Our aim in this work was to show via matrix perturbation
theory that the small world phenomenon arises in the context of Markov chains. The
results are fully rigorous, with sharp error estimates that vanish as the system size
increases.

There are, of course, many ways in which the Markov chain model may be ex-
tended or altered. The two most obvious directions are perhaps moving to higher
dimensions and considering more complex underlying lattice topologies. Further, in-
stead of giving equal weight to all nonneighboring states we could, for example, intro-
duce range-dependent perturbations to the transition matrix of the form f(|i− j|) for
some suitable function f . Grindrod [7, 8] has recently produced some elegant results
for analogous network models. Alternatively, we could perturb only a small, fixed
number of zeros in (2.4). We note that Liu, Strang, and Ott [13] have characterized
the effect of this type of modification on the spectrum of a structured matrix. In all
cases, the techniques developed here form a useful starting point for further analysis.
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