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Grindrod (2002. Phys. Rev. E, 66, 0667021–0667027) posed the problem of reordering a range-
dependent random graph and showed that it is relevant to the analysis of data sets from bioinformatics.
Reordering under a random graph hypothesis can be regarded as an extension of clustering and fits into
the general area of data mining. Here, we consider a generalization of Grindrod’s model and show how
an existing spectral reordering algorithm that has arisen in a number of areas may be interpreted from a
maximum likelihood range-dependent random graph viewpoint. Looked at this way, the spectral algo-
rithm, which uses eigenvector information from the graph Laplacian, is found to be automatically tuned
to an exponential edge density. The connection is precise for optimal reorderings, but is weaker when
approximate reorderings are computed via relaxation. We illustrate the performance of the spectral algo-
rithm in the weighted random graph context and give experimental evidence that it can be successful for
other edge densities. We conclude by applying the algorithm to a data set from the biological literature
that describes cortical connectivity in the cat brain.

Keywords: bioinformatics; cortical connectivity; clustering; functional magnetic resonance imaging
of the brain; genome data sets; Laplacian; maximum likelihood; small world networks; sparse matrix;
two-sum.

1. Background

Grindrod (2002, 2003) recently defined a new class of range-dependent random graphs that generalize
the Watts/Strogatz small world framework (Jeong et al., 2000; Watts & Strogatz, 1998) and have great
potential as models for interaction networks in bioinformatics. Take nodes labelled v1, v2, . . . , vN and
suppose that an edge connecting vi to v j exists with independent probability pi j := g(|i − j |), for
some suitable function g. Equivalently, the adjacency matrix A ∈ RN×N has ai j = 1 with probability
g(|i − j |) and ai j = 0 otherwise. In this framework, there is an underlying ordering of the nodes,
and the edge probabilities are functions of the “lengths” of the edges. In typical small world networks,
short-range connections (|i − j | small) are much more frequent than long-range connections (|i − j |
large) and hence range-dependent random graph models where g(k) decays rapidly as k → ∞ are
of interest. Grindrod suggested edge probabilities of the form g(k) = αβk−1, for α, β ∈ (0, 1), and
showed how various characteristics, such as the expected vertex degree, are easily derived. He also
gave experimental evidence that these networks capture the connectivity structure seen in proteome
interaction data.

In addition to providing a model for interaction data, Grindrod’s work also suggested a fascinating
inverse problem for extracting structural information. Given a network, i.e. a set of nodes with all
connections specified, how do we reorder the nodes so that any bias towards short-range connections
becomes apparent? In other words, how do we reorder a seemingly arbitrary network into one where
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the short-range/long-range connectivity patterns are revealed? Extracting this information is akin to,
but more general than, clustering. In the bioinformatics context, a suitable reordering reveals functional
relationships and may drive further data collection. It gives answers to questions like

• Which other genes/proteins behave like gene/protein X?

• What are the most likely false positives/false negatives in the data?

• Should a weakly observed interaction be classified as true or false?

A useful reordering algorithm must be robust with respect to erroneous data, including outliers—this
rules out many methods from deterministic graph theory and sparse matrix computations.

In Higham (2003), we examined the potential of three sparse matrix reordering algorithms for un-
ravelling random graphs. Here, we look at the most promising of these, spectral reordering, in the more
flexible and general context of weighted edges.

The next section defines the general undirected range-dependent graph model in the case where the
edge weights are drawn from continuous distributions. In Section 2.1, we specify the inverse problem
in maximum likelihood form and reveal its connection to the minimum two-sum reordering problem.
Section 2.2 deals with relaxed versions of these problems; here we find that the precise equivalence of
the problems is lost. Section 3 shows how the theory carries through to the case where edge weights
are drawn from discrete distributions and also to the case of directed graphs. In Section 4, we use a
simulation approach to test the results on a range of graphs, and in Section 5, we apply the reordering
algorithm to a data set arising from a biological application.

2. Continuous weights

In this work we extend Grindrod’s model to the case of an ordered graph with weighted edges. This
allows for interaction data where, instead of “yes” or “no” quantification of similarity, there is a range of
possible values, a generalization that is relevant to bioinformaticians (Altman & Raychaudhuri, 2001;
Barabási & Oltvai, 2004; Chuang & Roth, 2001) and other bioscientists (Hilgetag et al., 2000; Johansen-
Berg et al., 2004). For definiteness, we begin with undirected graphs and continuously weighted edges.
We take the edge weights to be independent, non-negative, continuous random variables with range-
dependent density. We remark that, in general, this leads to non-sparse networks. Our formal definition
is as follows.

DEFINITION 2.1 Given a set of edge density functions { f [k](x)}N−1
k=1 , with f [k](x) = 0 for x < 0,

the corresponding continuously weighted undirected range-dependent random graph has nodes ordered
1, 2, 3, . . . , N with independent edge weights {wi j }i< j , such that wi j has density f [ j−i](x).

Grindrod has advocated the name Renga 1 for the range-dependent random graphs analysed in
Grindrod (2002, 2003). Thus, following a referee’s suggestion, we will use the phrase C-Renga in
place of the more cumbersome “continuously weighted undirected range-dependent random graph”
in Definition 2.1.

2.1 Reordering

We may now consider the reordering problem for a C-Renga. If, as would be typical in a bioinformatics
application, the underlying range-dependent structure was believed to be present, but the nodes were

1A renga is a collection of haiku-like verses written by a network of poets. The word is both singular and plural.
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ordered arbitrarily, can we find a reordering that reveals the structure? One way to formalize this ques-
tion is to define an objective function that, given a particular ordering, measures how close the data is to
C-Renga form. In Definition 2.2, we generalize the maximum likelihood approach of Grindrod (2002);
here P denotes the set of all permutation vectors, i.e. all orderings of the integers 1, 2, . . . , N .

DEFINITION 2.2 Given an instance of a C-Renga with edge densities { f [k](x)}N−1
k=1 , but with the nodes

in arbitrary order, a maximum likelihood reordering p ∈ P solves

max
p∈P

∏
i< j

f [|pi −p j |](wi j ). (1)

We note that the quantity to be maximized in (1) represents, for a given ordering p ∈ P , the prob-
ability of that C-Renga arising.

Alternatively, given the general aim of having short-range edges with larger weights than long-range
edges, we could reorder with respect to a two-sum objective function. This idea, which dates back to
Barnard et al. (1995) and Juvan & Mohar (1992), has been used as the basis for minimizing fill-in
during sparse matrix computations.

DEFINITION 2.3 Given any undirected weighted graph with weights {wi j }i< j , a minimum two-sum
reordering p ∈ P solves

min
p∈P

∑
i< j

(pi − p j )
2wi j . (2)

Both maximum likelihood and two-sum reordering are hard, discrete optimization problems. How-
ever, as we mention in Section 2.2, the two-sum version has a natural relaxation into a tractable eigen-
value computation. Definition 2.2 requires the C-Renga model, i.e. the edge density functions
{ f [k](x)}N−1

k=1 , to be specified. The two-sum reordering in Definition 2.3, by contrast, makes no ref-
erence to a model. However, as Theorem 2.1 shows, it is possible to identify the two-sum problem as a
special case of maximum likelihood.

THEOREM 2.1 A permutation p ∈ P solves the minimum two-sum reordering problem in Definition 2.3
if and only if it solves the maximum likelihood reordering problem in Definition 2.2 for the C-Renga
model where f [k](x) is the density function for the exponential distribution with parameter k2; i.e.
f [k](x) = k2 e−k2x .

Proof. Set f [k](x) = k2 e−k2x in (1). Taking logs and negating converts the problem to

min
p∈P

⎡
⎣∑

i< j

(pi − p j )
2wi j − 2

∑
i< j

log |pi − p j |
⎤
⎦ . (3)

Since the second summation inside the min is the same for all p ∈ P , the problem is equivalent to
finding a minimum two-sum reordering. �

Theorem 2.1 is of theoretical interest, as it relates an oft-quoted discrete optimization problem, two-
sum reordering, to a new problem that is relevant in the context of random networks. However, as
the next section shows, the connection is also of practical value, since, via relaxation, it provides an
algorithm for approximate maximum likelihood reordering of a C-Renga.
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2.2 Relaxed reordering

For a large system, it is not feasible to examine all permutations p ∈ P in an attempt to optimize in
(1) or (2). Grindrod (2002) outlined a heuristic iterative algorithm that works directly with permutation
vectors. Although the details of the algorithm were not given, impressive results were obtained on
synthetic and real-life data.

Generalizing the approach in Higham (2003), we may investigate an alternative algorithm based
on relaxing the problem to the continuous realm, where Lagrange multipliers can be exploited. This
relaxation idea has proved successful for a number of applications in clustering, partitioning and data
mining, (Atkins et al., 1998; Barnard et al., 1995; Ding et al., 2001; Shi & Malik, 2000). In order
to define the relaxation process, we must also assume that the edge density expressions { f [k](x)}N−1

k=1
continue to make sense when k is a positive real number. (We note that this is the case for the exponential
distribution in Theorem 2.1.) In the following, e denotes the vector in RN with all entries equal to 1,
and ‖ · ‖2 denotes the Euclidean norm.

DEFINITION 2.4 Given an instance of a C-Renga with edge densities { f [k](x)}N−1
k=1 , but with the nodes

in arbitrary order, a relaxed maximum likelihood reordering y ∈ RN solves

max
y∈RN , ‖y‖2=1, y�e=0

∏
i< j

f [|yi −y j |](wi j ). (4)

DEFINITION 2.5 Given any undirected weighted graph with weights {wi j }i< j , a relaxed minimum two-
sum reordering y ∈ RN solves

min
y∈RN , ‖y‖2=1, y�e=0

∑
i< j

(yi − y j )
2wi j . (5)

Comparing Definitions 2.2 and 2.3 with Definitions 2.4 and 2.5, we see that relaxation involves
weakening p ∈ P to y ∈ RN and imposing the constraints ‖y‖2 = 1 and y�e = 0. We may recover a
permutation p ∈ P from a componentwise ordering of y

pi � p j ⇔ yi � y j . (6)

The fact that such a p is invariant to scaling or shifting of y motivates the normalization ‖y‖2 = 1 and
the orthogonality condition y�e = 0.

The relaxed two-sum problem has the advantage of being computationally tractable. It is easily
shown that the objective function

∑
i< j (yi − y j )

2wi j may be written y�(D − W )y, where W ∈ RN×N

has (W )i j = (W ) j i = wi j and D = diag(
∑

i wi j ). The matrix D − W is known as the Laplacian
of the graph (although this term is also used for a different, but related, matrix (Chung, 1997)). By
construction, D−W is positive semi-definite and has a zero eigenvalue corresponding to the eigenvector
e. It follows from the Courant–Fischer Minimax Theorem, see e.g. Horn & Johnson (1985), that
y�(D − W )y, subject to ‖y‖2 = 1 and y�e = 0, is minimized by finding the next smallest eigenvalue
of D − W and letting y be the corresponding normalized eigenvector. Computing a relaxed solution y
and projecting back to a permutation p satisfying (6), the key idea of Barnard et al. (1995), is what we
mean by spectral reordering. The vector y is often referred to as the Fiedler vector of W , and we note
that special purpose software is available for its computation (Hu & Scott, 2003).

Theorem 2.1 shows that the discrete formulations of maximum likelihood reordering (1) and min-
imum two-sum reordering (2) are equivalent, under f [k](x) = k2 e−k2x . We now give two simple
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examples to show that this equivalence is lost under relaxation. The effect arises because the second
summation inside the min in (3) becomes significant.

EXAMPLE 1 Consider the case

W =
⎡
⎣ 0 1 α

1 0 1
α 1 0

⎤
⎦ , (7)

where α > 0 is a parameter. The eigenvalue/eigenvector pairs of D − W may be written {λi , vi }, where

λ1 = 0, λ2 = 1 + 2α, λ3 = 3,

and

v1 = 1√
3

⎡
⎣ 1

1
1

⎤
⎦ , v2 = 1√

2

⎡
⎣ −1

0
1

⎤
⎦ , v3 = 1√

6

⎡
⎣ 1

−2
1

⎤
⎦ .

It follows that for 0 < α < 1, λ2 is the second smallest eigenvalue, and the relaxed minimum two-sum
reordering is found by taking y = v2. Applying (6), this projects to the permutation [1, 2, 3]�. It is clear
that this is a true minimum two-sum reordering (2). For α > 1, λ3 is the second smallest eigenvalue of
D − W , so y = v3 gives the relaxed minimum two-sum reordering. Whichever way ties are broken in
taking the projection (6), this corresponds to moving α in (7) away from the corner, which solves the
discrete problem (2). However, because y = v3 does not have distinct components, it cannot possibly
be a relaxed maximum likelihood reordering (4) under the exponential distribution in Theorem 2.1.

EXAMPLE 2 To examine a less pathological case in practice, we perturb Example 1 to

W =
⎡
⎣ 0 1.1 2

1.1 0 1
2 1 0

⎤
⎦ . (8)

MATLAB returned the permutation [2, 1, 3]� for the projected version of the relaxed minimum two-
sum reordering. (This is a valid solution to the discrete problems (1) and (2).) To compute a relaxed
maximum likelihood reordering, we minimized the negative log likelihood∑

i< j

(yi − y j )
2wi j − 2

∑
i< j

log |yi − y j | (9)

over y ∈ R3 of the form y = cos θ v2 + sin θ v3, where v2 and v3 are the eigenvectors corresponding
to the middle and largest eigenvalues of D − W . Note that the relaxed minimum two-sum reordering
occurs at θ = 0. In Fig. 1, we show how (9) varies for θ ∈ [0, π ]. The three local minima were
found using MATLAB’s fminbnd, and the overall solution θ = 2.74 produced a relaxed maximum
likelihood reordering that projects to [3, 1, 2]� (which does not solve the discrete problems (1) and (2)).
This example illustrates that both the relaxed and the projected solutions may differ between two-sum
and maximum likelihood formulations.

We also remark that the behaviour of relaxed minimum two-sum reordering in these examples is
consistent with Atkins et al. (1998, Theorem 3.3), which shows that if it is possible to reorder so that
entries along any row are non-increasing as we move away from the diagonal, then the Fiedler vector
will find this reordering.

Examples 1 and 2 show that we cannot prove a direct analog of Theorem 2.1 for the relaxed prob-
lems. However, a weaker version does hold.
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FIG. 1. Negative log likelihood (9) for the example (8) using y = cos θ v2 + sin θ v3.

THEOREM 2.2 A vector y ∈ RN solves the relaxed minimum two-sum reordering problem in Defin-
ition 2.5 if and only if it solves the relaxed maximum likelihood reordering problem in Definition 2.4
for a C-Renga model where

f [k](x) = C e−k2x , 0 � x � max
i< j

wi j ,

for any constant C (independent of k).

Proof. The result can be proved in a similar manner to Theorem 2.1. �
We note that, given the data {wi j }, a suitable density function for Theorem 2.2 can be constructed as

f [k](x) =
⎧⎨
⎩

e−k2x , 0 � x � maxi< j wi j ,
ε, maxi< j wi j < x � Dk,
0, Dk < x,

where ε and Dk are chosen to make
∫ ∞

0 f [k](x) dx = 1.

3. Discrete weights and directed edges

An alternative to the C-Renga setting is to allow the range-dependent edge weights to be drawn from a
discrete distribution. Below, we spell out how the material in Section 2 converts to this case.

DEFINITION 3.1 Given a set of non-negative possible edge weights, {mr }L
r=1, and, for each range

1 � k � N − 1, a set of probabilities { f [k]
r }L

r=1 with f [k]
r � 0 and

∑L
r=1 f [k]

r = 1, the corresponding
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discretely weighted undirected range-dependent random graph has nodes ordered 1, 2, 3, . . . , N with
independent edge weights {wi j }i< j , such that P(wi j = mr ) = f [ j−i]

r .

Following the remark after Definition 2.1, we will use the phrase D-Renga as an abbreviation for
“discretely weighted undirected range-dependent random graphs” in Definition 3.1.

DEFINITION 3.2 Given an instance of a D-Renga where the possible edge weights {mr }L
r=1 have prob-

abilities { f [k]
r }L

r=1, but with the nodes in arbitrary order, and writing wi j = msi j for i < j , a maximum
likelihood reordering p ∈ P solves

max
p∈P

∏
i< j

f
[|pi −p j |]
si j .

THEOREM 3.1 A permutation p ∈ P solves the minimum two-sum reordering problem in Definition 2.3
if and only if it solves the maximum likelihood reordering problem in Definition 3.2 for the D-Renga
model where the edge weights wi j are members of the set {mr }L

r=1 with probabilities

f [k]
r = e−k2mr∑L

j=1 e−k2m j
.

Proof. The result can be proved in a similar manner to Theorem 2.1. �
DEFINITION 3.3 Given an instance of a D-Renga with possible edge weights {mr }L

r=1 and edge prob-

abilities { f [k]
r }L

r=1, but with the nodes in arbitrary order, and letting wi j = ski j for i < j , a relaxed
maximum likelihood reordering y ∈ RN solves

max
y∈RN , ‖y‖2=1, y�e=0

∏
i< j

f
[|yi −y j |]
si j .

THEOREM 3.2 A vector y ∈ RN solves the relaxed minimum two-sum reordering problem in Defin-
ition 2.5 if and only if it solves the relaxed maximum likelihood reordering problem in Definition 3.3
for a D-Renga model where the edge weights wi j are members of the set {mr }L

r=1 with probabilities

f [k]
r = C e−k2mr ,

where C is a constant (independent of k).

Proof. The result can be proved in a similar manner to Theorem 2.2. �
Given data wi j from a set of edge values {mr }L

r=1, a suitable model for Theorem 3.2 can be con-

structed by setting f [k]
r = C e−k2mr for 1 � r � L , where the constant C is chosen so that

∑L
r=1 f [1]

r <

1, and then adding a dummy edge weight mL+1 and setting f [k]
L+1 = 1 − ∑L

j=1 f [k]
j .

We also mention that this work extends readily to the case of directed graphs i.e. to unsymmetric W .
The weights wi j may be taken as i.i.d. with density f [| j−i |](x) in Definition 2.1 and P

(
wi j = mr

) =
f [| j−i |]
r in Definition 3.1. The corresponding maximum likelihood reordering and minimum two-sum

reordering are given by (1) and (2), respectively, with i < j replaced by i 	= j . All previous theorems
remain valid. The relaxed problems are modified similarly, and a spectral reordering algorithm based
on relaxation then uses the Laplacian of 1

2 (W + W �) instead of the Laplacian of W .
An unsymmetric W with discretely weighted entries is treated in Section 5.
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FIG. 2. Upper left: C-Renga with exponentially distributed weights. Upper right: shuffled C-Renga. Lower left: unshuffled
C-Renga from spectral algorithm. Lower right: comparison of shuffling and unshuffling.

4. Computations on weighted random graphs

We now present the results of some numerical tests on the spectral algorithm as a reordering tool for
range-dependent random graphs. We focus on the case of continuously weighted edges—the next sec-
tion deals with some real-life discretely weighted edge data. Our aims in this section are to test whether
the relaxation technique produces good solutions to the underlying combinatoric problem, and to ex-
amine the robustness of the algorithm when a distribution other than the exponential distribution in
Theorem 2.1 is used. We note that the type of tests performed in this section have also been found
useful in measuring the performance of sparse matrix profile reduction algorithms (Hu & Scott, 2003).

When computing with the algorithm and visualizing the results, it is natural to work with inverses of
reordering permutations. Letting p−1 ∈ P denote the inverse of p ∈ P , so that p−1

pk
= k and pp−1

k
= k,

we note the identity

∑
i, j

(pi − p j )
2wi j =

∑
i, j

(i − j)2wp−1
i p−1

j
, for any p ∈ P.

It follows that a reordering p in the sense of (2) may be regarded as replacing the matrix W by a
new matrix whose i, j-th entry is wp−1

i ,p−1
j

. We also note that the MATLAB function sort directly

computes the inverse, p−1, of a p satisfying (6). For convenience, we use hats to denote permutations
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FIG. 3. Performance of spectral algorithm on 100 instances of a dimension N = 1000 C-Renga with exponentially distributed
weights. Upper plot: histogram of perr. Lower plot: average of twosumerr within each non-empty bin.

that represent inverses of reorderings, so p̂ corresponds to p−1.
In Fig. 2, we illustrate the spectral reordering algorithm on a C-Renga. We set N = 20 and gen-

erated weights ai j for i < j as samples from a pseudo-random number generator using an exponential
distribution with parameter (i − j)2. From Theorem 2.1, this is the natural range-dependency for the
two-sum objective function. The upper left-hand picture shows the 20 × 20 symmetric weight matrix,
M , using a grey-scale. The upper right-hand picture shows a shuffled version of this matrix. Here,
a symmetric row and column permutation was applied—in other words, the nodes in the graph were
swapped—using a permutation vector q̂ ∈ P . The resulting W , where wi j = aq̂i ,q̂ j , is the data ma-

trix to which the algorithm was applied.2 We computed the eigenvector y corresponding to the second
smallest eigenvalue of the Laplacian, and used this to induce the inverse p̂ of a permutation p ∈ P
satisfying (6). Applying this permutation to the shuffled matrix produced the matrix with entries w p̂i , p̂ j

shown in the lower left-hand picture. Comparing the two left-hand pictures, we see that the algorithm
has successfully moved the large weights towards the diagonal (i.e. associated them with short-range
edges), although it has not recovered the original matrix precisely. In the lower right-hand picture, we
compare the arbitrary shuffling that we used to generate the data matrix with the unshuffling computed
by the algorithm. To do this, we plot the vector {q̂ p̂k }N

k=1. If the unshuffling were exact, this would give
points on a straight line of slope ±1. We see that the algorithm has done a reasonable job of reverse en-

2Because node reordering represents a similarity transformation of the graph Laplacian, the spectral algorithm would give the
same solution (modulo tie-breaks) on the original and shuffled graphs. However, for the purpose of visualization, we find it natural
to display the shuffled version.
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FIG. 4. Similar to the computation in Fig. 3, but with mi j for i < j drawn from a uniform (0, 1/( j − i)α) distribution, with
α = 1. Dimension N = 1000.

gineering the shuffle. Nodes that were neighbours in the original C-Renga are no more than two places
apart in the computed solution. It is interesting to note that while p does a good job of unshuffling q,
the converse is not true. We have

{q̂ p̂k } = [
19 20 18 17 16 15 14 13 11 12 9 10 8 7 6 5 4 2 3 1

]
,

{p̂q̂k } = [
17 12 6 7 11 3 10 15 19 13 4 2 5 16 8 14 1 20 9 18

]
.

In our context, it is the ordering of q̂ p̂k that matters—the task is to undo the original shuffle.
Because the grey-scale pixel pictures become harder to interpret for bigger N , and because we want

to report on a large batch of tests, we introduce two error measures. The first is

perr := min

(
max

1�k�N
(|q̂ p̂k − k|), max

1�k�N
(|q̂ p̂k − (N − k + 1)|)

)
.

This is an indication of the accuracy of the unshuffle. The second is

twosumerr :=
∑

i< j (i − j)2ŵi j − ∑
i< j (i − j)2wi j∑

i< j (i − j)2wi j
,

where Ŵi j = w p̂i , p̂ j is the computed unshuffled matrix, illustrated by the lower left picture in Fig. 2.
Hence, twosumerr records the success of the algorithm in reducing the two-sum, relative to the two-sum
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FIG. 5. Similar to the computation in Fig. 4, but with α = 0.5.

of the original C-Renga. (Note that the two-sum also has a log-likelihood interpretation, as shown by
Theorem 2.1.)

In the example of Fig. 2, we had perr = 1 and twosumerr = −0.0177. The negative value for
twosumerr indicates that the re-shuffled matrix has a smaller two-sum than the original.

Figure 3 illustrates the performance of the algorithm on 100 instances of a C-Renga of dimension
N = 1000. As for Fig. 2, we generated the weight matrices using an exponential distribution for wi j

with parameter (i − j)2. The histogram in the upper picture shows how many of the 100 matrices were
unshuffled with perr = 0, 1, 2, 3, . . .. In the lower picture, for the same binning of matrices, we give the
average over that bin of twosumerr. We see that all cases have a shuffle error of 1, 2 or 3. Experiments
with other dimensions suggest that the performance generally improves as N is increased.

Next, we consider weights that are fundamentally different from the ideal exponential distribution.
First, we generate ai j for i < j as a sample from a uniform distribution over (0, 1/( j − i)). These edge
densities no longer match the exponential densities in Theorem 2.1, and the mean edge weight at a dis-
tance k decays as O(1/k) rather than O(1/k2). Figure 4 shows the perr and twosumerr values that arose.
We see that the algorithm has continued to perform well. Figures 5 and 6 give the corresponding results
for weights uniformly distributed over (0, 1/( j − i)α), with α = 0.5 and α = 0.25, respectively. With α

reduced to 0.5, the algorithm still does a reasonable job of recovering ordering information. As α is de-
creased, the performance must, of course, degrade, and we see that with α = 0.25 the reordered matrices
differ significantly from the original data, although, on average, the two-sum is still well controlled.



12 D. J. HIGHAM

FIG. 6. Similar to the computation in Fig. 4, but with α = 0.25.

FIG. 7. Original, ordered cat brain data from Hilgetag et al. (2000).
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5. Cat brain data

Figure 7 shows cortical connectivity data determined experimentally from the brain of a cat. This is
taken from Hilgetag et al. (2000, Fig. 1). The entries have values 0, 1, 2 or 3 and the matrix is
unsymmetric. Here, a portion of the brain has been divided into regions, and the value of entry (i, j)
indicates the strength of the connectivity between regions i and j . A key issue here is to pull together
well-connected regions (which need not be geographically close); i.e. to reorder the matrix so that large
entries appear near the diagonal. This allows biologists to identify parts of the brain that are likely to
be involved in related activities. The required information may be a clustering of the data (Hilgetag et
al., 2000) or, more generally, a reordering (Johansen-Berg et al., 2004). The authors in Hilgetag et al.
(2000) defined a suitable objective function and used an evolutionary algorithm to search over the set of
permutation vectors, an approach akin to that of Grindrod (2002), and reveal clusters. Figure 7 shows
their solution. Computation time for the algorithm on a DEC ALPHA 3000-600 UNIX workstation was
reported to range “from several hours to a few days”.

In Fig. 8, we show a corresponding spectral reordering. The data were symmetrized as described in
Section 3. As it involved only a single eigenvector computation, the spectral algorithm took a fraction
of a second to run on a modern workstation. To obtain this solution, we experimented with various
monotonic transformations of the {0, 1, 2, 3} data, and settled on replacing each entry by its 3.4th power.
Of course, the resulting reordering was applied to the original data. The question of whether there is
an optimal way to preprocess a matrix before applying the spectral algorithm is an interesting area for
future research.

Figure 9 compares the two solutions by plotting the inverse of the permutation that maps Fig. 7 into
Fig. 8. We see that the broad features of the two solutions are similar—both suggest four highly inter-
connected blocks consisting of similar components, although the precise orderings are quite distinct.
The two-sums for the matrices in Figs 7 and 8 are 3.5 × 105 and 2.0 × 105, respectively. Of course,

FIG. 8. Spectrally reordered cat brain data.
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FIG. 9. Inverse permutation from spectral reordering of cat brain data.

aside from using quantitative objective functions, such as the two-sum, the issue of “how good is a
solution” would best be judged in terms of whether it extracts meaningful information for a biological
scientist.

Overall, the spectral algorithm has the reassuring feature of reproducing biologically relevant infor-
mation from Hilgetag et al. (2000), whilst having a low complexity that makes feasible the analysis of
larger data sets, coming from more highly refined subdivisions. This observation is further strengthened
by recent work reported in Johansen-Berg et al. (2004). Here, the spectral algorithm was successfully
applied to 150 × 150 matrices that arise when diffusion imaging of the human brain is used to define
connectivity networks relating to the visual system.

6. Summary and conclusions

The two main thrusts of this work were

• to extend Grindrod’s range-dependent random graph model to the practically relevant cases of weighted
and undirected edges and

• to show via analysis and numerical experiment that a spectral algorithm gives an effective means to
tackle the corresponding reordering problem.

Given the current data deluge from bioinformatics (Altman & Raychaudhuri, 2001; Grindrod, 2003)
and network biology (Barabási & Oltvai, 2004), and more generally, the high profile of complex net-
works across a range of applications (Strogatz, 2001), the spectral algorithm’s low complexity makes it
an extremely promising tool for extracting meaning from large systems.
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