
The mean-reverting square root process is a stochastic differential equation 
(SDE) that has found considerable use as a model for volatility, interest rate, 
and other financial quantities. The equation has no general, explicit solution, 
although its transition density can be characterized. For valuing path-depend-
ent options under this model, it is typically quicker and simpler to simulate the 
SDE directly than to compute with the exact transition density. Because the 
diffusion coefficient does not satisfy a global Lipschitz condition, there is cur-
rently a lack of theory to justify such simulations. We begin by showing that a 
natural Euler–Maruyama discretization provides qualitatively correct approxi-
mations to the first and second moments. We then derive explicitly computable 
bounds on the strong (pathwise) error over finite time intervals. These bounds 
imply strong convergence in the limit of the timestep tending to zero. The 
strong convergence result can be used to justify the method within Monte 
Carlo simulations that compute the expected payoff of financial products. We 
spell this out for a bond with interest rate given by the mean-reverting square 
root process, and for an up-and-out barrier option with asset price governed 
by the mean-reverting square root process. We also prove convergence for 
European and up-and-out barrier options under Heston’s stochastic volatility 
model – here the mean-reverting square root process feeds into the asset price 
dynamics as the squared volatility.

1 The mean-reverting square root process

We consider the mean-reverting square root process in the form of an Itô stochas-
tic differential equation (SDE)

(1)d d dS t S t t S t W t( ) ( ( )) ( ) ( )= − +λ µ σ

Here λ, µ and σ are positive constants and W(t) is a scalar Brownian motion. We 
assume that the initial condition S(0) is independent of the Brownian motion and 
has bounded second moment. We also assume that S(0) ≥ 0 with probability 1. It 
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is known that a unique strong solution exists for (1), and that non-negativity of the 
initial data is preserved:

S(t)  ≥  0 for all t  ≥  0, with probability 1 (2)

Further, the solution may attain the value zero only if σ2 > 2λµ. See, for example, 
Mao (1997, Section 9.2) or Kwok (1998, Section 7.1.5) for more details.

The SDE (1) is widely used in mathematical finance as an alternative to geomet-
ric Brownian motion. Most notably, it was proposed by Cox, Ingersoll and Ross 
(1985) as an interest rate model and it forms the stochastic volatility component of 
Heston’s asset price model (Heston, 1993). The idea of taking the diffusion coef-
ficient to be proportional to the square root of the solution can be traced as least 
as far back as Cox and Ross (1976).

There are numerous examples in the literature where authors discretize the 
mean-reverting square root process, typically with an Euler-type scheme. In the 
finance context, there are two main motivations for such simulations:

❑  using a Monte Carlo approach to compute the expected value of a function of 
S(t), for example to value a bond or to find the expected payoff of an option 
(Andersen et al, 2002; Andersen and Lund, 1997; Bacinello, 2000; Barone-
Adesi and Sorwar, 2002; Broadie and Kaya, 2003; Gkamas, 2001; Zhang and 
Shu, 2003); and

❑  generating time series in order to test parameter estimation algorithms (Duan, 
2003; Fischer et al, 2003; Fischer and Roehrl, 2003).

We also note that Clewlow and Strickland (1998), Cyganowski et al (2002) and 
Glasserman (2004) include examples of numerical simulations on SDEs of the 
form (1) and Misawa (2001) derives a method that applies to a subclass of (1).

The motivation for our work is that the SDE (1) is non-linear and non-
Lipschitzian. Thus we cannot appeal to standard convergence theory for numerical 
simulations, as typified by Theorem 9.6.2 of Kloeden and Platen (1999), to deduce 
that the numerically computed paths are accurate for small stepsizes. Nor can we 
appeal to linear stability analysis, such as that in Higham (2000) and Saito and 
Mitsui (1996), to obtain qualitative information about the behavior of numerical 
methods over long time intervals. In this work, we address both issues, giving a 
customized analysis of the simplest and most widely used numerical method. Our 
results are positive, and they thus justify the type of numerical simulations that are 
done by researchers and practitioners, as cited above.

A numerical method applied to (1) may break down due to negative values being 
supplied to the square root function. A natural fix, which we adopt in this work, is 
to replace the SDE (1) by the equivalent, but computationally safer, problem

(3)d d dS t S t t S t W t( ) ( ( )) ( ) ( )= − +λ µ σ

Given a stepsize ∆t > 0, the Euler–Maruyama (EM) method applied to (3) sets 
s0 = S(0) and computes approximations sn ≈ S(tn), where tn = n∆t, according to

Journal of Computational Finance



Convergence of Monte Carlo simulations involving mean-reverting square root process 3

(4)s s t t s Wn n n n+ = − + +1 1( )λ λ µ σ∆ ∆ ∆

where ∆Wn = W(tn + 1) − W(tn)
The next section looks at qualitative behavior. We analyze the ability of the 

method to reproduce the mean-reverting property of the SDE and to pick up the 
correct second moment limit. Section 3 deals with the strong error of the method 
over finite time intervals. We show in sections 4 and 5 how the results can be used 
to deduce convergence of Monte Carlo simulations for computing the expected 
payoff from a bond and an up-and-out call option, respectively. These give clear 
examples of cases where strong (as opposed to weak) convergence is required 
from a discretization method. In Section 6 we consider coupled equations where 
the mean-reverting square root process models a stochastic volatility term, and we 
show that expected payoffs may also be computed accurately.

Although there appears to be no explicit solution for the SDE (1), its transition 
density can be characterized. Given S(u), for t > u the distribution of S(t) is, within 
a scaling, non-central chi-square; see, for example, Glasserman (2004, Section 
3.4). This gives an alternative means to simulate the process. We study the direct 
discretization method for a number of reasons:

❑  It is widely used in practice.
❑  In general it is computationally faster than simulating the transition density in 

cases where the path must be sampled at finely spaced points in order to approx-
imate a path-dependent payoff. Direct discretization requires a single normal 
sample per step. The alternative of using the exact transition density with the 
method in Glasserman (2004, Figure 3.5), for example, involves sampling a chi-
square random variable. The number of degrees of freedom of the chi-square 
random variable, and hence the computational expense, depends upon 4µλ ⁄σ2 
and so is strongly problem-dependent. This argument carries further weight in 
the case where the mean-reverting square root process is used within Heston’s 
model. Here, Broadie and Kaya (2003) have shown how to simulate from the 
exact asset price distribution, but for typical parameter values (see their Table 
1) an Euler step is many times faster than an exact sample. Hence, while exact 
simulation will be superior for European-style options and for options whose 
payoff depends on the asset price at only a widely-spaced, discrete set of times, 
for fully path-dependent options, where both approaches require the time hori-
zon to be broken into a large number of subintervals, the Euler version remains 
attractive.

❑  It forms an interesting test case for proving convergence results where there is 
no global Lipschitz condition for the diffusion term (as mentioned, for example, 
in Broadie and Kaya (2003) and Glasserman (2004, page 357).

Further, looking to future work, direct discretization adapts easily to changes in 
the model, such as time-dependency of λ, µ and σ, where the analytical transition 
density is not available.

We also note that our convergence results in Section 4, Section 5 and (for 
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independent W1(t) and W2(t)) Section 6 apply automatically to the case where 
the transition density for the mean-reverting square root process is simulated 
exactly, rather than via discretization; here the discretization errors referred to in 
Corollaries 3.1 and 3.2 become zero for all ∆t.

To conclude this section, we mention that although this work is presented from 
a numerical simulation viewpoint, it could also be regarded as a contribution to 
the literature on diffusion limits of discrete models. Nelson (1990) showed that a 
range of Arch models converge in distribution to SDEs, and the particular case of a 
mean-reverting square root process has been identified in Ishida and Engle (2002) 
as the limit for a CEVGarch(1,1) process. Our work deals with strong convergence, 
in L1 and L2 senses, of the discrete process (4) to the SDE (3) as ∆t → 0.

2 First and second moment stability

We begin this section by stating how the first and second moments of the SDE 
behave.

THEOREM 2.1 For SDE (3), E[S(t) – µ] = e−λt(E(S0) − µ, so that

(5)lim ( )
t

S t
→∞

  =E µ

and

E ES t S( ) ( )2 2
2 0

2 2
2− −







= +( ) −( ) −µ µ µ

σ µ
λ

σ
λ

e λλ

σ
λ

λµ µ

t

tS S+ + +( ) −( ) −E E( ) ( ( ))0
2

2 0
2

2
2 e

so that

(6)lim ( )
t

S t
→∞





 = +E 2 2

2

2
µ

σ µ
λ

PROOF The first moment result follows immediately from taking expectations in 
(1). The second moment result can be obtained by applying the Itô formula to S(t)2 
and taking expectations, using the result for E(S(t)). 

The properties (5) and (6) may be used to estimate the type of stepsize needed to 
obtain qualitatively correct solutions.

THEOREM 2.2 For the method (4) we have

E E( )( ) ( )s t sn
n1 0− −( )+λ µ µ∆

and hence

for t s as n

for t s

n

n

, ( ) ,

, ( ) (

∆

∆

< → → ∞

= = −

2

2

λ µ

λ

E

E 11 1 1

2

0
1) ( ) ( ) ,

, ( )

n n

n

s

for t s as

E

E

+ − +( )
> → ∞

+ µ

λ∆ n → ∞

Journal of Computational Finance



Convergence of Monte Carlo simulations involving mean-reverting square root process 5

PROOF The proof follows trivially after taking expected values in (4). 

Theorem 2.2 shows that in the tn → ∞ limit, we recover the correct mean if and 
only if the stepsize satisfies the constraint ∆t < 2 ⁄ λ. This constraint corresponds 
precisely to the linear stability constraint for deterministic problems (Hairer 
and Wanner, 1996). We now consider the second moment behavior in this stable 
regime.

THEOREM 2.3 For the method (4) with ∆t < 2 ⁄ λ we have

lim inf : ( ,
n n

t

t
s L

→∞
( ) ≥

+ −

−
=E 2

2
2 2

2

2 2

1

µ
λ

σ µ
λ

λ µ

λ

∆

∆
µµ σ, ; )∆ t

where this limiting lower bound thus satisfies

L t O t t( , ; ) ( ),λ µ σ µ
σ µ

λ
∆ ∆ ∆= + + →2

2

2
0as

Further, given any α > 0, if (1 − λ∆t)2 + ∆tσ2α ⁄ 2 < 1, then

limsup ( )
n

n

t

t
s

→∞
≤

+ −

− −
E 2

2
4 2

2 4

2 2

2

1

µ
σ µ
λα

λ µ

λ σ α

∆

∆
λλ

λ µ σ=: ( , , ; )U t∆

where this limiting upper bound thus satisfies

U t O t t( , , ; ) ( ),λ µ σ
µ

σ µ
λα

σ α
λ

∆ ∆ ∆=
+

−
+

2
4

4

2

2

1
as →→ 0

PROOF Our proof makes use of the readily established fact that a real-valued 
sequence of the form

(7)y ay b crk k
k

+ = + +1

where a, b, c, r are constants with  a  < 1 and  r  < 1, satisfies

(8)lim
n ny

b

a→∞
=

−1

Squaring and taking expected values in (4) gives

(9)

E E Es t s t t sn n n+( ) = − ( ) + − ( )

+
1

2 2 21 2 1( ) ( )λ λ µ λ

λ

∆ ∆ ∆
22 2 2 2∆ ∆t t snµ σ+ ( )E
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Now we replace E( sn ) in (9) by E(sn) to obtain the sequence {zn} with z0 = E(s0
2) 

and

z t z t t s

t

n n n+ = − + − ( )

+ +
1

2

2 2 2

1 2 1( ) ( )λ λ µ λ

λ µ σ

∆ ∆ ∆

∆

E
22∆ t snE( )

for which E(sn
2) ≥ zn for all n. Inserting the expression for E(sn) from Theorem 

2.2 we obtain a sequence of the form (7) with

(10)

(11)

(12)

a t

r t

b t t t

= −
= −

= − + +

( ) ,

,

( )

1

1

2 1

2

2 2 2 2

λ
λ

λ µ λ λ µ

∆
∆

∆ ∆ ∆ σσ µ2∆ t

Using the expression (8) for the limit then gives the lim inf bound for E(sn
2).

For an upper bound, we note that for any α > 0

∆ ∆
∆ ∆ ∆ ∆

t s t s
t t s t t s

n n
nE E

E E
( ) ≤ ( ) =

( )
≤ +2

2

2
2 2 2α

α
α

α nn
2

2

( )

Hence, from (9), letting ẑ0 = E(s0
2) and

ˆ

( ) ˆ ( )

z

t z t t s t

n

n n

+ =

− + − ( ) +

1

2 2 2 21 2 1λ λ µ λ λ µ∆ ∆ ∆ ∆E ++ +










σ
α

α
2

2 2

∆ ∆t t zn̂

we have E(sn
2) ≤ ẑn for all n. Inserting the expression for E(sn) from Theorem 2.2 

we obtain a sequence of the form (7) with

(13)

(14)

(15)

a t
t

r t

b t t

= − +

= −

= − +

( ) ,

,

( )

1
2

1

2 1

2
2

2

λ
σ α

λ

λ µ λ λ

∆
∆

∆

∆ ∆ 22 2 2
2

2
∆ ∆t tµ

σ
α

+

Using the expression (8) for the limit then gives the lim sup bound for E(sn
2). 

Theorem 2.3 shows that in the stable regime ∆t < 2 ⁄λ the method has a bounded 
second moment. The lower bound L(λ, µ, σ; ∆t) is close to the exact limiting 
second moment in Theorem 2.1 for small ∆t. The bounds are tight when the vola-
tility parameter σ is not too large. For example, if λ > σ2 ⁄(8µ) then we may take 
α = 1⁄(2µ) for all small ∆t to get

U t O t t( , , ; ) ( ),λ µ σ
µ

σ µ
λα

σ
λµ

∆ ∆ ∆=
+

−
+

2
2

8

2

2

1
as →→ 0
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3 Strong convergence

This section deals with the regime where the integration interval, [0, T], is fixed. 
We consider the error in the numerical solution, measured in strong L1 and L2 
senses.

In our convergence analysis we find it convenient to work with the continuous-
time approximation s(t) defined by

(16)

s t s t t s s W t W tn n n n n( ) : ( ) ( ) ( ) ( ) ,= + − − + −( )λ µ σ

for tt t tn n∈ 
 )+, 1

A more useful characterization of s(t) for the purpose of analysis is

(17)s t s s r r s r W r
t t

( ) : ( ( )) ( ) ( )= + − +∫ ∫0
0 0

λ µ σd d

where the “step function” s̄(t) is defined by

(18)s t s t t tn n n( ) : , ,= ∈ 
 )+for 1

Note that s(t) and s̄(t) coincide with the discrete solution at the gridpoints; s̄(tn) = 
s(tn) = sn. In order to obtain positive results about the ability of the discrete method 
(4) to approximate the true solution at the discrete points {tn}, we will prove posi-
tive results about the ability of s(t) to approximate S(t). A similar approach was 
taken in Higham et al (2002) for a different class of SDEs.

Our first step is to bound the second moment of the discrete numerical solution 
over finite time.

LEMMA 3.1 For any ∆t < 1 ⁄ 2λ,

E E Es s T s Ck
2

0
2 2

4

2 03
2

2( ) ≤ ( ) + + + −( ) =µ
σ

λ
λµ µ λ µ σ: , , ;; , ,E Es s

k t T

0 0
2

0

( ) ( )( )
≤ ≤∆

PROOF Following the proof of Theorem 2.3 we have E(sk
2) ≤ ẑk, where ẑk satisfies 

a recurrence of the form (7) with (13), (14), (15) and

c t t s= − ( )−( )2 1 0λ µ λ µ∆ ∆( ) E

Choosing α = 2λ ⁄σ2, we have a = 1 − λ∆t + λ2∆t 2 and hence 3 ⁄4 < a < 1. Solving 
the recurrence, we find that

(19)

ˆ ˆ

ˆ

z z
b

a
c a ra r a r

z

n
n n n n≤ +

−
+ + + + +( )

≤

− − − −
0

1 2 2 3 1

1


00 1
+

−
+

b

a
c n

Now
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(20)

b

a

t t t

t t

t

1

2 1

1

2
4

2 2 2
4

−
=

− + +

−

λ µ λ λ µ

λ λ

σ
λ

∆ ∆ ∆

∆ ∆

∆
( )

( )

== +
−

+
−

≤ +

2
1 4 1

3
2

2
4

2

2

2
4

2

µ
σ

λ λ

λ µ
λ

µ
σ

λ

( )∆

∆
∆t

t

t

Also,

(21)
c

t
T T t s T s

∆
∆= − ( )− ≤ ( )−2 1 20 0λµ λ µ λµ µ( ) E E

The result follows by inserting (20) and (21) into (19). 

Next, we derive a bound for the L2 difference between the two continuous-time 
approximations.

LEMMA 3.2 For ∆t < 1 ⁄ 2λ,

sup ( ) ( )
0

2

1

2
2

02 2

≤ ≤
−( )( )

≤ + ( ) +(
t T

s t s t

t s

E

E∆ λ µ µ µ))( )+ ( ) ( )( )





C s sλ µ σ, , ; ,E E0 0
2

, , ; ,

: ,

+ ( ) ( )( )



=

σ λ µ σ

λ

2
0 0

2C s s

t D

E E

∆ µµ σ, ; ,E Es s0 0
2( ) ( )( )

where C is defined in Lemma 3.1.

PROOF Suppose t ∈ [k∆t, (k + 1)∆t). Then

E Es t s t t t s s w t wk k k( ) ( ) ( ) ( ) ( ) (−( )( ) = − − + ( ) −2 λ µ σ tt

t t s s

k

k k k

)

( ) ( )

( )( )











= − −( ) +

2

2 2 2 2λ µ σE E (( )( ) −

≤ −( ) + ( )

≤

( )

( )

t t

t s t s

t

k

k k∆ ∆

∆

2 2 2 2 2

1

2

λ µ σE E

λλ µ µ σ2 2 2 22+ ( ) + ( )( )+ ( )





E E Es s sk k k

The result follows using Lemma 3.1 and the bound  E(sk)  ≤  E(s0)  + 2µ that 
follows from Theorem 2.2. 

Our first main result is an explicit bound for the strong L1 error.
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THEOREM 3.1 For ∆t < 1 ⁄ 2λ and any integer k ≥ 1 we have

sup ( ) ( ) ( )

0

1 2
2 2

≤ ≤

− −
−

− ≤ + +
t T

T k kS t s t
T

k

T

k
E e e

e
λ σ σ

kk k
T D t

( )+
+



























1 2

λ ∆

where D = D(λ, µ, σ; E(s0), E(s0
2)) is defined in Lemma 3.2.

PROOF The first step is to construct a sequence of C2 smooth functions, ψk(x), 
with uniformly bounded first derivative, that approximate  x . As k increases, 
the approximation quality improves, at the expense of a larger second derivative 
bound.

Let a0 = 1 and ak = e−k(k + 1) ⁄ 2 for k ≥ 1, so that

du

u
k

a

a

k

k−

∫ =
1

For each k ≥ 1, there clearly exists a continuous function ψk(u) with support in 
(ak, ak−1) such that

0
2

1≤ ≤ < < −ψk k ku
k u

a u a( ) for

and

ψk
a

a
u u

k

k
( )d

−

∫ =
1

1

Define

φ ψk

x

k

y
x y u u( ) ( )= ∫ ∫d d

0 0

Then

(22)

φ φ

φ
k k

k

C

x x

∈ =

′ ≤ ∈

2 0 0

1

( , ), ( ) ,

( ) , ,

R R
Rfor all

(23)′′
≤ < <

=



 −φk

k x k k
x

a x a
( )

,

,

2
1

0

for

otherwise


and, moreover,

(24)x a x x xk k− ≤ ≤ ∈−1 φ ( ) , ,for all R

Now, note that

S t s t S t s t r S r s r
t t

( ) ( ) ( ) ( ) ( ) ( )− = − −( ) + −( )∫λ σd
0 0∫∫ dW r( )
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Applying the Itô formula gives

E Eφ λ φk kS t s t S r s r S r s r( ) ( ) ( ) ( ) ( ) ( )−( ) = − ′ −( ) −( )dd

d
2

r

S r s r S r s r r

t

kk

0

1

2
2

0

∫
+ ′′ −( ) −( )σ φE ( ) ( ) ( ) ( )

tt

t
S r s r r I t

∫

∫≤ − +λ σE ( ) ( ) ( )d
0

1

2
2

where, using (22), (23) and Lemma 3.2,

I t S r s r S r s r rkk

t
( ) ( ) ( ) ( ) ( )= ′′ −( ) −( )

≤ ′′

∫E

E

φ
2

d
0

φφ

φ

k

t

k

S r s r S r s r r

S r s r

( ) ( ) ( ) ( )

( ) ( )

−( ) −

≤ ′′ −

∫ d
0

E (( ) −

+ ′′ −( ) −

∫ S r s r r

S r s r s r s r

t

k

( ) ( )

( ) ( ) ( ) ( )

d
0

E φ dd

d

r

r s

t

k a S r s r a

t

k ak k k

0

2

0

2

1

∫

∫≤ +< − <{ }−
E E1 ( ) ( ) (rr s r r

T

k
s r s r r

T

k

t

k a

t

k

) ( )

( ) ( )

−

≤ + −

≤ +

∫

∫

d

d

0

2

0

2

2 2

E

TT

k a
D t

k

∆

Using Lemma 3.2 again, we obtain

E E Eφ λ λk

t
S t s t S r s r r s r s r( ) ( ) ( ) ( ) ( ) ( )−( )≤ − + −∫0

d
00

2 2

0

2

t

k

t

r

T

k

T

k a
D t

S r s r r
T

k

∫

∫

+ +

≤ − +

d

d

σ σ

λ
σ

∆

E ( ) ( ) ++ +












σ
λ

2T

k a
T D t

k

∆

But, from (24),
E Eφk kS t s t S t s t a( ) ( ) ( ) ( )−( )≥ − − −1

So

E S t s t a
T

k

T

k a
T

k

k

( ) ( )− ≤ +

+ +












−1

2

2

σ

σ
λ


+ − ≤ ≤∫D t S r s r r t T

t
∆ λ E ( ) ( ) ,

0
0d
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Applying the Gronwall inequality (see, for example, Mao, 1997, Chapter 1) gives 
the required bound. 

Theorem 3.1 provides an explicit, computable bound for the L1 error. To illus-
trate this, Table 1 shows the bound in the case λ = 0.1, µ = 1, σ = 0.1, E(s0) = 1 
and E(s0

2) = 1 for a range of T and ∆t values. In each case, we optimized over k. 
(Typically, k = 3 gives the minimum.) We note that sampling errors from a Monte 
Carlo simulation usually restrict accuracy to one or two digits, irrespective of 
the timestepping accuracy. So, for these parameters, our bound proves that the 
numerical method offers sufficient accuracy for a practical choice of ∆t.

Corollary 3.1 below shows that in addition to providing an explicit bound, The-
orem 3.1 implies strong L1 convergence as ∆t → 0.

COROLLARY 3.1

lim sup ( ) ( )
∆ t t T

S t s t
→ ≤ ≤

− =
0 0

0E

PROOF Given any ε > 0, we may choose k ≥ 1 such that

eλ σ
εT

ka
T

k− +










 <1

2
1

2

and then choose ∆t > 0 such that

eλ σ
λ εT

k

T

k a
T D t

2
1

2
+

















<∆

From Theorem 3.1, this ensures that sup0 ≤ t ≤ T E  S(t) − s(t)  < ε, as required. 

Next, we derive a bound for a stronger form of the error. This version uses an L2 
measure and places the supremum over time inside the expectation operation. The 
resulting bound, in Theorem 3.2 below, involves the L1 error which is explicitly 
bounded in Theorem 3.1 and hence is also computable. Corollary 3.2 shows that 
convergence as ∆t → 0 also follows.

TABLE 1 Error bound for sup0 ≤ t ≤ T E  S(t) − s(t)  from Theorem 3.1 for λ = 0.1,  
µ = 1, σ = 0.1, E(s0) = 1, E(s0

2) = 1 and various T and ∆t (optimized over k).

 T = 1 ⁄12  T = 3 ⁄12  T = 6 ⁄12  T = 9⁄12  T = 12 ⁄12 

∆t = 10−1  0.08  0.14  0.24  0.34  0.44 
∆t = 10−2  0.06  0.08  0.11  0.14  0.18 
∆t = 10−3  0.05  0.06  0.07  0.08  0.10 
∆t = 10−4 0.04  0.05  0.06  0.07  0.07
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THEOREM 3.2 For ∆t < 1 ⁄2λ we have

E sup ( ) ( )
0

2

2 2 22 2
2

≤ ≤
−( )











≤

t T

T

S t s t

T De λ λ ∆ tt T D t T S t s t
t T

+ + −










≤ ≤
8 82 2

0
σ σ∆ sup ( ) ( )E 

where D = D(λ, µ, σ; E(s0), E(s0
2)) is defined in Lemma 3.2.

PROOF For any 0 ≤ t ≤ T, using the Cauchy–Schwarz inequality we have

S t s t T S r s r r

S r

t
( ) ( ) ( ) ( )

( )

−( ) ≤ −( )

+ −

∫
2 2 2

0

2

2

2

λ

σ

d

ss r W r
t

( ) ( )( )







∫ d

0

2

Applying the Doob martingale inequality (see, for example, Mao, 1997, Chapter 
1), we find that for any t1 ∈ [0, T]

E

E

sup ( ) ( )

( )

0

2

2 2

1

2

≤ ≤
−( )











≤ −

t t
S t s t

T S r sλ (( ) ( ) ( )r r S r s r r

T S

t t
( ) + −( )

≤

∫ ∫
2

0

2
2

0

2

1 1
8

2

d dσ

λ

E

E (( ) ( ) ( ) ( )r s r s r s r r

S

t
−( ) + −( )( )

+

∫
2 2

0

2

1

8

E

E

d

σ (( ) ( )

( ) ( )

r s r r

T S r s r r

t

t

−

≤ −( ) +

∫

∫
0

2 2

0

2

1

1
2 2

d

dλ λE TT D t

S r s r r s r s r
T

2

2

0

2

0
8 8

∆

( ) ( ) ( ) ( )+ − + −∫σ σE Ed
TT

t s

t

r

T S t s t

∫

∫≤ −( )









≤ ≤

d

2 2

0

2

0

1
λ E sup ( ) ( ) dds T D t

T D t T S t s
t T

+

+ + −
≤ ≤

2

8 8

2 2

2 2

0

λ

σ σ

∆

∆ sup ( )E (( )t

An application of the Gronwall inequality completes the proof.

COROLLARY 3.2

lim sup ( ) ( )
∆ t t T

S t s t
→ ≤ ≤

−( )










=

0 0

2
0E
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PROOF The proof follows immediately from Corollary 3.1 and Theorem 3.2. 

4 A bond

In the case where S(t) in (1) models short-term interest rate dynamics, it is perti-
nent to consider the expected payoff

(25)Bond d: exp ( )= −








∫E S t t

T

0

from a bond. A natural approximation based on (4) is

(26)Bond∆ ∆t n
n

N

t s: exp= −










=

−

∑E
0

1

where N∆t = T; see, for example, Glasserman (2004, Section 6.2.3). It is conven-
ient to rewrite this as

Bond d∆ t
T

s t t= −








∫Eexp ( )

0

using the step function s̄(t) in (18). The following result shows that the strong 
convergence of the SDE approximation confers convergence in this scenario.

THEOREM 4.1 In the notation above,

lim
∆

∆
t

t
→

− =
0

0Bond Bond

PROOF Using e−| x | − e−| y | ≤  x − y  and the non-negativity of S(t), we have

Bond Bond d− = −








− −∫∆ t

T
S t tE exp ( ) exp

0
ss t t

S t t

T

T

( )

( )

d

d

0

0

∫

∫























≤ E −−

≤ −

≤ −

∫

∫

∫

s t t

S t s t t

S t s t t

T

T

T

( )

( ) ( )

( ) ( )

d

d

d

0

0

0

E

E

≤≤ −T S t s t
T

sup ( ) ( )
[ , ]0

E

But Lemma 3.2 and Corollary 3.2 imply that sup[0, T]E | S(t) − s̄(t)  → 0, complet-
ing the proof. 
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5 A path-dependent option

We now consider the case where the mean-reverting square root process (1) mod-
els a financial quantity, such as the short-term interest rate, on which an option has 
been written (see, for example, Hull, 2000, Section 21.5). In this case the expected 
payoff from the option is of relevance.

We consider an up-and-out call option, which, at expiry time T, pays the Euro-
pean value if S(t) never exceeded the fixed barrier, B, and pays zero otherwise. 
We suppose that the expected payoff is computed from a Monte Carlo simulation 
based on the method (4). Here, using the discrete numerical solution to approxi-
mate the true path gives rise to two distinct sources of error:

❑  a discretization error due to the fact that the path is not followed exactly – the 
numerical solution may cross the barrier at time tn when the true solution stays 
below, or vice versa; and

❑  a discretization error due to the fact that the path is only approximated at dis-
crete time points – for example, the true path may cross the barrier and then 
return within the interval (tn, tn + 1).

The following theorem uses the strong convergence property to show that the 
expected payoff from the numerical method converges to the correct expected 
payoff as ∆t → 0. Note that using the step function s̄(t) in (28) is equivalent to 
using the discrete solution.

THEOREM 5.1 For the mean-reverting square root process (1) and numerical 
method (18), define

(27)

(28)

V S T E

V

S t B t T

t

: ( )

:

( ) ,= −( )







=

+
≤ ≤ ≤ ≤{ }E

E

1 0 0

∆ ss T E s t B t T( ) ( ) ,−( )







+
≤ ≤ ≤ ≤{ }1 0 0

where the exercise price, E, and barrier, B, are constant. Then

lim
∆ ∆t tV V

→
− =

0
0

PROOF Let A := {0 ≤ S(t) ≤ B, 0 ≤ t ≤ T } and Ā∆t := {0 ≤ s̄(t) ≤ B, 0 ≤ t ≤ T}. 
Making use of the inequality

S T E s T E S T s t( ) ( ) ( ) ( )−( ) − −( ) ≤ −+ +

we have

V V S T E s T E

S T E

t A A t
− ≤ −( ) − −( )

≤ −( )

+ +

+

∆ ∆
E

E

( ) ( )

( )

1 1

−− −( )( )
+ −( )( ) +

+
∩

+
∩

s T E

S T E s

A A

A A

t

t

( )

( ) (

1

1

∆

∆
E Ec TT E

S T s T B E

A A

A A

t

t

)

( ) ( ) ( )

−( )( )
≤ −( ) + −

+
∩

∩

1

1

c
∆

∆
E P AA A

B E A A

t

t

∩( )
+ − ∩( )

∆

∆

c

c( )P
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V V S T E s T E

S T E

t A A t
− ≤ −( ) − −( )

≤ −( )

+ +

+

∆ ∆
E

E

( ) ( )

( )

1 1

−− −( )( )
+ −( )( ) +

+
∩

+
∩

s T E

S T E s

A A

A A

t

t

( )

( ) (

1

1

∆

∆
E Ec TT E

S T s T B E

A A

A A

t

t

)

( ) ( ) ( )

−( )( )
≤ −( ) + −

+
∩

∩

1

1

c
∆

∆
E P AA A

B E A A

t

t

∩( )
+ − ∩( )

∆

∆

c

c( )P

Now, from Corollary 3.1, we have lim∆t → 0E( | S(T) − s̄(T) | ) = 0. Hence, our proof 
is complete if we can show that

(29)lim
∆ ∆t tA A

→
∩( ) =

0
0P c

and
(30)lim

∆ ∆t tA A
→

∩( ) =
0

0P c

For any sufficiently small δ, we have

A S t B

S t B B

t T

t T

= ≤{ }
= ≤ −{ }∪ − <

≤ ≤

≤ ≤

sup ( )

sup ( ) s

0

0
δ δ uup ( )

sup ( )

0

0

≤ ≤

≤ ≤

≤{ }
⊆ ≤ −{ }∪ −

t T

k t T

S t B

S k t B B
∆

∆ δ δ << ≤{ }
= ∪

≤ ≤
sup ( )

:

0

1 2

t T
S t B

A A

Hence,

A A A A A A

S k t

t t t

k t T

∩ ⊆ ∩( )∪ ∩( )
⊆

≤ ≤

∆ ∆ ∆

∆
∆

c c c
1 2

0
sup ( )−− ≥{ }∪s k t A( )∆ δ 2

So,
P P PA A S k t s k t At

k t T
∩( )≤ − ≥( )+ (

≤ ≤
∆

∆
∆ ∆c sup ( ) ( )

0
2δ ))

≤ −( )










≤ ≤

1
2 0

2

δ
E sup ( ) ( )

k t T
S k t s k t

∆
∆ ∆ 

+ ( )P A2

Now, for any ε > 0, we may choose δ so small that

P A2
1

2
( )< ε

and then choose ∆t so small that

 ≤ −( )








≤ ≤

1
2 0

2

δ
E sup ( ) ( )

k t T
S k t s k t

∆
∆ ∆


< 1

2
ε

whence

P A A t∩( )<∆
c ε
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This confirms (29).
Now, for any δ > 0, we write

A S t B

S t B

t T

t T

c = >{ }
= > +{ }∪

≤ ≤

≤ ≤

sup ( )

sup ( ) sup

0

0 0
δ

≤≤ ≤
≤ +{ }

= ∪
t T

S t B

A A

( )

:

δ

3 4

So

(31)

P P P

P

A A A A A A

S t

t t t

t T

c ∩( ) ≤ ∩( ) + ∩( )
≤

≤ ≤

∆ ∆ ∆3 4

0
sup ( )−− >( )+ ( )s t A( ) δ P 4

Define

s t S k t t tk t k t
k

*
,( )( ) ( ) ( ),= ≤ ≤+ )

=

∞

∑ ∆ ∆ ∆1 1
0

0 TT

and note that

sup ( ) ( )

sup ( ) ( )*

0

0

≤ ≤

≤ ≤

− >{ }
⊆ − >

t T

t T

S t s t

S t s t

δ

11

2
0

1

2

0

δ δ{ }∪ − >{ }
=

≤ ≤

≤ ≤

sup ( ) ( )

sup s

*

t T

k t T

s t s t

∆
uup ( ) ( )
( )k t t k t

S t S k t
∆ ∆

∆
≤ ≤ +

− >{ }1

1

2
δ

sup+
0≤≤ ≤

− >{ }k t T
S k t s k t

∆
∆ ∆( ) ( ) 1

2
δ

Thus

(32)

sup ( ) ( )

sup sup

P

P

0

0

≤ ≤

≤ ≤

− >{ }
≤

t T

k t T k t

S t s t δ

∆ ∆ ≤≤ ≤ +
− >









t k t

S t S k t
( )

( ) ( )
1

1

2∆
∆ δ

sup ( ) ( )+ −( )










≤ ≤

4
2 0

2

δ
E

k t T
S k t s k t

∆
∆ ∆ 

Because S(t) is a continuous process in t ∈ [0, T], almost every sample path of S(·) 
is uniformly continuous on [0, T]. This immediately implies

lim sup sup ( )
( )∆ ∆ ∆ ∆t k t T k t t k t

S t S
→ ≤ ≤ ≤ ≤ +

−
0 0 1
P (( )k t∆ >











=1

2
0δ
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We also know from Corollary 3.2 that

lim sup ( ) ( )
∆ ∆

∆ ∆
t k t T

S k t s k t
→ ≤ ≤

−( )



0 0

2E





= 0

Hence, from (32), for any δ > 0,

lim sup ( ) ( )
∆ t t T

S t s t
→ ≤ ≤

− >








0 0

P δ == 0

Now, recalling the definition of Ā4, we see that for ε > 0 we can find a δ > 0 
sufficiently small for P(Ā4) < ½ ε and then choose ∆t  sufficiently small for 
P(sup0 ≤ t ≤ T | S(t) − s̄(t) | > δ) < ½ ε. Substituting this into (31) yields P(Ac ∪ Ā∆t) < 
ε, for sufficiently small ∆t, confirming (30).

6 Options under stochastic volatility

In this section we consider the case where the mean-reverting square root process 
is used to represent volatility. We study the Heston (1993) model

(33)

(34)

d d d

d

X t X t t X t V t W t

V t

( ) ( ) ( ) ( ) ( )

( )

= −( ) +

=

λ µ σ

λ

1 1 1 1

22 2 2 2µ σ−( ) +V t t V t W t( ) ( ) ( )d d

Here, V(t) is the squared volatility that feeds into the asset price X(t). The 
Brownian motions W1(t) and W2(t) may be correlated. Because of the application 
to asset pricing, we make the assumption that X(0) and V(0) are constant and 
positive. We remark that the results in Theorems 6.1 and 6.2 may be derived in a 
similar manner for the “additive noise” alternative

(35)

(36)

d d d

d

X t X t t V t W t

V t

( ) ( ) ( ) ( )

( )

= −( ) +

= −

λ µ σ

λ µ

1 1 1 1

2 2 VV t t V t W t( ) ( ) ( )( ) +d dσ2 2

which has been proposed for multi-factor interest rates (Kwok, 1998, Section 
7.1.7).

We begin with a lemma showing that the positivity in the initial data is pre-
served for (33)–(34).

LEMMA 6.1

(37)lim ( )
k

k X t k for all t T
→∞

− ≤ ≤ ≤ ≤( ) =P 1 0 1

PROOF For sufficiently large k, define the stopping time

ρk k
t X t k X t= ≥ > <{ }inf : ( ) ( )0 1or
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Also define

U x x x x( ) log ,= − − >1 0for

By the Itô formula, we have

E EU X T U X
X t

Xk( ) ( ( ))
( )

(∧( ) = + −










 −ρ λ µ0 1

1
1 1 tt V t t

U X

T k

) ( )

( ( ))

( )+










≤

∧

∫
σ

ρ

1
2

0
2

0

d

++ + + ∫λ µ
σ

1 1
1
2

0
1

2
( ) ( )T V t t

T
E d

But it is easy to show that

E EV t V t V Vt t( ) ( ) ( ) ( ) ( )= = + − ≤ +− −e eλ λµ µ2 20 1 02 2

Thus

(38)EU X T U X T Vk( ) ( ( )) ( ) ( )∧( )≤ + + + +( )ρ λ µ
σ

µ0 1
2

01 1
1
2

2 TT

Now we note that for any ω{ρk ≤ T}, either X(ρk(ω), ω) = k or X(ρk(ω), ω) = 1⁄k. 
Hence,

U X k k k kk( ( ), ( log ) ( log )ρ ω ω( )≥ − − ∧ − +−1 11

and so, dropping the ω for brevity,

E E

E

U X T U Xk T k

T

k

k

( ) ( ( ))∧( )≥ 





≥

≤{ }

≤{ }

ρ ρρ

ρ

1

1 (( log ) ( log )k k k k− − ∧ − +











−1 11

Thus, using (38),

P ρk T k k k k U X≤( ) − − ∧ − +



 ≤−( log ) ( log ) ( ( )1 1 01 )) ( )

( )

+ +

+ +( )

λ µ

σ
µ

1 1

1
2

2

1

2
0

T

V T

Letting k → ∞ yields

lim
k k T
→∞

≤( ) =P ρ 0

and the assertion (37) follows. 

As a by-product, this lemma confirms that X(t) > 0 a.s. for all t ≤ 0. Using the 
Euler–Maruyama method (4) for the volatility equation (34) gives

(39)v v t t v Wn n n n+ = −( )+ +1 2 2 2 2 21 λ λ µ σ∆ ∆ ∆ ,
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where ∆W2, n = W2(tn + 1) − W2(tn), and using this approximation in the asset equa-
tion (33) gives

(40)x x t t x v Wn n n n n+ = −( )+ +1 1 1 1 1 11 λ λ µ σ∆ ∆ ∆ ,

where ∆W1, n = W1(tn + 1) − W1(tn). We also use the corresponding step functions

(41)x t x v t v t t tn n n n( ) : ( ) : , ,= = ∈ 
 )+and for 1

to define the continuous-time approximations

(42)

(43)

x t x x r r x r v r W r
t

( ) : ( ) ( ) ( ) ( )= + −( ) +∫0 1 1
0

1 1
0

λ µ σd d
tt

t t
v t v v r r v r W r

∫

∫= + −( ) +( ) : ( ) ( ) ( )0 2 2
0

2 2
0

λ µ σd d∫∫
We now prove two lemmas before giving our convergence results for option 
valuation.

LEMMA 6.2

(44)E sup ( ) ( )
0

2 2
9

2 2
20 2

1

2

≤ ≤

− +( )( )≤ + +( )
t T

v t v Tλ µ σ λ
e

TT

PROOF Note that for 0 ≤ t1 ≤ T,

v t v v r r v r W r
t t

( ) ( ) ( ) ( ) ( )1 2 2
0

2 2
0

0
1

= + −( ) +∫ λ µ σd d
11

∫
By the Burkholder–Davis–Gundy inequality (Prato and Zabczyk, 1992, Theorem 
3.14), we derive that for 0 ≤ t ≤ T,

E

E

sup ( )

( ) (

0
1

2 2 2

1

0

≤ ≤









≤ + +

t t
v t

v T v rλ µ λ )) ( )d dr v r r
t t

0
2

0
3

1

2

∫ ∫+






















σ E 


≤ + + + +( )
≤ ≤

v T v t
t r

( ) sup ( )0 2 2
9

2 2
2

2
1

2
0

1
1

λ µ σ λ E





∫0

t
rd

An application of the Gronwall inequality yields the assertion (44). 

LEMMA 6.3 For any given pair of positive numbers i and j, define the stopping 
time

(45)τij t X t i or v t j= ≥ > >{ }inf : ( ) ( )0

Then
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(46)lim sup ( ) ( )
∆ t t T

ij ijX t x t
→ ≤ ≤

∧ − ∧( )






0 0

2
E τ τ 

= 0

PROOF For the sake of simplicity, we write τij = τ . For any 0 ≤ t1 ≤ T, we have

X t x t

X r x r r

X

t

( ) ( )

( ) ( )

(

1 1

1
0

1

1

∧ − ∧

= − −( )

+

∧

∫

τ τ

λ

σ

τ
d

rr V r x r v r W r

X r x r

t
) ( ) ( ) ( ) ( )

( ) ( )

−( )
= − −

∧

∫ d 1
0

1

1 τ

λ (( )

+ −( )
+

∧

∧

∫

∫

d

d

r

X r V r v r W r

t

t

0

1 1
0

1

1

τ

τ
σ

σ

( ) ( ) ( ) ( )

11 1
0

1
v r X r x r W r

t
( ) ( ) ( ) ( )−( )

∧

∫ d
τ

By the Hölder inequality and the Doob martingale inequality, we then derive that 
for any 0 ≤ t ≤ T,

(47)

E sup ( ) ( )
0

1 1
2

1

1

3

≤ ≤
∧ − ∧( )









≤

t T
X t x tτ τ

λ22

0

1
2 2

12

t X r x r r

X r V r v

t
E

E

( ) ( )

( ) ( )

−( )

+ ( ) −

∧

∫
2

d
τ

σ (( )

( ) ( ) ( )

r r

v r X r x r r

t

t

( )
+ −( )

∧

∧

∫
2

2

d

d

0

1
2

0
12

τ

τ
σ E∫∫

∫≤ +( ) −( )

+

∧
3 12

12

1
2

1
2

0

1
2

λ σ

σ

τ
T j X r x r r

t
E ( ) ( )

2
d

ii V r v r r

C X r x r r

t

t

2

0

1
0

E

E

( ) ( )

( ) ( )

−

≤ −( )

∧

∧

∫

∫

d

d
2

τ

τ
++ C t2 ( )∆

where C1 = 3λ1
2T + 12σ1

2j and

C t i T V r v r
t T

2 1
2 2

0
12( ) sup ( ) ( )∆ = −( )≤ ≤

σ E

which tends to zero as ∆t → 0 by Corollary 3.1. Note that
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(48)

E

E

X r x r r

X r x r r

t

t

( ) ( )

( ) ( )

−( )

≤ −( ) +

∧

∧

∫

∫

2

2

d

d

0

0
2

τ

τ
22

0
E x r x r r

t
( ) ( )−( )

∧

∫
2

d
τ

But

(49)

E EX r x r r X r x r r
t t

( ) ( ) ( ) ( )−( ) ≤ ∧ − ∧( )
∧

∫ ∫
2 2

d d
0 0

τ
τ τ

≤≤ ∧ − ∧( )







≤ ≤

E sup ( ) ( )
0

1 1
0

1t r

t
X t x tτ τ 2

∫∫ dr

Moreover, for r ∈ [0, t ∧ τ], let [r ⁄∆t] be the integer part of r ⁄∆t. By definition,

x r x r x r r t

v

r t

r t

( ) ( )− = −( ) −  ( )

+

[ ]

[ ]

λ µ

σ

1 1

1

∆

∆

∆

xx W r W r t tr t∆ ∆ ∆[ ] −  ( )( )1 1( )

which yields

( ( ) ( )) ( ) ( ) [x r x r i ji W r W r t− ≤ + −2
1
2

1
2

1
2 2

1 12 2λ µ σ ∆ ]]∆t( )( )2

Thus

(50)

E

E

x r x r r

i t ji

t
( ) ( )

( )

−( )

≤ + +

∧

∫
2

0

1
2

1
2 2

1
22 2

d
τ

λ µ σ∆ 22
1 1

2

0

1
22

W r W r t t r
t

( )

(

−  ( )( )





≤

∧

∫ ∆ ∆ d
τ

λ µµ σ1
2 2

1
2 2

1 1
2

2+ + −  ( )( )
 i t ji W r W r t t) ( )∆ ∆ ∆E




≤ + +





∫ dr

T i t ji t

t

0

1
2

1
2 2

1
2 22 2λ µ σ( ) :∆ ∆ == C t3( )∆

Substituting (50) and (49) into (48) and then inserting the resulting inequality into 
(47) we obtain

(51)

E sup ( ) ( )
0

1 1
2

1

1

2

≤ ≤
∧ − ∧( )









≤

t t
X t x t

C

τ τ

EE sup ( ) ( )
0

1 1
2

0
1≤ ≤

∧ − ∧( )







∫

t r

t
X t x tτ τ ddr C C t C t+ +2 1 3 2( ) ( )∆ ∆

The Gronwall inequality gives

E sup ( ) ( )
0

1 1
2

1
1

2
≤ ≤

∧ − ∧( )









≤
t T

X t x t Cτ τ CC t C t C T
3 2

2 1( ) ( )∆ ∆+  e

The required assertion (46) follows by letting ∆t → 0. 

Let us now recall the payoff for the European put option:

Λ = −[ ]+E ( ( ))E X T
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where E > 0 is the exercise price. Accordingly, the payoff based on the numerical 
method is

Λ∆ t E x T= −( )





+E ( )

The theorem below shows that the numerical approximation is convergent. We 
remark that the proof makes use of the fact that the payoff is bounded above as 
a function of S(T), and it is not clear to us how the proof could be extended to 
cope with unbounded payoff functions. However, if the appropriately discounted 
expectations are regarded as option values, then the corresponding call option, 
whose payoff is unbounded, could be valued from the put via put–call parity (see, 
for example, Hull, 2000, Section 7.4). We also remark that (Glasserman, 2004, 
Example 6.2.2) performs a closely related Monte Carlo simulation on the same 
model (33)–(34). Our result contributes toward filling the gap in the literature 
that Glasserman identified: namely, that the textbook convergence theory does not 
apply because “the square-root functions in the model dynamics and the kink in 
the call option payoff violate the smoothness conditions”. A similar observation is 
made in Broadie and Kaya (2003).

THEOREM 6.1 In the notation above,

(52)lim
∆ ∆Λ Λ

t t→
− =

0
0

Proof For i, j > 0, set

A X t i t T B v t j t Ti j= ≤ ≤ ≤{ } = ≤ ≤ ≤{ }( ) , ( ) ,0 0and

Given any ε > 0, by Lemmas 6.1 and 6.2 we can find i, j sufficiently large for

P A B
Ei j

c c∪( )≤
ε

4

Compute

(53)

Λ Λ∆− ≤ −( ) − −( )

= −( ) − −

+ +

+

t E X T E x T

E X T E x T

E

E

( ) ( )

( ) ( ))

( ) ( )

( )( )
+ −( ) − −( )

+
∩

+ +
∪

1

1

A B

A B

i j

i j
E X T E x TE c c






≤ −( )+ ∪( )

≤

∩E P

E

X T x T E A BA B i ji j
( ) ( ) 1 2 c c

XX T x T

X T x T

ij T

ij ij

( ) ( )

( ) ( )

( )−( )+

≤ ∧ − ∧ +

>1 τ
ε

τ τ

2

E XX T x T
ij T( ) ( ) ( )−( )>1 τ
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where τij is the stopping time defined in Lemma 6.3. But

E

E

x T x T

i T T t

ij T( ) ( )

( )

( )−( )
≤ + −  ( )+

>1 τ

λ µ σ1 1 ∆ 11 1 1

1 1

j i W T W T t t

i

ij T( )

(

( )−  ( )( )( )
≤ +

>∆ ∆ 1 τ

λ µ ))∆ ∆t j i t+ σ1

This, together with Lemma 6.3, shows that there is a ∆t* > 0 such that for all 
∆t < ∆t*,

E EX T x T x T x Tij ij Tij
( ) ( ) ( ) ( ) ( )∧ − ∧ + −( )<>τ τ

ε
τ1

2

In view of (53), this completes the proof. 

As we remarked in Section 1, Broadie and Kaya (2003) have shown how to simu-
late exactly in the Heston model, and their computations demonstrate that this 
approach is more effcient than Euler discretization for valuing a European put. 
Generally, for payoffs depending only on X(T), where a single exact step from 
t = 0 to t = T is competing against a large number of Euler steps from tn to tn + 1, 
the exact version will be superior. However, for a fully path-dependent option the 
situation reverses, because both approaches require the solution to be evolved over 
small subintervals [tn, tn + 1] and Table 1 of Broadie and Kaya (2003) indicates that 
the cost of an Euler step is significantly less than the cost of evolving the exact 
solution. Our final result uses Theorem 6.1 to show that the Euler approach is con-
vergent in such a case: namely for an up-and-out barrier option. Note that using 
the step function x̄(t) in (55) is equivalent to using the discrete solution.

THEOREM 6.2 For the Heston model (33)–(34) and the numerical method (41), 
define

(54)

(55)

U X T E

U

X t B t T

t

: ( )

:

( ) ,= −( )





=

+
≤ ≤ ≤ ≤{ }E 1 0 0

∆ EE x T E x t B t T( ) ( ) ,−( )





+
≤ ≤ ≤ ≤{ }1 0 0

where the exercise price, E, and barrier, B, are constant. Then

lim
∆ ∆t tU U

→
− =

0
0

PROOF Let A := {0 ≤ X(t) ≤ B, 0 ≤ t ≤ T } and Ā∆t := {0 ≤ x̄(t) ≤ B, 0 ≤ t ≤ T}. In 
the same way as in the proof of Theorem 5.1, we can show that

(56)

U U X T x T B E A A

B

t A A tt
− ≤ −( ) + − ∩( )

+ −

∩∆ ∆∆
E P( ) ( ) ( )

(

1 c

EE A A t)P c ∩( )∆

Now, for i, j > B, set
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A X t i t T B v t j t Ti j: ( ) , : ( ) ,= ≤ ≤ ≤{ } = ≤ ≤ ≤{ }0 0and

Let ε > 0 be arbitrary. By Lemmas 6.1 and 6.2, we can find a pair of i and j suf-
ficiently large for

(57)P A B
Bi j

c c∪( )≤
∨

ε
2 1( )

Compute

E EX T x T X T x TA A A A A Bt t i j
( ) ( ) ( ) ( )−( ) = −( )∩ ∩ ∩ ∩1 1

∆ ∆

++ −( )
≤ −

∩ ∩ ∪( )E

E

X T x T

X T x T

A A A B

A

t i j
( ) ( )

( ) ( )

1

1

∆
c c

ii j

ij

B i j

T

B A B

X T x T

∩

>{ }

( ) + ∪( )

≤ −( ) +

P

E

c c

( ) ( ) 1 τ
ε
2

where the stopping time τij is defined in (45). Recalling the proof of Theorem 6.1, 
we observe that there is a ∆t* = ∆t*(ε) > 0 such that for any ∆t < ∆t*,

E X T x T
ij T( ) ( )−( ) <>{ }1 τ

ε
2

whence

E X T x T A A t
( ) ( )−( ) <∩1

∆
ε

In other words, we have shown that

(58)lim ( ) ( )
∆ ∆t A AX T x T

t→ ∩−( ) =
0

0E 1

Next we will show that P(A ∩ Āc
∆t) → 0 as ∆t → 0. Using (57), we note that

(59)P PA A A A A Bt t i j∩( )≤ ∩ ∩ ∩( ) +∆ ∆
c c

ε
2

On the other hand, for any sufficiently small δ, we have

A X t B

X t B B

t T

t T

= ≤{ }
= ≤ −{ }∪ − <

≤ ≤

≤ ≤

sup ( )

sup ( ) s

0

0
δ δ uup ( )

sup ( )

0

0

≤ ≤

≤ ≤

≤{ }
⊆ ≤ −{ }∪ −

t T

k t T

X t B

X k t B B
∆

∆ δ δ << ≤{ }
= ∪

≤ ≤
sup ( )

:

0

1 2

t T
X t B

A A
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Hence,

A A A B A A A B At i j t i j

k

∩ ∩ ∩ ⊆ ∩ ∩ ∩



 ∪

⊆
≤

∆ ∆

∆

c c
1 2

0
sup

tt T
ijX k t x k t T A

≤
− ≥{ }∩ >{ }










∪

⊆

( ) ( )

su

∆ ∆ δ τ 2

pp ( ) ( )
0

2
≤ ≤

∧ − ∧ ≥{ }∪
t T

ij ijX t x t Aτ τ δ

So,

P PA A A B X t x tt i j
t T

ij ij∩ ∩ ∩( ) ≤ ∧ − ∧ ≥
≤ ≤

∆
c sup ( ) ( )

0
τ τ δδ

δ
τ








+ ( )

≤ ∧ −
≤ ≤

P

E

A

X t x t
t T

ij

2

2 0

1
sup ( ) ( ∧∧










+ ( )τij A)

2

2P

Now, for any ε > 0, we may choose δ so small that

P A2 4
( ) <

ε

and then, by Lemma 6.3, choose ∆t so small that

1
2 0

2

δ
τ τE sup ( ) ( )

≤ ≤
∧ − ∧










<

t T
ij ijX t x t

εε
4

whence

P A A A Bt i j∩ ∩ ∩( )<∆
c

ε
2

Substituting this into (59) we obtain

P A A t∩( )<∆
c ε

for sufficiently small ∆t. This shows that

(60)lim
∆ ∆t tA A

→
∩( ) =

0
0P c

An argument similar to that used in the proof of Theorem 5.1 shows that

(61)lim
∆ ∆t tA A

→
∩( ) =

0
0P c

Substituting (58), (60) and (61) into (56) gives the required result. 
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