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Abstract

The ability of numerical methods to reproduce long-time features of a linear stochastic oscillator is examifed.
It is shown that certain, widely-used, methods fail to capture the correct second moment growth rate, wtéreas
a customized extension of the partitioned Euler method behaves well in this respect. It is also shown thz& the
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partitioned Euler method inherits an infinite-oscillation property. A weaker oscillation result is proved for a wide
class of numerical methods.
0 2004 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction
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This work is concerned with long-time numerical simulation of a linear stochastic oscillator. Althoagh
finite-time convergence theory for globally Lipschitz stochastic differential equations (SDES) is waell
established], far less is known about the effectiveness of numerical methods over long time intenals.

By focusing on a linear oscillator we are able to obtain precise results about the ability of numegical
methods to preserve the properties of (a) having linear growth in the second moment and (b) osciltating
infinitely often. In particular, we show that the standard Euler—-Maruyama method can be greatly

improved at no extra computational cost. This conclusion is consistent with thatfdposition 6.
where mean-square error estimates for long time intervals were derived.
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In Section 2 we introduce the linear stochastic oscillator and state its second moment and oscillation
properties. Both properties relate to infinite time intervals, and hence the traditional finite-time
convergence theory for numerical methods applied to SDEs does not automatically guarantee thas these
features will be reproduced numerically. In Section 3 we show that the Euler—Maruyama method doeas not
maintain the linear growth property but, rather, produces a second moment that increases exponentially
with time (Theorem 3). By contrast, we also show that an implicit, backward Euler—-Maruyama method
has second moment bounded above for all time. Motivated by the Partitioned Euler method, which
has proved successful in the simulation of deterministic Hamiltonian problems, we then introduge a
Partitioned Euler-Maruyama method that gives linear growth for all stepsizes less than 2, anc at a
rate that is asymptotically exact as the stepsize tends to zero (Theorem 5). We show in Section ¥ that
the Partitioned Euler—-Maruyama method inherits a precise analogue of the infinite oscillation property
(Theorem 6). In Section 5 we give a weaker but more widely applicable oscillation result. We skow
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that strong finite-time convergence is enough to ensure that given any andN > 0, by choosing a 13
sufficiently small stepsize an It6—Taylor method will pass withiof the origin atV distinct time points 14
with probability greater than &+ ¢ (Theorem 9). The proof of this theorem relies on a lemma that bourds
the probability of the first zero-crossing time of the exact solution exceeding somefvaidependently 16

of the initial data(Lemma 8). 17
18

19

2. Stochastic oscillator 20
21

A linear stochastic oscillator with additive noise can be writiém) + x(r) = hW(¢), or, more 22

precisely, as the two-dimensional stochastic differential equation 23
24

dx (1) = y(2) dt, D 2
dy(r) = —x(t)dt + hdW (7), (2) 26

whereh > 0 is a constant andV(¢) is a standard Wiener process. For initial dai@®) = xo € R,
y(0) = yp € R, it can be shownd] that this equation has the unigue solution

! 30
x(t) = xoCOSt + yg Sint +h/sin(r —s5)dW (s), 3) =
32

0
‘ 33
y(t) = —xqSint + yp COSt + h / cogt —s)dW(s). 4) 2:
0 36

As in [3,4], for definiteness, we will focus on the case whege= 1 andyy, = 0. We are interested 37
in long-time behaviour of the solution, and we will look at the two properties given by the followisg
theorems. 39

40
Theorem 1. For the linear stochastic oscillatofl), (2) with xo = 1, yo = O, the second moment of thea
solution satisfie®[x(¢)? + y(t)?] = 1+ h°t. 42
43
Proof. The result follows directly from (3)—(4). O 44
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Theorem 2 (Markus and Weerasinghdjor the linear stochastic oscillatofl), (2) with xo = 1, yo =0,
almost surelyx (¢) has infinitely many zeros, all simple, on each half [ipgoo) for everyry > 0.

1
2
3
Proof. See i, Theorem Bor [3, Theorem 4.1, Chapte}.8 O 4
5
6
7

3. Second moment properties of Euler-based schemes

In the deterministic setting, it is well known that numerical methods do not automatically inherit
long-time behavior from an underlying differential equation. In particular, with0 in (1), (2), Euler's 10
method incorrectly spirals outwards, and the backward Euler method incorrectly spirals inwards, whEreas
a carefully chosen symplectic method will remain on the manifgil® 4+ y(r)2 = constant §,6. In this 12
section, we develop simple extensions of these results for the linear stochastic oscillator. The anjﬁlysis
is in the same spirit as previous work on mean-square linear stability (for examg,dut we note
that the noise term considered here is additive rather than multiplicative. Related asymptotic resufts for
moments and stationary laws have appeare@,it(.

Applying a numerical timestepping method to the problem (1), (2) produces discrete approxmaﬁons
{x.}, {v.} with x, =~ x(t,) and y, ~ y(t,). We assume that a constant stepsize, is used, so that *
t, = nAt. We are concerned with the regime where> 0 is fixed, anth — o0, Sof, — oo. The simplest
and most widely used numerical method is Euler—Maruyama (EMWhich gives the recurrence

19

21
Xni1 = Xn + Aty,, (B) 2

Yn+1=Yn — Atx, +hAW,, WhereAVVn = W(thrl) — W(z). (6) zj
Theorem 3. Consider the recurrencé), (6) arising from the Euler—-Maruyama method applied to théz

linear stochastic oscillatofl), (2) with xo = 1, yo = 0. For any Ar < 2, ”7

E[x2 4 y2] = ¢35, 28
29
30
31
32
B2,y +32,0] = (1 AR)E[2 4 32] + 12t > (1+ AR)E[2 4 52]. 5

34

Hence E[x2 + y2] > (1+ Ar2)" > 2500, as

Proof. Squaring (5) and (6), adding and taking expected values, using the factsihds independent
of x, andy, andE[AW?] = At, we find that

36
Theorem 3 shows that given arbitrarily small > 0, EM produces solutions with second momeny,

that grows exponentially with,, a rate that is qualitatively different from the linear growth rate for thg

true second moment (Theorem 1). 39
Next we look at the backward Euler—Maruyama (BEM) method, which is also known as the implicit
Euler—-Maruyama method, see, for example,Jhapter 1R Applied to (1), (2) this gives M
42
Xp41 = Xp + Alyni, (7)

43
Y4l = Yn — Atx,. 1 +hAW,, whereAW,=W(t,.1) — W(t,). 8) 44
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Theorem 4. The recurrenc€7), (8) arising from the backward Euler-Maruyama method applied to the

linear stochastic oscillato(1), (2) with xo = 1, yo = 0 produces )
h? 3

E[x,f+y,f]g1+_, foralln > 0. .

At '

Hence, .
E 2 2 ;

lim 5l g 8

t,—00 t, ;

[y
o

Proof. The relations (7)—(8) may be written

B e
[

(1+ A1) xp41 =Xy + ALy, +hALAW,,
(1+ At?)yi1=yu — Atx, + hAW,.

[
(S )

Squaring, adding and taking expected values gives

1
E[xp iy +yi] = 1T AP (E[x +yi] +hr*At),

and the result follows. O

[ e
© o N o

20

Theorem 4 shows that given arbitrarily smalt > 0, BEM produces solutions with second moment!
that grows at a slower rate than the underlying SDE. 22

We now consider the following recurrence =
24

Xp41 =X, + Atyna (9) 25
Yntl = Yn — AtXyi1 +hAW,. (o) *°

The formula (9) forx,,; coincides with that for Euler—Maruyama (5), but the formula (10)fon uses 28
the new valuer,,; in the right side, rather than the valugthat appears in (6). 29

For deterministic systems in partitioned form,= a(u, v), v = b(u, v), there is a well-known 30
partitioned, or symplectic, Euler method; see, for examg@eEfps. (1.9) For an SDE analogue, using 31
the Euler—Maruyama stochastic increment leads to what we will call the Partitioned Euler—Maruyama
(PEM) method. It can be shown that such a method shares the usual finite-time strong convergence
properties of other Euler-based methods, of the type exemplified,bydrollary 10.6.1 This follows 34
from the general convergence theory ih1[1], and a specific proof was given ii7], using a similar 35
approach to that inl[3, Appendix A. 36

It is appropriate to mention at this stage that a general framework for deriving symplectic methods
for Hamiltonian systems with additive noise has been develope®].iOur work has the emphasis of 38
showing thebenefitsof using a symplectic method via analysis on a simple test problem, and in this
respect it closely matches Section 6 8f.[In [2, Proposition 6.Ra symplectic Euler-based method for4o
a linear oscillator with additive noise is shown to have good mean-square error propagation overtime
intervals[0, 7], provided thatl” Az? is small. Theorem 5 below deals with second moment behavior asd
applies in theAr fixed,n — oo regime. The result shows that, unlike EM and BEM, the PEM recurren¢e
gives excellent second moment growth properties. 44
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Theorem 5. Consider the recurrencé9), (10) arising from the Partitioned Euler—Maruyama method
applied to the linear stochastic oscillato¢l), (2) with xo = 1, yo = 0. There exist functions 2

Ciower, Cupper: (0, 2) = R* such that for anyAr < 2, 3
4

Clower( AN (1+ 1) S E[x; + y7] < Cupped A (1+h%1,). - V>0, .

9
Proof. SupposeAr < 2. The method (9), (10) may be written 10
Xn | _ Xn—1 0 AN 1 : ) n—j 0 H
|:yni|_A|:ynli|+|:hAVani|_A |:Oi|+ZhAW]lA |:1 ’ 2
j=1 13
where 14
15

1 At
A_[—At 1—At2]' *
17
We note thatA has eigenvalues, A corresponding to eigenvectorst, where 18
19
A2 AtVA— Ar?
A=l —+i—F— 20
2 2 ”n
and 22
1 23
V= A LAfaar | 24
-zt

The key to the success of the method is tha of unit modulus.
Letting || - || denote the Euclidean vector norm, we have

2

2 2 n

Xn _ n 1 2 n—j 0 28
Lz e 2wl o
j=1 30
We may expand 31
[1] +av, where gy Al .

=av+av, oC==—]—
0 2 2J4— A2 2431
Letting A = ¢ anda = |a|e’”, we find that 35
A [1} 2l [ cosy +no) ] 36
=2\ . _ . 37
0 —ALcogy +nb) — sin(y + nf) A2 .
It follows that 39
T1 2 40
A [o] =1+ AtD(n, At), (12) 4,
42
whereD(n, At) can be bounded uniformly im; that is 43

D(n, At) < D(Ar), forall n. 44
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Further, there is a constait such thatD(A¢) < D for all sufficiently smallAz. Similarly we find that
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atll

whereE (k, At) can be bounded uniformly ik,

Ek, At) < E(AD),

and there is a constadt such thatE(At) < E for all sufficiently smallAr.
The proof is completed by using (12) and (13) in (11).
4. Oxcillation property of partitioned Euler—M aruyama

Theorem 5 shows that PEM captures the appropriate second moment growth given in Theorgm 1.
In this section we show that PEM also reproduces an exact analogue of the oscillation propefty in

Theorem 2.

=1+ AtE(Kk, A1),

for all &,

13

16
17

Theorem 6. Consider the recurrenc€9), (10) arising from the Partitioned Euler—Maruyama method g
applied to the linear stochastic oscillatdf), (2) with xo = 1, yo = 0. For any At < 2, the sequence 44

{x,}n>0 Will switch signs infinitely many times as— oo, almost surely.

Proof. Fix At < 2. From (9), (10), the sequen¢e, },,~0 from PEM satisfies
X, =B"Xo+B" 'ri+B" ry+--- 41,

e [Posav]

andXo = [1, 1]". Considering the first component in (14), we get

where

Xn+1
Xn = |: s
Xn

n
Xn+1 =dy +bn + E an—iti,

i=1

wherer; = hAtAW;_1 ~ N (0, h?At®) and the constanis, andb, satisfyb, ;1 = —a, anda,;1 — (2 —

Atda, +a,_.1=0. O

Further algebra then reveals that there is a conasiich that

|al’l +bl’l| g K
and
an_if[ ~ N(O, O'iz),

Moreover,

n

2._ 2

sy = E of — 00
i=1

with o2 < Kh2Ar®,

asn — oQ.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
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It follows that the Law of the Iterated Logarithm may be applied to the sequgnee) "’ ; a,_; 7, See,
for example, 14, Exercises 10.2, numbe}. $Ve conclude that for any > 0 andn sufficiently large,S,

will almost surely exceed the bounds1— ¢)(2s2InIns?)Y/2 and(1— ¢)(2s2InIns2)Y/2 infinitely often.
The boundedness af, + b, ensures that the same is true fgr

1

2

3

4

5

6

5. Ogcillation properties of strong Ité-Taylor schemes ;

In this section we give an oscillation theorem that is weaker than Theorem 6, but applies to a Egore
general class of methods. The result requires only a finite time strong convergence condition. 1

Given a discrete approximatidm, }, {y,}, we suppose that an interpolation procedure can be defingd
to give a continuous-time extensioi(z), y(t) with X(z,) = x, and y(z,) = y,. Kloeden and Platen ,

[1, Chapter 1P show how continuous-time extensions can be defined for the class of Ito—Tayjor

approximations and establish a general finite-time strong convergence theory. The following resyit is

immediate. Note that the precise valugyois not important for Theorem 9. 16

17
Corallary 7 (Kloeden and Platenfor a strong I1td—Taylor approximatior (r), y(¢) of ordery >1/2 18
applied to the linear stochastic oscillatdt), (2) with initial data of bounded second moment, and witte
sufficiently smallAz, sayAr < 1, 20

21
x| | x@®
ol

E sup < CAtY, (17) 22
where the constanf depends only on the initial data arfd

te[0,T]

2 23
24
25

Proof. The SDE (1), (2) satisfies the smoothness, global Lipschitz and linear growth requireménts (33 [

Corollary 10.6.4 O 28

29
We will make use of the following lemma concerning the first zero-crossing timé&nfThe key point 3

in the lemma is that (18) holds independently of initial data. This allows us to prove an oscillation regult
for numerical methods by considering subintervals and making ueiteftimestrong convergence. 3
33
Lemma 8. For the linear stochastic oscillatofl), (2) with xq, yo € R, let r; denote the time of the first 34
zero ofx(r) on[0, 0o), that is, 35
36
7 =inf{r > 0: x(r) =0}. 37
38
39
40
41
42
Proof. The proof is based on that & [Theorem 4.4, Chaptel.8Here we allow for arbitrary initial data 43
inR2. O 44

Then, uniformly ingg and yo,

2
P(z1>T) < STiw for eachT > x. (18)
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We consider the nontrivial casg # 0. Recall thatx(¢) is given by (3). Evaluate () at the discrete 1

instantst =k, k=1,2,...,to obtain
km
x(km) = coskm)[xo — hB(km)], whereB(kn)= / sins dW (s).
0

Hencex (kw) > 0 if and only if

— >xo/h fork=13,...,
B(k”){<xo/h fork=2,4,....

Set
km

Y, = f sins dW (s),

k=1)7
so that, ~ N(0, 7/2) are i.i.d. andB (kw) = Y__, ¥;. Then, forxo > 0,
{ft1>m}= {x(t) >0forall0<r < n} - {x(n) > O}
={B(w) > xo/h} = {Y1> x0/ h} = {Y1> |x0|/ h}.
For xg < 0 a similar argument gives
{t1>m) C{-Y1> |xol/h}.

Thus, for anyxo,

/2
P(ti>nm) <P Y1>@ =1-N @ — ) =:c(x0, h),
h h Vrm

whereN (u) = (1/+/2) [*__e~*/2dy. Furthermore, we have that fog > 0

{t1> 21} = {x(t) >0forall0<¢ <271} - {x(n) >0,x(27) > 0}

={B(w) > xo/h, B(21) < xo/ h} = {Y1 > x0/ h, Y1+ Y2 < x0/ h}

C {Y1>XQ/I’[, Y2<0}.
Similarly, for xo < 0 we find that
{t1> 21} C {—Yl > |xo|/h, Yo > 0}

Overall, for anyxg,

P(ty > 2m) <P(Y1> |x0l/ h)P(Y2 < 0) = c(x;, o)

Continuing this argument we find that

c(xo, h)

1 fork=12,....

Pty > km) <

© 00 N O OO b~ W N
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1 Inorder to estimate the probability thatexceeds an arbitrary positive numifee: =, we let|T /7| be 1
2 the greatest integer not exceedifigr, sSoT — 1 < |T/nw|n < T. Then 2
3 c(|xol/h)  4c(xo, h) ®
4 P(t1>T) <IP’(1'1 > |T/m|m ) ST/m )1 < T 4
5 5
¢ Sincec(xo, h) < 35 L uniformly in xo and#, the result follows. O
; We now state and prove the main result of this section. The theorem is weaker than Theorem 6—1/;h|s is
¢ tobe expected because it applies to a general class of numerical methods, including those that haye bee
o Shownin Theorems 3 and 4 to have poor long-time second moment behavior. The theorem shows that by
1o taking Az sufficiently small it is possible to guaranteey numbewof near sign changewith probability |
,; Close to oneThe proof uses only the finite-time strong convergence properties of the methods. 1
i Theorem 9. Suppose that an It6—Taylor scheme of strong ogder 1/2 is applied to the linear stochastic 2
oscillator (1), (2) with xg = 1, yo = 0. Then giverz € (0, 1) and N > 0 there exists a constam{s* and a
14 . . 14
5 set of non-overlapping subinterva$s, such that for allAr < Ar* 5
16 P(!)E(ti)|<£f0rsometieSi, l:1,2,,N)>1—8 (19) 16
17 17
18 Proof. Givene and N, setAT =n Iog2(4TN) and take arbitrary non-overlapping subintervls= 5
19 [ai, B;] of length AT. Note thatAT > n. Let r; denote the first time the true solution(r) crosses 19
o0 Zerofort > «;. If the valuesx(v;), x (o), i =1,2,..., N, are known, we can regard the true solution og,
»1 each interval as a new solution of (1), (2) starting from initial valu@s), x(«;). Hence, from Lemma 8, »;
2> the probability that the true solution has at least one zer§; @atisfies 2
23 23
. P € 5) =P(t; < i) > 1= o .
25 Letus denote by, the event that the true solution crosses zero at least ong trat is 25
26 26
27 A= {X(li) =0, t; € Sl} (20) 27
28 Then we have 28
29 P(x(t;) =0for somet; € S;, i =1,2,...,N)=P(A1N AN - NAy) =E[LIa,La, - Lay], 29
30 30
31 Wherel denotes the indicator function. Lettisg,, be the subs-algebra containing all information up 5,
32 tothe pointoy, and introducing conditional expectation, we get -
33 E[IAllAz"'IAN] 33
34 ZE(E[IAllAZ"'IAN|~7:aN]) ZE(IAJAZ"'IAN,lE[IAleaN]) 34
35 35
. 2
36 =E(IaLay - Lay E[Laylx(an), X(an)]) > (1 - ZA—TM>E [aday - Lay ] 36
37 37
38 Continuing this argument by introducing,, ,, Fu, ,,...,and usmgm <1, we get 38
39 . 2 N oN 39
itlJ P(x(#;) =0for somes; €S;, i=12,...,N) > 1—2A—T/n > 1_2AT/71 ) (21) ;1(13
42 Applying the Chebyshev inequality in (17), with:= sup(¢: ¢ € S; for some 1< i < N}, we have 42
43 CAtY 43
“ ( sup [£() —x(1)| > ) "
1€[0,T] &



© 00 N o g b~ W N P

ADA W W W W W W WWWWN DN DNDNDDNDNDDNDDNDNNDNRPRERPR P R R P P P PP
P O © 00 N O O & W N P O © 0 N O g b W N P O © 0N O o M W N - O

42

50168-9274(04)00028-5/FLA AID:1583 Vol.eee(eee) anm1583 P.10 (1-11)

ELSGMLTM(APNUM) :m2 v 1.189 Prn:25/02/2004; 15:33 by:Gi p. 10
10 A.H.S. Melbg, D.J. Higham / Applied Numerical Mathemaéios (eeee) ecee—see
Equivalently, 1
CAt” CAt™ 2
P( sup (1) — x(1))| <g) >1— >1— , 22) s
1€[0,T] € € 4
for At < Ar*, whereAr* < 1is yet to be defined. 5
Using (21) and (22), we have 6
7
P(|£(#)| < e for somer; € S;, i=1,2,...,N) s
> P({x(ti) =0forsome; €5, i=12,...,N}n { sup [£(1) —x(n)| < s}) 9
te[0,T] 10
>P(x(#;) =0 for somey; € S;, i =1,2,. N)+P( sup \)E(t)—x(t)|<e)—1 1
1€[0,T] 12
_ CAr 2N 13
CAt*V 2N >
16
=1- ~ SRt (23) .
Choosing 18
19
2Ne \Y7
* —mi - 20
o ool (25) ). :
we find that the right side of (23) is bounded below by &, as required. 22
23
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