
Education, I will show how educators can use the Nobel
Prize-winning Black–Scholes option valuation theory to
motivate exercises in Monte Carlo simulation, matrix com-
putation, and numerical methods for partial differential
equations (PDEs).

Option Valuation for Science Students
My colleague Xuerong Mao and I designed a class, “The
Mathematics of Financial Derivatives,” for final-year
mathematics-based undergraduate students at the Univer-
sity of Strathclyde. The class pulls together ideas from
mathematical modeling, stochastics, mathematical analy-
sis, and computational methods, and has no prerequisites
beyond freshman-level calculus and linear algebra. We
have found that financial option valuation is an easily-
motivated peg on which to hang a range of applied and
theoretical tools. The class has proved popular, attracting
approximately 80 percent of all possible takers, including
many students aiming for joint degrees in mathematics and
computer science; mathematics and physics; and mathe-
matics, statistics, and economics. I’ll focus here on the
computational side of option valuation. Instructors can in-
troduce the necessary finance background in just a few
minutes of lecture time, and hence they may insert realis-
tic option valuation problems into a range of numerical
methods classes. This material is also eminently suitable
as a source of open-ended, individual-study projects in-
volving scientific computation. I’ll detail three methods:
Monte Carlo, binomial, and finite differences. In each case,
I’ll show how we can use the method to value a European
call option. Short Matlab1 codes make the ideas concrete;
you can download these from www.maths.strath.ac.uk/
~aas96106/algfiles.html. After illustrating each method, I

provide a list of project suggestions. Lecturers can use
these as the basis of homework problems or larger-scale
independent study assignments.

Before discussing the three methods, let’s review the con-
cept of a European call option and the corresponding
Black–Scholes formula.

Financial Options
Suppose I phone you today with the following offer: in three
months’ time, you have the option to purchase Microsoft
shares from me for $25 per share.

The key point is that you have the option to buy the shares.
Three months from now, you will check their market price
and decide whether to exercise that option. (In practice, you
would exercise the option if and only if the market price
were greater than $25, in which case you could immediately
resell for an instant profit.) This deal has no downside for
you—three months from now you either make a profit or
walk away unscathed. I, on the other hand, have no poten-
tial gain and an unlimited potential loss. To compensate,
there will be a cost for you to enter into the option contract.
You must pay me some money up front.

The option valuation problem is thus to compute a fair
value for the option. More precisely, it is to compute a fair
value at which the option may be bought and sold on an
open market.

The option I just described is a European call. The Mi-
crosoft shares are an example of an asset—a financial quan-
tity with a definite current value but an uncertain future
value. Formalizing the idea and introducing some notation,
we have: A European call option gives its holder the oppor-
tunity to purchase from the writer an asset at an agreed
expiry date t = T at an agreed exercise price E.

If we let S(t) denote the asset value at time t, then the final
time payoff for the European call is max(S(T) � E, 0) because

• If S(T ) > E, the option will be exercised for a profit of
S(T ) � E.

• If S(T ) � E, the option will not be exercised.

Options were first traded on the open market in 1973.

2 Copublished by the IEEE CS and the AIP        1521-9615/04/$20.00 © 2004 IEEE COMPUTING IN SCIENCE & ENGINEERING
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Since that time, demand for option contracts has undergone
a remarkable growth; trading in options typically far outstrips
that for the underlying assets. We can attribute popularity of
options to three facts:

• They are attractive to speculators because they have an idea
how the asset price will evolve and wish to gamble. Tak-
ing out an option generally gives a better upside (and cor-
respondingly worse downside) than investing in the asset.

• They are attractive to individuals and institutions wishing
to mitigate their exposure to risk. Options can be regarded
as insurance policies against unfavorable movements in
the market.

• There is a logical, systematic theory for working out how
much an option should cost.

The first two points create a demand for option trading
and the third makes it viable for “marketmakers” (who are
obliged to buy and sell options whenever asked to do so) to
find sensible prices.

A vast array of reference material on option valuation caters
to all tastes and backgrounds. For a comprehensive treatment,
ranging from the practicalities of how money is exchanged to
theoretical and algorithmic aspects of option valuation, we rec-
ommend the classic finance/business-student oriented text.2

My recent undergraduate book, An Introduction to Financial Op-
tion Valuation,3 is aimed at mathematics-based students and
gives equal weight to modeling, analysis, and computational
methods. I cover all the material in this article in greater depth
in my book.3

Real-world option data is freely available from several
sources, including The Wall Street Journal (www.wsj.com), the
Financial Times (www.ft.com), and the Yahoo! Finance site
(http://finance.yahoo.com/). On a slightly lighter note, the fas-
cinating story of how some of the academics behind option val-
uation theory tried—and eventually spectacularly failed—to
put their ideas into practice with real money, is told in the
highly readable book The Predictors.4

Asset Price Model
The Black�Scholes theory models the asset price as a sto-
chastic process, a random variable that depends on t. From a
computer simulation perspective, we need to know how to
generate a typical discrete asset path. The model says that
given S0 = S(0), prices S(ti) for the asset at times t = ti = i�t
can be generated from the recurrence

S (ti+1) = ,

where the parameter � is the asset’s expected growth rate, the
parameter � is the asset’s volatility, and �i is a sample from a
normal(0,1) pseudorandom number generator.

In Matlab, we could compute and plot such a path as
follows:

>> T = 1; N = 100; Dt = T/N; mu = 0.1; sigma

= 0.3; Szero = 1;

>> Spath = Szero*cumprod(exp((mu-

sigma^2)*Dt+sigma*sqrt(Dt)*randn(N,1)));

>> plot(Spath)

Figure 1a shows 50 such paths—in each case, the discrete
points (ti, S(ti)) are joined to give a piecewise linear curve. At
the expiry date t = T, the asset price is a random variable with
density given by

f(x) = , for x > 0,

with f(x) = 0 for x � 0. To confirm this, Figure 1b gives a his-
togram where the final asset prices S(T ) for 10,000 paths
have been binned. The density curve is superimposed as a
dashed line.

Black–Scholes Formula
In addition to employing the simple asset price model,
Fischer Black and Myron Scholes5 imposed several sim-
plifying assumptions about the options market. Then
they made creative use of the no-arbitrage (“no free
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pseudorandom number generator. The histogram summarizes
the values arising at time t = 1.



4 COMPUTING IN SCIENCE & ENGINEERING

lunch”) principle to come up with the following formula
for the value of a European call option at time t and as-
set price S:

C(S, t) = SN(d1) – Ee–�(�–	)N(d2), where 

d1 = ,

d2 = d1 –

and N(•) is the Normal(0,1) distribution function,

N (x) : = .

The parameter r in the formula is the continuously com-
pounded interest rate. If the asset price today (time zero) is
S0, then the Black–Scholes call option value is C(S0, 0). The
Matlab function bsf.m in Figure 2 gives one way of imple-
menting the formula, via the built-in error function erf. An
example of the function in use is

>> S = 2; t = 0; E = 1; r = 0.05; sigma 

= 0.25; T = 3;

>> C = bsf(S,t,E,r,sigma,T)

C =

1.1447

In Figure 3, we plot a Black–Scholes surface C(S, t) as a
function of S and t. Here, T = 1 and E = 1, and we see that at
expiry the option value reduces to the “hockey stick” payoff
max(S � E, 0). The time zero solution C(S, 0) evaluated at
the initial asset price S = S0 solves the option valuation prob-
lem introduced earlier.

Although the basic European call option valuation prob-
lem has a simple analytical solution (under the Black–
Scholes assumptions), many variations of the problem
currently require use of numerical methods. In particular,
a rich variety of exotic options are traded. They differ from
the European call in that the payoff depends not only on
the final time asset price, but also on its behavior during
all or part of the time interval [0, T). For example, the pay-
off might depend on the maximum, minimum, or average
asset price, or might knock-in or knock-out, that is, switch
on or off, depending on whether the price crosses a pre-

1
2

2

2
π

e ds
s

x −

−∫ ∞

σ T t−

log( / ) ( )( )S E r T t

T t

+ + −

−

1
2

2σ

σ

C O M P U T E R  S I M U L A T I O N S

function C = bsf(S,t,E,r,sigma,T)

% function C = bsf(S,t,E,r,sigma,T)

%

% Black–Scholes formula for a European call

%

tau = T-t;

if tau > 0

d1 = (log(S/E) + (r + 0.5*sigma^2)*tau)/(sigma*sqrt(tau));

d2 = d1 - sigma*sqrt(tau);

N1 = 0.5*(1+erf(d1/sqrt(2)));

N2 = 0.5*(1+erf(d2/sqrt(2)));

C = S*N1-E*exp(-r*tau)*N2;

else

C = max(S-E,0);

end

Figure 2. Listing of the function bsf.m for the Black-Scholes formula.
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and time t.
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determined barrier. As well, the option might have an early
exercise facility, which gives its holder the freedom to ex-
ercise before the expiry date. The design and analysis of
numerical methods for valuing exotic options is still a very
active research topic. Let’s look at three standard ap-
proaches to the simple European call case, with the moti-
vation that such methods are needed in more exotic cir-
cumstances.

Monte Carlo Method
An extremely useful property of the Black–Scholes option
value is that it can be regarded as the average payoff, suit-
ably discounted for interest, under the risk neutrality con-
dition � = r. In other words, we can reproduce the option
value by setting � = r in the asset model and computing the
payoff average over all asset paths. In practice, we can do
this through Monte Carlo simulation—averaging the pay-
off over a large number of asset paths. For a European call
option, we only need to know about the asset price at ex-
piry, so we can take �t = T in each path. A suitable
pseudocode algorithm is

for i = 1 to M
set Si = 
set Pi = e-rT max (Si � E, 0)

end
set Pmean = 

set Pvar =

Here, Pi is the payoff from the ith asset path, discounted
by the factor e�rT to allow for payoff occuring at the future
time t = T. The overall average Pmean is our Monte Carlo es-
timate of the option value. We can use the computed vari-
ance, Pvar, to give an approximate 95-percent confidence in-
terval [Pmean � 1.96 , Pmean + 1.96 ].

Loosely, for sufficiently large M this interval will contain the
true option value for 95 simulations out of every 100.

In Figure 4, we give a Matlab code that applies the Monte
Carlo method. Here, we have made use of the vectorized
mode of the random number generator and the high-level
commands mean and std. The output is

>> mc

Pmean =

1.1453

conf =

1.1435   1.1471

and we recall that the Black–Scholes formula for these pa-
rameter values gave C = 1.1447. In Figure 5, we show how
the Monte Carlo approximation varies with the number of
samples, M. Here, we took S = 10, E = 9, r = 0.06, � = 0.1 and
T = 1. The xs in the figure give the Monte Carlo approxi-
mations and the horizontal lines show the extent of the con-
fidence intervals. The Black–Scholes value is represented as
a vertical dashed line.

Here are some project suggestions.

• Investigate using Monte Carlo for valuing a range of path-
dependent options; that is, options with a payoff that de-
pends on S(t) for 0 � t � T.

• Experiment with variance reduction methods for speeding
up Monte Carlo computations.

• Investigate using low-discrepancy sequences and Quasi Monte
Carlo methods in the context of option valuation.

• Test whether you can use the Monte Carlo method to
compute approximations to Greeks—that is, partial deriv-
atives of the Black–Scholes value C(S, t) with respect to S,
t or parameters such as � and E.

If you are interested in learning more about Monte Carlo
for option valuation, a good place to start is Phelim Boyle’sP Mvar /P Mvar /

1
1 1
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P Pi
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% MC Monte Carlo valuation for a European call

%

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%

S = 2; E = 1; r = 0.05; sigma = 0.25; T = 3; M = 1e6;

randn(‘state’,100)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Svals = S*exp((r-0.5*sigma^2)*T + sigma*sqrt(T)*randn(M,1));

Pvals = exp(-r*T)*max(Svals-E,0);

Pmean = mean(Pvals)

width = 1.96*std(Pvals)/sqrt(M);

conf = [Pmean - width, Pmean + width]

Figure 4. Listing of the code mc.m for Monte Carlo valuation of an option.
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article,6 which won the Journal of Financial Economics’ All-
Star paper Award 2002.

Binomial Method
The binomial method starts with a simplified asset price
model. The time interval [0, T] is discretized into equally
spaced points 0 = t0 < t1 < ... < tM = T with ti = i�t. Given as-
set price S0 at time zero, we assume that the asset price at
time t1 arises from either a downward movement to dS0 or
an upward movement to uS0, where d < 1 and u > 1. Then,
at time t2, the same restriction to down or up movements
leads to three possible asset prices: d2S0, duS0, and u2S0.
Continuing this argument, there will be i + 1 possible as-
set prices at time ti = i�t, given by

, 0 � n � i.

At expiry time ti = tM = T, there are M + 1 possible asset
prices

.

Letting

denote the corresponding expiry time payoffs from a Euro-
pean call option, we know that 

, 0 � n � M.

The binomial method proceeds by working backwards
through time. An option value corresponding to asset
price at time ti is computed as a weighted average of the
two asset prices and from time ti+1. The for-
mula is

, 0 � n � i, 0 � i � M � 1. 

Here, we can regard parameter p as the probability of an
upward movement in the asset price. The formula lets us
go back to time zero and compute the required option
value . We must choose the method parameters �t, u,
d, and p so that the binomial asset model matches the
Black–Scholes version in the �t → 0 limit. Once �t is fixed,
we get two equations for the three remaining parameters,
and consequently many possible solutions. A popular
choice is

d = A � , u = A + , p =
,

where A =
.

Figure 6 lists a Matlab code that implements the binomial
method by using a matrix-vector product to work backwards
through time. The approximate option value W = 1.1448
agrees well with the Black–Scholes value C = 1.1447 from
bsf.m in Figure 2.

Figure 7 shows how the error in the binomial approxima-
tion behaves as a function of M, in the case S = 5, E = 3, T
= 1, r = 0.06 and � = 0.3. Figure 7a covers 100 � M � 300,
and Figure 7b covers 700 � M � 1,000. Although the error
generally decreases, the convergence is by no means mo-
notonic with M. The dashed lines in the figure has the form
“constant/M”—it may be shown that the error converges at
this rate. The highly oscillatory nature of the convergence
has been the subject of a number of research articles.

Here are some project suggestions.

• Can the execution time of binom.m be improved? (See
the SIAM Review article7 for a discussion of this issue.)

• A key advantage of the binomial method is its ability to
incorporate an early exercise facility. Follow this up by
implementing the method for American, Bermudan, or
shout options.2,3

• Investigate the literature on curbing the oscillations in the
binomial error.
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• Examine whether you can use the binomial method to
compute Greeks.

The paper that first introduced the binomial method re-
mains highly accessible.8

Finite Differences for the Black–Scholes PDE
The Black–Scholes formula for the value of a European call
option arises as the solution of a PDE. The PDE is of para-
bolic form, with Dirichlet boundary conditions. Unusually,
a final time, rather than an initial time, condition completes
the problem. Letting 	 = T – t denote the time to expiry, we
can convert to a more natural initial time specification. The
PDE then has the form

,

with initial data C(S, 0) = max(S(0) � E, 0) and boundary con-
ditions C(0, 	 ) = 0, C(S, 	) 
 S � Ee�r	 for large S, on the do-
main S � 0 and 0 � 	 � T. Truncating the S range to 0 � S �
L and using a finite difference grid { jh, ik} with spacings h =
L/Nx and k = T/Nt, we can compute a discrete solution

. LettingV C jh ikj
i ≈ ( , )
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Figure 7. Error in binomial method as a function of M. As the disctretization is refined the error generally decreases, but the
convergence is not monotonic.

%BINOM Binomial method for a European call

%

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%

S = 2; E = 1; r = 0.05; sigma = 0.25; T = 3; M = 256;

dt = T/M; A = 0.5*(exp(-r* dt)+exp((r+sigma^2)*dt));

d = A - sqrt(A^2-1); u = A + sqrt(A^2-1);

p = (exp(r*dt)-d)/(u-d);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Option values at time T

W = max(S*d.^([M:-1:0]’).*u.^([0:M]’)-E,0);

B = (1-p)*eye(M+1,M+1) + p*diag(ones(M,1),1);

B = sparse(B);

% Re-trace to get option value at time zero

for i = M:-1:1

W = B(1:i,1:i+1)*W;

end

W = exp(-r*T)*W;

Figure 6. Listing of binom.m for the binomial method.
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denote the numerical solution at time level i, we have V0

specified by the initial data, and the boundary values
V i

0 and V i
Nx for all 1 � i � Nt specified by the boundary

conditions. Using a forward difference for the t-deriva-
tive and central differences for the S-derivatives gives the
explicit method

The method can be expressed in matrix-vector form

Vi+1 = FVi + pi, for 0 � i � Nt � 1,

where is tridiagional and the bound-
ary conditions determine the vector pi � .

The Matlab code forward.m in Figure 8 implements this
method; in Figure 9, we show the resulting Black-Scholes
surface. We used Matlab’s waterfall plotting command
to emphasize the time-stepping nature of the finite-differ-
ence iteration.

Here are some project suggestions.

• Speed up the code forward.m by replacing the matrix-
vector multiplications with vector operations that access
subarrays using Matlab’s colon notation. (See Chapter 5
of Matlab Guide for details about colon notation.1)

• Investigate the accuracy and stability of the explicit method
in forward.m, and evaluate the improvements from (a)
Crank-Nicolson and (b) upwinding for the 
C/
S term.

• Show that the binomial method may be regarded as a fi-
nite difference method and use this viewpoint to explain
its convergence properties.

• Investigate the use of finite difference methods to value
American options.
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%FORWARD Forward Time Central Space on Black–Scholes PDE

% for European call

%

clf

%%%%%%% Problem and method parameters %%%%%%%

E = 4; sigma = 0.5; r = 0.03; T = 1;

Nx = 11; Nt = 29; L = 10; k = T/Nt; h = L/Nx;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

T1 = diag(ones(Nx-2,1),1) - diag(ones(Nx-2,1),-1);

T2 = -2*eye(Nx-1,Nx-1) + diag(ones(Nx-2,1),1) + diag(ones(Nx-2,1),-1);

mvec = [1:Nx-1]; D1 = diag(mvec); D2 = diag(mvec.^2);

Aftcs = (1-r*k)*eye(Nx-1,Nx-1) + 0.5*k*sigma^2*D2*T2 + 0.5*k*r*D1*T1;

U = zeros(Nx-1,Nt+1); Uzero = max([h:h:L-h]’-E,0);

U(:,1) = Uzero; p = zeros(Nx-1,1);

for i = 1:Nt

tau = (i-1)*k;

p(end) = 0.5*k*(Nx-1)*((sigma^2)*(Nx-1)+r)*(L-E*exp(-r*tau));

U(:,i+1) = Aftcs*U(:,i) + p;

end

waterfall(U’), xlabel(’j’), ylabel(’i’)

Figure 8. Listing of forward.m for finite difference solution of the Black-Scholes PDE.
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Having taught my class and written a textbook,3 I see finan-
cial option valuation as an excellent and popular vehicle for
motivating techniques in scientific computation.
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Figure 9. Finite difference Black–Scholes surface from
forward.m. This is the output from forward.m in Figure 8.

INTERNATIONAL CONFERENCE
ON COMPUTATIONAL SCIENCE

Emory University, Atlanta Georgia

22�25 May 2005

Meeting Theme: Advancing Science through Computation

Education Session: High Performance Computing in Academia: Systems and Applications

Following on the success of the 2004 meeting in Krakow, preparations are underway for the fifth annual ICCS confer-
ence.  There is still room for a few more papers in the education session.  Please contact Dr. Denis Donnelly

(donnelly@siena.edu) or Dr. Ulrich Ruede (ruede@immd10.informatik.uni-erlangen.de) for further information.
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