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Abstract

The ability of numerical methods to reproduce long-time features of a linear stochastic oscillator is exa
It is shown that certain, widely-used, methods fail to capture the correct second moment growth rate,
a customized extension of the partitioned Euler method behaves well in this respect. It is also shown
partitioned Euler method inherits an infinite-oscillation property. A weaker oscillation result is proved for a
class of numerical methods.
 2004 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

This work is concerned with long-time numerical simulation of a linear stochastic oscillator. Alth
finite-time convergence theory for globally Lipschitz stochastic differential equations (SDEs) is
established [1], far less is known about the effectiveness of numerical methods over long time inte
By focusing on a linear oscillator we are able to obtain precise results about the ability of num
methods to preserve the properties of (a) having linear growth in the second moment and (b) os
infinitely often. In particular, we show that the standard Euler–Maruyama method can be g
improved at no extra computational cost. This conclusion is consistent with that in [2, Proposition 6.2],
where mean-square error estimates for long time intervals were derived.
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In Section 2 we introduce the linear stochastic oscillator and state its second moment and oscillation
properties. Both properties relate to infinite time intervals, and hence the traditional finite-time
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convergence theory for numerical methods applied to SDEs does not automatically guarantee th
features will be reproduced numerically. In Section 3 we show that the Euler–Maruyama method d
maintain the linear growth property but, rather, produces a second moment that increases expo
with time (Theorem 3). By contrast, we also show that an implicit, backward Euler–Maruyama m
has second moment bounded above for all time. Motivated by the Partitioned Euler method,
has proved successful in the simulation of deterministic Hamiltonian problems, we then intro
Partitioned Euler–Maruyama method that gives linear growth for all stepsizes less than 2, a
rate that is asymptotically exact as the stepsize tends to zero (Theorem 5). We show in Sectio
the Partitioned Euler–Maruyama method inherits a precise analogue of the infinite oscillation p
(Theorem 6). In Section 5 we give a weaker but more widely applicable oscillation result. We
that strong finite-time convergence is enough to ensure that given anyε > 0 andN > 0, by choosing a
sufficiently small stepsize an Itô–Taylor method will pass withinε of the origin atN distinct time points
with probability greater than 1− ε (Theorem 9). The proof of this theorem relies on a lemma that bo
the probability of the first zero-crossing time of the exact solution exceeding some valueT independently
of the initial data(Lemma 8).

2. Stochastic oscillator

A linear stochastic oscillator with additive noise can be writtenẍ(t) + x(t) = hẆ(t), or, more
precisely, as the two-dimensional stochastic differential equation

dx(t) = y(t)dt, (1)

dy(t) = −x(t)dt + hdW(t), (2)

whereh > 0 is a constant andW(t) is a standard Wiener process. For initial datax(0) = x0 ∈ R,
y(0) = y0 ∈ R, it can be shown [3] that this equation has the unique solution

x(t) = x0 cost + y0 sint + h

t∫
0

sin(t − s)dW(s), (3)

y(t) = −x0 sint + y0 cost + h

t∫
0

cos(t − s)dW(s). (4)

As in [3,4], for definiteness, we will focus on the case wherex0 = 1 andy0 = 0. We are intereste
in long-time behaviour of the solution, and we will look at the two properties given by the follo
theorems.

Theorem 1. For the linear stochastic oscillator(1), (2) with x0 = 1, y0 = 0, the second moment of th
solution satisfiesE[x(t)2 + y(t)2] = 1+ h2t .

Proof. The result follows directly from (3)–(4). ✷
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Theorem 2 (Markus and Weerasinghe).For the linear stochastic oscillator(1), (2)with x0 = 1, y0 = 0,
almost surely,x(t) has infinitely many zeros, all simple, on each half line[t0,∞) for everyt0 � 0.
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Proof. See [4, Theorem 3] or [3, Theorem 4.1, Chapter 8]. ✷

3. Second moment properties of Euler-based schemes

In the deterministic setting, it is well known that numerical methods do not automatically in
long-time behavior from an underlying differential equation. In particular, withh = 0 in (1), (2), Euler’s
method incorrectly spirals outwards, and the backward Euler method incorrectly spirals inwards, w
a carefully chosen symplectic method will remain on the manifoldx(t)2 + y(t)2 = constant [5,6]. In this
section, we develop simple extensions of these results for the linear stochastic oscillator. The
is in the same spirit as previous work on mean-square linear stability (for example, [7,8]) but we note
that the noise term considered here is additive rather than multiplicative. Related asymptotic res
moments and stationary laws have appeared in [9,10].

Applying a numerical timestepping method to the problem (1), (2) produces discrete approxim
{xn}, {yn} with xn ≈ x(tn) and yn ≈ y(tn). We assume that a constant stepsize,�t , is used, so tha
tn = n�t . We are concerned with the regime where�t > 0 is fixed, andn → ∞, sotn → ∞. The simplest
and most widely used numerical method is Euler–Maruyama (EM) [1], which gives the recurrence

xn+1 = xn +�tyn, (5)

yn+1 = yn −�txn + h�Wn, where�Wn = W(tn+1)−W(tn). (6)

Theorem 3. Consider the recurrence(5), (6) arising from the Euler–Maruyama method applied to
linear stochastic oscillator(1), (2) with x0 = 1, y0 = 0. For any�t � 2,

E
[
x2
n + y2

n

]
� e(

1
2�t)tn.

Proof. Squaring (5) and (6), adding and taking expected values, using the facts that�Wn is independen
of xn andyn andE[�W 2

n ] = �t , we find that

E
[
x2
n+1 + y2

n+1

] = (
1+�t2

)
E

[
x2
n + y2

n

] + h2�t �
(
1+�t2

)
E

[
x2
n + y2

n

]
.

Hence,E[x2
n + y2

n] � (1+�t2)n � e(
1
2�t)tn. ✷

Theorem 3 shows that given arbitrarily small�t > 0, EM produces solutions with second mom
that grows exponentially withtn, a rate that is qualitatively different from the linear growth rate for
true second moment (Theorem 1).

Next we look at the backward Euler–Maruyama (BEM) method, which is also known as the im
Euler–Maruyama method, see, for example, [1, Chapter 12]. Applied to (1), (2) this gives

xn+1 = xn +�tyn+1, (7)

yn+1 = yn −�txn+1 + h�Wn, where�Wn =W(tn+1)−W(tn). (8)
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Theorem 4. The recurrence(7), (8) arising from the backward Euler–Maruyama method applied to the
linear stochastic oscillator(1), (2) with x0 = 1, y0 = 0 produces
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E
[
x2
n + y2

n

]
� 1+ h2

�t
, for all n � 0.

Hence,

lim
tn→∞

E[x2
n + y2

n]
tn

= 0.

Proof. The relations (7)–(8) may be written(
1+�t2)xn+1 = xn +�tyn + h�t�Wn,(
1+�t2

)
yn+1 = yn −�txn + h�Wn.

Squaring, adding and taking expected values gives

E
[
x2
n+1 + y2

n+1

] = 1

1+�t2

(
E

[
x2
n + y2

n

] + h2�t
)
,

and the result follows. ✷
Theorem 4 shows that given arbitrarily small�t > 0, BEM produces solutions with second mom

that grows at a slower rate than the underlying SDE.
We now consider the following recurrence

xn+1 = xn +�tyn, (9)

yn+1 = yn −�txn+1 + h�Wn. (10)

The formula (9) forxn+1 coincides with that for Euler–Maruyama (5), but the formula (10) foryn+1 uses
the new valuexn+1 in the right side, rather than the valuexn that appears in (6).

For deterministic systems in partitioned form,u̇ = a(u, v), v̇ = b(u, v), there is a well-known
partitioned, or symplectic, Euler method; see, for example, [5, Eqs. (1.9)]. For an SDE analogue, usin
the Euler–Maruyama stochastic increment leads to what we will call the Partitioned Euler–Mar
(PEM) method. It can be shown that such a method shares the usual finite-time strong conv
properties of other Euler-based methods, of the type exemplified by [1, Corollary 10.6.4]. This follows
from the general convergence theory in [2,11], and a specific proof was given in [12], using a similar
approach to that in [13, Appendix A].

It is appropriate to mention at this stage that a general framework for deriving symplectic m
for Hamiltonian systems with additive noise has been developed in [2]. Our work has the emphasis
showing thebenefitsof using a symplectic method via analysis on a simple test problem, and i
respect it closely matches Section 6 of [2]. In [2, Proposition 6.2] a symplectic Euler-based method f
a linear oscillator with additive noise is shown to have good mean-square error propagation ov
intervals[0, T ], provided thatT�t2 is small. Theorem 5 below deals with second moment behavior
applies in the�t fixed,n → ∞ regime. The result shows that, unlike EM and BEM, the PEM recurre
gives excellent second moment growth properties.
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Theorem 5. Consider the recurrence(9), (10) arising from the Partitioned Euler–Maruyama method
applied to the linear stochastic oscillator(1), (2) with x0 = 1, y0 = 0. There exist functions
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Clower,Cupper: (0,2) �→ R
+ such that for any�t < 2,

Clower(�t)
(
1+ h2tn

)
� E

[
x2
n + y2

n

]
� Cupper(�t)

(
1+ h2tn

)
, ∀n � 0,

whereClower andCupperare independent ofn with

Clower(�t) = 1+ O(�t), Cupper(�t) = 1+ O(�t), as�t → 0.

Proof. Suppose�t < 2. The method (9), (10) may be written[
xn
yn

]
= A

[
xn−1

yn−1

]
+

[
0

h�Wn−1

]
= An

[
1
0

]
+

n∑
j=1

h�Wj−1A
n−j

[
0
1

]
,

where

A =
[

1 �t

−�t 1−�t2

]
.

We note thatA has eigenvaluesλ,λ corresponding to eigenvectorsv, v, where

λ = 1− �t2

2
+ i

�t
√

4−�t2

2
and

v =
[

1

−�t
2 + i

√
4−�t2

2

]
.

The key to the success of the method is thatλ is of unit modulus.
Letting ‖ · ‖ denote the Euclidean vector norm, we have

E

∥∥∥∥
[
xn
yn

]∥∥∥∥2

=
∥∥∥∥An

[
1
0

]∥∥∥∥2

+ h2�t

n∑
j=1

∥∥∥∥An−j

[
0
1

]∥∥∥∥2

. (11)

We may expand[
1
0

]
= αv + αv, whereα = 1

2
− i

�t

2
√

4−�t2
.

Letting λ = eiθ andα = |α|eiγ , we find that

An

[
1
0

]
= 2|α|

[
cos(γ + nθ)

−�t
2 cos(γ + nθ)− sin(γ + nθ)

√
4−�t2

2

]
.

It follows that∥∥∥∥An

[
1
0

]∥∥∥∥2

= 1+�tD(n,�t), (12)

whereD(n,�t) can be bounded uniformly inn; that is

D(n,�t)� D̂(�t), for all n.
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Further, there is a constant̃D such that̂D(�t) � D̃ for all sufficiently small�t . Similarly we find that∥ [ ]∥2

orem 1.
erty in

od
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∥∥∥Ak 0
1

∥∥∥ = 1+�tE(k,�t), (13)

whereE(k,�t) can be bounded uniformly ink,

E(k,�t) � Ê(�t), for all k,

and there is a constant̃E such that̂E(�t) � Ẽ for all sufficiently small�t .
The proof is completed by using (12) and (13) in (11).

4. Oscillation property of partitioned Euler–Maruyama

Theorem 5 shows that PEM captures the appropriate second moment growth given in The
In this section we show that PEM also reproduces an exact analogue of the oscillation prop
Theorem 2.

Theorem 6. Consider the recurrence(9), (10) arising from the Partitioned Euler–Maruyama meth
applied to the linear stochastic oscillator(1), (2) with x0 = 1, y0 = 0. For any�t < 2, the sequence
{xn}n�0 will switch signs infinitely many times asn → ∞, almost surely.

Proof. Fix �t < 2. From (9), (10), the sequence{xn}n�0 from PEM satisfies

Xn = BnX0 +Bn−1r1 +Bn−2r2 + · · · + rn, (14)

where

Xn =
[
xn+1

xn

]
, rn =

[
h�t�Wn−1

0

]
, B =

[
(2−�t2) −1

1 0

]
(15)

andX0 = [1,1]T. Considering the first component in (14), we get

xn+1 = an + bn +
n∑

i=1

an−i r̂i , (16)

wherer̂i = h�t�Wi−1 ∼ N(0, h2�t3) and the constantsan andbn satisfybn+1 = −an andan+1 − (2−
�t2)an + an−1 = 0. ✷

Further algebra then reveals that there is a constantK such that

|an + bn| � K

and

an−i r̂i ∼ N
(
0, σ 2

i

)
, with σ 2

i � Kh2�t3.

Moreover,

s2
n :=

n∑
i=1

σ 2
i → ∞ asn → ∞.
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It follows that the Law of the Iterated Logarithm may be applied to the sequenceSn := ∑n
i=1an−i r̂i , see,

for example, [14, Exercises 10.2, number 3]. We conclude that for anyε > 0 andn sufficiently large,Sn

a more

fined
n
aylor

esult is

ith

s of [

result

t
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will almost surely exceed the bounds−(1− ε)(2s2
n ln ln s2

n)
1/2 and(1− ε)(2s2

n ln ln s2
n)

1/2 infinitely often.
The boundedness ofan + bn ensures that the same is true forxn.

5. Oscillation properties of strong Itô–Taylor schemes

In this section we give an oscillation theorem that is weaker than Theorem 6, but applies to
general class of methods. The result requires only a finite time strong convergence condition.

Given a discrete approximation{xn}, {yn}, we suppose that an interpolation procedure can be de
to give a continuous-time extension̂x(t), ŷ(t) with x̂(tn) = xn and ŷ(tn) = yn. Kloeden and Plate
[1, Chapter 10] show how continuous-time extensions can be defined for the class of Itô–T
approximations and establish a general finite-time strong convergence theory. The following r
immediate. Note that the precise value ofγ is not important for Theorem 9.

Corollary 7 (Kloeden and Platen).For a strong Itô–Taylor approximation̂x(t), ŷ(t) of order γ � 1/2
applied to the linear stochastic oscillator(1), (2) with initial data of bounded second moment, and w
sufficiently small�t , say�t � 1,

E sup
t∈[0,T ]

∥∥∥∥
[
x̂(t)

ŷ(t)

]
−

[
x(t)

y(t)

]∥∥∥∥
2

� C�tγ , (17)

where the constantC depends only on the initial data andT .

Proof. The SDE (1), (2) satisfies the smoothness, global Lipschitz and linear growth requirement1,
Corollary 10.6.4]. ✷

We will make use of the following lemma concerning the first zero-crossing time ofx(t). The key point
in the lemma is that (18) holds independently of initial data. This allows us to prove an oscillation
for numerical methods by considering subintervals and making use offinite-timestrong convergence.

Lemma 8. For the linear stochastic oscillator(1), (2) with x0, y0 ∈ R, let τ1 denote the time of the firs
zero ofx(t) on [0,∞), that is,

τ1 = inf
{
t � 0: x(t) = 0

}
.

Then, uniformly inx0 andy0,

P(τ1 > T ) <
2

2T/π
for eachT � π. (18)

Proof. The proof is based on that of [3, Theorem 4.4, Chapter 8]. Here we allow for arbitrary initial data
in R

2. ✷
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We consider the nontrivial casex0 �= 0. Recall thatx(t) is given by (3). Evaluatex(t) at the discrete
instantst = kπ , k = 1,2, . . . , to obtain
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

x(kπ) = cos(kπ)
[
x0 − h�B(kπ)

]
, where�B(kπ)=

kπ∫
0

sins dW(s).

Hencex(kπ) > 0 if and only if

�B(kπ)

{
> x0/h for k = 1,3, . . . ,
< x0/h for k = 2,4, . . . .

Set

Yk =
kπ∫

(k−1)π

sins dW(s),

so thatYk ∼ N(0, π/2) are i.i.d. and�B(kπ)= ∑k
i=1Yi . Then, forx0 > 0,

{τ1 > π} = {
x(t) > 0 for all 0� t � π

} ⊂ {
x(π) > 0

}
= {�B(π) > x0/h

} = {
Y1 > x0/h

} = {
Y1 > |x0|/h

}
.

For x0 < 0 a similar argument gives

{τ1 > π} ⊂ {−Y1 > |x0|/h
}
.

Thus, for anyx0,

P(τ1 > π)� P

(
Y1 >

|x0|
h

)
= 1−N

( |x0|
h

√
2

π

)
=: c(x0, h),

whereN(u) = (1/
√

2π)
∫ u

−∞ e−y2/2 dy. Furthermore, we have that forx0 > 0

{τ1 > 2π} = {
x(t) > 0 for all 0� t � 2π

} ⊂ {
x(π) > 0, x(2π) > 0

}
= {�B(π) > x0/h, �B(2π) < x0/h

} = {
Y1 > x0/h,Y1 + Y2 < x0/h

}
⊂ {

Y1 > x0/h,Y2 < 0
}
.

Similarly, for x0 < 0 we find that

{τ1 > 2π} ⊂ {−Y1 > |x0|/h, Y2 > 0
}
.

Overall, for anyx0,

P(τ1 > 2π) � P
(
Y1 > |x0|/h

)
P(Y2 < 0) = c(x0, h)

2
.

Continuing this argument we find that

P(τ1 > kπ)� c(x0, h)

2k−1
for k = 1,2, . . . .
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In order to estimate the probability thatτ1 exceeds an arbitrary positive numberT � π , we let�T /π� be
the greatest integer not exceedingT /π , soT − 1< �T /π�π � T . Then

—this is
ave been
s that by

c

on
,

p

U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

P(τ1 > T ) � P
(
τ1 > �T /π�π)

� c(|x0|/h)
2�T/π�−1

<
4c(x0, h)

2T/π
.

Sincec(x0, h)� 1
2 uniformly in x0 andh, the result follows. ✷

We now state and prove the main result of this section. The theorem is weaker than Theorem 6
to be expected because it applies to a general class of numerical methods, including those that h
shown in Theorems 3 and 4 to have poor long-time second moment behavior. The theorem show
taking�t sufficiently small it is possible to guaranteeany numberof near sign changeswith probability
close to one. The proof uses only the finite-time strong convergence properties of the methods.

Theorem 9. Suppose that an Itô–Taylor scheme of strong orderγ � 1/2 is applied to the linear stochasti
oscillator (1), (2) with x0 = 1, y0 = 0. Then givenε ∈ (0,1) andN > 0 there exists a constant�t∗ and a
set of non-overlapping subintervalsSi , such that for all�t � �t∗

P
(∣∣x̂(ti )∣∣ � ε for someti ∈ Si, i = 1,2, . . . ,N

)
� 1− ε. (19)

Proof. Given ε and N , set �T = π log2(
4N
ε
) and take arbitrary non-overlapping subintervalsSi =

[αi, βi] of length �T . Note that�T � π . Let ti denote the first time the true solutionx(t) crosses
zero fort � αi . If the valuesx(αi), ẋ(αi), i = 1,2, . . . ,N, are known, we can regard the true solution
each interval as a new solution of (1), (2) starting from initial valuesx(αi), ẋ(αi). Hence, from Lemma 8
the probability that the true solution has at least one zero onSi satisfies

P(ti ∈ Si) = P(ti � βi) > 1− 2

2�T/π
.

Let us denote byAi the event that the true solution crosses zero at least once onSi , that is

Ai = {
x(ti ) = 0, ti ∈ Si

}
. (20)

Then we have

P
(
x(ti) = 0 for some ti ∈ Si, i = 1,2, . . . ,N

) = P(A1 ∩ A2 ∩ · · · ∩AN) = E [IA1IA2 · · · IAN
],

whereI denotes the indicator function. LettingFαN be the sub-σ -algebra containing all information u
to the pointαN , and introducing conditional expectation, we get

E[IA1IA2 · · · IAN
]

= E
(
E[IA1IA2 · · · IAN

|FαN ]) = E
(
IA1IA2 · · · IAN−1E[IAN

|FαN ])
= E

(
IA1IA2 · · · IAN−1E

[
IAN

|x(αN), ẋ(αN)
])

>

(
1− 2

2�T/π

)
E [IA1IA2 · · · IAN−1].

Continuing this argument by introducingFαN−1,FαN−2, . . . , and using 2
2�T/π < 1, we get

P
(
x(ti) = 0 for some ti ∈ Si, i = 1,2, . . . ,N

)
>

(
1− 2

2�T/π

)N

�
(

1− 2N

2�T/π

)
. (21)

Applying the Chebyshev inequality in (17), withT := sup{ t : t ∈ Si for some 1� i � N}, we have

P

(
sup

t∈[0,T ]

∣∣x̂(t)− x(t)
∣∣ � ε

)
� C�tγ

ε
.
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Equivalently,( ∣ ∣ ) γ ∗γ

999.
M J.

) (2000)

umer.

ech. 79

t. Dyn.
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F

P sup
t∈[0,T ]

∣x̂(t)− x(t)∣ < ε � 1− C�t

ε
� 1− C�t

ε
, (22)

for �t � �t∗, where�t∗ � 1 is yet to be defined.
Using (21) and (22), we have

P
(∣∣x̂(ti )∣∣ � ε for someti ∈ Si, i = 1,2, . . . ,N

)
� P

({
x(ti ) = 0 for someti ∈ Si, i = 1,2, . . . ,N

} ∩
{

sup
t∈[0,T ]

∣∣x̂(t)− x(t)
∣∣ < ε

})
� P

(
x(ti ) = 0 for someti ∈ Si, i = 1,2, . . . ,N

) + P

(
sup

t∈[0,T ]

∣∣x̂(t)− x(t)
∣∣ < ε

)
− 1

�
(

1− C�t∗γ

ε

)
+

(
1− 2N

2�T/π

)
− 1

= 1− C�t∗γ

ε
− 2N

2�T/π
. (23)

Choosing

�t∗ = min

((
2Nε

C2�T/π

)1/γ

,1

)
,

we find that the right side of (23) is bounded below by 1− ε, as required.
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