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ROBUST DEFECT CONTROL WITH RUNGE-KUTTA SCHEMES™

DESMOND 1. HIGHAM?Y

Abstract. Enright [ Numerical Analysis Report 122, University of Manchester, Manchester, UK., 1986]
implements a Runge-Kutta method for solving the initial value problem using an alternative to the standard
local error control scheme. The aim is to control the defect associated with a local interpolant by sampling
its value at one or more fixed points within each step. However, in general, the quality of a sample point
is problem-dependent and aiso varies from step to step. Two classes of interpolant are presented for which
the asymptotic behaviour of the defect is known a priori, allowing optimal sample points to be chosen.

Key words. Runge-Kutta formula, defect, interpolation

AMS(MORS) subject classification. 65L05

1. Introduction. We consider the numerical solution of a nonstiff system of
ordinary differential equations

yix)=flxp(x)),  y(xe)=yo,

0D FiRxRM RN,

using an explicit Runge~-Kutta method. Given y, = y(x,), such a method takes a step
of length h (=h,) and produces an approximation y,., to y{x,+h). Most popuiar
codes attempt to control the local errer u(x, + h) = y,.,, where the local sojution u{x)
satisfes u'(x) = flx, u(x}) and u{x.) = y,. Recently several authors have shown that it
is possible, at reasonable cost, to produce a function p(x) that approximates the local
solution over the entire step "i], [4], [6], [8]-[10]. It is then natural to consider the
defect of p(x),

(1.2} 8(x) = p'{x)~ f(x, plx)},

that is, th~ amount by which p{x) fails to satisfy the differential equations. Enright
[2] suggests that it may be preferable to control the defect on each step rather than
the local error. This approach is shown to offer several advantages, particularly from
the user’s point of view, Further analysis of defect control strategies is given in [3}.
We are concerned here with the problem of reliably estimating the defect.

Cne of the defect control schemes proposed in [2] is motivated by the desire to
bound max g3 §8(x,+7){«. The defect is sampled at the points {x,+r A},
where the {7¥17_, are fixed in (0, 1), and the step is accepted if and only if
Max, ==k |8{x, + 7Fh )] < TOL, for some user-supplied parameter TOL. The simplest
case, k=1, is implemented in {2}, and an asymptotic expansion of §{x) is used there
te gain insight into the performance of this type of scheme. We now consider this
expansion.

To begin, we suppose that the approximation p(x} has local order [+1, that is,

{1.3) plx)—ulx)=0O(h"™".
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Assuming that f satisfies a Lipschitz condition on [x,, x, + f ], where h < H, we then
have

§(x) = plx)—u'lx)+fx, u(xN—fx, p{x)}
= p'(x)—u'(x}+ O(h™").

Using local interpolants derived in [47 for the function p{x}, Enright notes that for
sufficiently smooth f, (1.4) may be written in the form

(1.4)

"y

(1.5) S(x,+7h)=h' T qi(r)E+O(h"™),

Here F; is an elementary differential that depends oniy on f] x,, and y,, and gi{T)is
a polynomial in 7 whose coefficients depend only on the Runge-Kutta interpolation
scheme. Enright recommends that for a particular scheme a sample point 7* should
be chosen so that each |g;{v*}} is relatively large. This means that if one of the F’s is
dominant, then it will be allowed to make a significant contribution to the leading
term. However, he poinis out that for any fixed +* there always exists the possibility
of canceflation in the sum 3.1, gj(+*) F}, caused by the problem-dependent F;’s, Hence
the size of the defect at x,+ 7™k can be an arbitrarily poor indication of its maximum
value over [x,, x, + 1]

In this paper we introduce some alternative interpolants for use with a defect
control scheme. For these interpolants the associated defect has the form (1.5), but
the important additional feature is that each ¢j(r) is 4 multiple of a known polynomial
@) so that
(1.6) 8{x,+7h)=h'®(r)K + Ok
where K is independent of v and h. (In fact we shall prove this result directly by
interpolation theory rather than by using (1.5).) It follows that a sample point is
available that is asymptotically optimal for any problem, namely, a 7* that maximises
[®(7)| over [0, 1].

In the next section we present two classes of interpolant that have this property
and give some specific examples. The corresponding defect control schemes incur a
higher cost per step than those of [2] and {3]. This is discussed in § 3. The final section
describes the results of some numerical experiments that support the theory.

2. The interpolants, The interpolants considered below fali within the framework
of Shampine [9] and Giadwell et al. [6]. We suppose that there are distinct points
{&12 in [x,, x,+ k] with corresponding approximations ;€ R™ satisfying

w—ul{g)=O{h"7h, i=1,--,m,
and that u} =f(&, u;} € R™ is available for i=1, -, r = m, whence
ui-u(&) =0, =1y
for Lipschitzian f The data {u,}{Z, and {u[}/_, is szid to be of local order g+1. We
then take p(x):R-R" to be the unique Hermite interpolating polynomial of degree
less than or egual to m+r—1 that satisfies
p(gi)zuh !.:1!"',”]’

Plgy=ul, i=l--.n
We insist that ¢ =x,, u,=y,, &= x,+h, and u, =1, ensuring that the piecewise
polynomial interpolant is continuously differentiable over the range of integration and
hence that the defect (1.2} is properiy defined.

(2.1)

0405703310
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Shampine [9] (see also [6]} has examined the accuracy of this interpolant, and
its derivatives, by splitting the error into two components in the following way. Let
Q(x) denote the Hermite polynomial that interpotates to the exact iocal values:

Q(gj)mu(gi): iﬂ}a”‘ama

Q&) =u'{&), i=1,---,r
We assume that u has m -+ ¢ continuous derivatives and write
(2.2) Py = uRx) = [ pH(x) — Q)+ QM) — ()],

Shampine shows that the first term on the right-hand side of {2.2), the “data error,”
is O(h?*1 7} while the second term, the “interpolation error,” is O(h™" ™%}, We make
use of this result with k=0 and k=1 to examine the asymptotic behaviour of the
defect in two special cases.

2.1. Case I. We suppose that the interpoiation scheme has been set up so that
the interpolation error is dominant in (2.2}, that is, m+r < g-+1. It then follows from
{1.3} and (1.4) that

(2.3) B{x}=Q'{x)=—u'(x)+O(h""")
with
Q'(x)—u'(x) = OCh™" ™).

The precise form of Q'{x)—u'(x) can be found by applying classical interpoiation
theory. We denote by u,(x} and Q.(x) the rth components of Q{x)} and u{x), respec-
tively, and examine the term Qf{{x)—ui(x}. The foliowing theorem summarises some
results from [12, pp. 1-5].

TueoREM 1. Ifu,€ C™ ' [x,, x, + ], then for x, ExF=x, th

(2-4) Q,{JC)“LI,(X)*—*”TT(}C)G,(X}
where

a(x)= 11 =60 11 (=)
and

" (8(x))

Gl ==

for some x, = 6(x} = x, + h. Furthermore, G((x} is continyous on [x,, x,+h]
Now write & = x, + i and let x = x,, + 7/, so that

w(x) =1 (1= [1 (r-o)h
i=1 i=r+l
=" (7).

Differentiating (2.4) and using the additional fact that

ITES
G(x) ==ttt OCh),

02177702066
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we obtain

iff(:") I—‘im-}-”(“ich,dl"}w

+m () I mtr
dr (m+r)! 0,

O (x) ~ ul(x) = —hm "

for each 1= t= N. Substituting this expression inte (2.3}, we find

-t r—1 dr('f) u(m V'Vr)(x” mr
(2.5) S(x,+T1h)=~—h A +Oh™7),
which has the required form (1.6), and shows that, asymptotically, the defect behaves
as does a multiple of dr(r)/dr over the step.

We now consider some specific interpolation schemes of this type. Itis traditional
to measure the cost of a Runge-Kutta-interpolation scheme in terms of the number
of f evaluations required per step. We will use the notation s{+1} to mean that a
scheme requires (s + 1)/ evaluations to form y,.;, {u}i=,, and {u{}/-, and sample the
defect at a single point; the “+17 appears in brackets because, after a successful step,
one of the [ values, f{X,.,, Voe:), ¢an be reused at the start of the next step.

The simplest example is the cubic Hermite interpolant to v, f{X., Ya), Yisy, 2nd

f(x,+h, ¥4+y), corresponding to m = r= 2 in (2.1). A fourth-order, four-stage Runge-

Kutta formula could be used to generate a y,., of local order five. This leads to an
overall cast of 5(+1) f evaluations. The polynomial dr{r)/dr in (2.5) becomes

drir)
dr

as plotted in Fig. 1. There are two local extrema of equal magnitude at r=3++/3/6.

Next we consider the case m =3, r = 2. Using a result of Horn [8] we could employ
the higher-order formula of the well-known Fehlberg pair to form y,., and then
generate a data point u, of the correct local order at any point & = x, + ah for a total
of 9(-+1} evaluations. In this case

dr{r R
(2.7 -"-E{——)"—*1'(1'“1){57‘-[3+40'3]1~+20'2).
T

From {2.5) we see that the most efficient scheme, asymptotically, is found by choosing
a, in (0,1) to minimise max, . ;|dr(7)/drl. A computer search revealed that this is
achieved at o, = %. The graph resulting from (2.7) is plotted in Fig. 2 and has a pleasing

{2.6) =27(r—1){2r~1),
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shape; the peak at =1 is 1.25 times as big as the other local extrema at 1£/15/10.
Also, for the choice o, =1 a similar scheme requiring one fewer function evaluation
is available using the Dormand-Prince-Shampine (DPS) triple [10].

For larger values of m + r the probiem of finding enough data of the correct local
accuracy, using a reasonable number of function evaluations, becomes more challenging
[9, p. 1020]. Enright et al. [4] give an alternative to Shampine’s method for constructing
interpolants. Their method is perfectly general: given any Runge-Kutta formula an
interpolant can be produced that has the same local accuracy. It would therefore be
possible to choose a high-order Runge-Kutta formula, construct a high-order inter-
polant using the technique of [4] and then use this interpolant to provide the necessary
data for an interpolant of the form considered here. Due to the high cost (in terms of
# evaluations per step) we do not pursue such an approach in this paper.

22. Case IL. We now examine the case where the data error dominates in (2.2).
This situation has been analysed by Gladwell et al. [6] with a view to relating
1 (x) = p™®(x) 1o the local error at x,+h. We shall use their results to reveal the
asymptotic behavior of the defect.

It has been shown [6, p. 325] that for m+r>g+1, (2.2) takes the form

P —ux = 5 AP - w1+ 0
i=2

where A.{x) is a fundamental interpolating polynomial that depends only on the
abscissae {£}L,. From {1.3} and (1.4) we then have

(28) s(x)= T Al(x)w—u(&)]+O(h™).

To recover a result of the form {1.6) we must reduce the summation in (2.8) to a single
term. For example, the standard cubic Hermite interpolant {(m =r=2} could be used
with a second-order, two-stage Runge-Kutta formula {g+1 =3} to give

B(x) = AN Yoy = ulx, +h)I+ O},
This may be written

[Vpor = u(x, + 1]

, O(hY,

§i{x, +thi=67(1-1)

029177702297
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which s essentially the same form as (1.6). Figure 3 presents a plot of 67{1 — 7); the
single extremum in [0, I] occurs at ¥ =4. The cost of this scheme is (3+1) evaluations
per step.

For higher-order schemes we look at m = r = 3. Interpoiants of the desired form
can be obtained by applying a single formula of order less than or equal to 4 over
steps of length h and h/2 or over two steps of length h/2 [6, p. 326}, but the resulting
defect control schemes are more expensive than those of § 2.1. An alternative approach
suggested in [6} that turns out to be useful in our context, is to use a fifth-order
Runge-Kutta formuta to generate y,.,, making vy~ u(&) =y, —ulx, +h}=O(h%),
and then to form an approximation at & that is locaily Q(h°). In this way the i =2
term dominates the right-hand side of (2.8) to give

80x) = AYx){uy — u(&2) 1+ O(h°),

which may be written

_ e . CIET T _
5 (x4 7h) = 277 — {75 1(}0';;]“{ 7[10302 3153+ 30,) [u, u(§2)]+ o)
ay(oy—1) h
= g 2218 o)

h

where we recall that & = x,+ oyh With the fifth-order formula of the DPS tripte it has
been shown [1] that a suitable approximation w, can be found for any o, using no
extra function evaluations. The overall cost of the defect control scheme is then 8{+1)
evaluations. One reasonabie way of choosing o, € (0, 1) is to minimise max..po4; 1g,.(7)}
The minimum was found by a computer search to occur at o, =4, The corresponding
polynomial, g,,2(7), is an exact multipie of the right-hand side of (2.6). Similar schemes
can be constructed using Horn's results for the Fehlberg fifth-order formula. With
o,=3/5 a scheme costing &(+1) evaluations is available while for any other o, the
cost Increases by 1.

The idea of making one of the [¥, —u(£&)] terms in (2.8) dominate can be used
to construct higher-order schemes but, as in Case 1, this may not be practical,

3. Discussion. Apart from the low-order version in § 2.2, the schemes presented
here are more expensive than their competitors. The first example in § 2.1 gives an
O(h*} defect for 5(+1) evaluations per step, while the same order of accuracy coutd

Fi1G. 3
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be achieved with 4(+1} evaluations by a third-order, three-stage Runge- Kutta formula
and a cubic Hermite interpolant, Simijarly, the 8(-+1) evaluations required by the DPS
hased schemes of §§ 2.1 and 2.2 to obtain an O(h*) defect can be compared with the
6(+1) evaluations used by the most efficient of those in [3]. However, the extra cost
is countered by the asymptotic validity of the new schemes.

It is shown in [3] that standard nonextrapolated error-pes-unit-step control can
also be regarded as asymptotically valid defect control. The schemes proposed in this
paper, which require fewer function evaluations per step, are closely related—they are
asymptotically equivalent to controlling the focal error-per-unit-step in the interpolant
at some method dependent point, x, + 7h.

4. Numerical results. We have implemented the following schemes:
3/8: Casel, m=r=2, with the "3/8-Rule” [7, p. 137] as the fourth-order Runge-
Kutta formula,
DPS#1: Case I, m =3, r= 2, with the fifth-order formula of RK5(4)7FM and the
O{h% midpoint approximation from [10],
DPS#%2: Case [, m=r=23, with the fifth-order formula of RK3(4}7FM and the
O(k%) midpoint approximation from [10] {also derived in [1h.
The defect was controlled by sampling at a single point: ¥ =1+/3/6 for the 3/8
and DPS#2 schemes, and 7% =3 for the DPS#1 scheme. After each step, whether
successful or not, the new stepsize was chosen according to

Bpew 9( TOL )”P
hoa | NS+ T )

for a defect of O(h?). As a safety precaution we imposed the restriction

! <f1_'.’ﬂé5,

Tém B o
discussed in [11]. Following [2] the quantities

Ry = max; - ... 100 |18 (Xa +.01j M e
[8(x, + 7"}

_MAXjey 00 H8(x, +.01jh}H .
TOL

kS

R2

were computed on each step; RIMAX and R2MAX denote their respective maximum
values over the range of integration. Note that RIMAX measures the guality of the
sampte point and RZMAX indicates how successful the code was in keeping | 8(x) e <
TOL. Ideally we would like RIMAX =1 and RZMAX ~<1.

The methods were tested on the orbit equations [3, Class D]:

yi=ys, (0 =1-¢,
Y2 = Ya, yo{0) =0,
i 3
1;3:{}"?_{_‘:3)3/31 }’3(@)20,
-V 14+e\"*?
! zuw--;w-——'-;q—j—-;, O e ,
)’4 (y;+'\55).¥f'~ yd( ) (1 _ f‘)

o
1A
=

A
2
o

03067702620
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TanrLe |
RIMAX, R2IMAX pairs fur 378 scheme.

TOL 1077 10! (I "

£ =} 33,27 2L 16 14,11 11,08
£=.5 1.9,1.7 1.3, 1.1 11,08 1.0,0.8
=9 1.5, 11 L1 Lo 1.0, 0.9 1.0%, 0.8%

* The integration was halted prematurely alter 5,000 steps,

TaBLE 2
RIMAX, RZMAX pairs jfor DPS#1 scheme.

TOIL. i 10 197 "

e=.1 32,15 34,22 13,11 1.0, 0.8

g=.5 49,0.9 2.0,1.8 1.0, 1.0 1.0, 0.8

£=9 1.2,0.8 1.0, 1.6 1.0, 1.0 1.6,0.8
TABLE 3

RIMAX, RZMAX pairs for DPS£3 sheeme.

TOL 102 107* 107¢ 10"

e=.1 23,09 51,20 12,08 1.0,07
£=3 3.0,09 22,13 1.2, 1.0 11,08
£=9 42,10 21,140 1.1, 1.0 10,09

where values of .1, .3, and .9 were chosen for the eccentricity parameter e, Tables 1-3
record the RIMAX and R2MAX values. As the analysis of § 2 predicts, we see that
the performance becomes extremely good as TOL decreases. The results can be
compared with those of the original defect control schemes in{2] for the orbit probiems;
while both sets of results are satisfactory, the new schemes are clearly more reliable
at stringent tolerances. We emphasise that the price to be paid for this improvement
is a higher cost per step.

To conciude, we outline some possibie extensions to this work. The schemes
described in §2 allow some freedom in the choice of Runge-Kutta formula and
interpolation points. By examining higher-order terms in the expansion (1.3), it may
be possible t¢ use this freedom to produce schemes for which the leading term is more
likely to dominate. Finally, in some cases it may be preferable to estimate and contro!
a measure of the defect other than max ., | 8(x, + 7h) [l (se€ [2]). Whatever measure
is used, the interpolants presented here should prove extremely useful, since an
asymptotically correct approximation to the defect aver the entire step can be construc-
ted from a single sample value.

Acknowledgments. I thank Nick Higham and George Haill, whose comments
improved this manuscript.
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