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Summary We present and analyse two implicit methods for Ito
stochastic differential equations (SDEs) with Poisson-driven jumps.
The first method, SSBE, is a split-step extension of the backward
Euler method. The second method, CSSBE, arises from the intro-
duction of a compensated, martingale, form of the Poisson process.
We show that both methods are amenable to rigorous analysis when
a one-sided Lipschitz condition, rather than a more restrictive global
Lipschitz condition, holds for the drift. Our analysis covers strong
convergence and nonlinear stability. We prove that both methods give
strong convergence when the drift coefficient is one-sided Lipschitz
and the diffusion and jump coefficients are globally Lipschitz. On the
way to proving these results, we show that a compensated form of
the Euler–Maruyama method converges strongly when the SDE coef-
ficients satisfy a local Lipschitz condition and the pth moment of the
exact and numerical solution are bounded for some p > 2. Under our
assumptions, both SSBE and CSSBE give well-defined, unique solu-
tions for sufficiently small stepsizes, and SSBE has the advantage that
the restriction is independent of the jump intensity. We also study
the ability of the methods to reproduce exponential mean-square sta-
bility in the case where the drift has a negative one-sided Lipschitz
constant. This work extends the deterministic nonlinear stability the-
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ory in numerical analysis. We find that SSBE preserves stability under
a stepsize constraint that is independent of the initial data. CSSBE
satisfies an even stronger condition, and gives a generalization of B-
stability. Finally, we specialize to a linear test problem and show
that CSSBE has a natural extension of deterministic A-stability. The
difference in stability properties of the SSBE and CSSBE methods
emphasizes that the addition of a jump term has a significant effect
that cannot be deduced directly from the non-jump literature.

Key words A-stability, B-stability, backward Euler, compensated
Poisson process, Euler–Maruyama, exponential stability, global Lip-
schitz, implicit method, jump-diffusion, mean-square stability, non-
linear stability, one-sided Lipschitz, Poisson process, strong conver-
gence.
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1 Introduction

We consider jump-diffusion Ito stochastic differential equations (SDEs)
of the form

dX(t) = f(X(t−)) dt + g(X(t−)) dW (t) + h(X(t−)) dN(t), (1)

for t > 0, with X(0−) = X0, where X(t−) denotes lims→t− X(s).
Here, f : R

n → R
n, g : R

n → R
n×m, h : R

n → R
n, W (t) is an m-

dimensional Brownian motion and N(t) is a scalar Poisson process
with intensity λ. Such problems arise in a range of scientific, engineer-
ing and financial applications. [3,7,19]. Some illustrative numerical
simulations can be found in [4]. We consider the case where

f, g, h ∈ C1, (2)

the drift coefficient f satisfies a one-sided Lipschitz condition

〈x − y, f(x) − f(y)〉 ≤ µ|x − y|2, for all x, y ∈ R
n, (3)

and the diffusion and jump coefficients satisfy global Lipschitz con-
ditions

|g(x) − g(y)|2 ≤ Lg|x − y|2, for all x, y ∈ R
n, (4)

|h(x) − h(y)|2 ≤ Lh|x − y|2, for all x, y ∈ R
n. (5)
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Here, and throughout, 〈·, ·〉 denotes the scalar product and |·| denotes
both the Euclidean vector norm and the Frobenius matrix norm. We
note for later use that linear growth bounds follow straightforwardly:

|〈f(x), x〉| ≤ 1

2
|f(0)|2 + (µ + 1

2
)|x|2, (6)

|g(x)|2 ≤ 2|g(0)|2 + 2Lg|x|2, (7)

|h(x)|2 ≤ 2|h(0)|2 + 2Lh|x|2. (8)

We also assume finite moment bounds for the initial data; that is, for
any p > 0 there is a finite Mp such that

E|X0|p < Mp. (9)

For a given, constant, stepsize ∆t > 0, we define the split-step
backward Euler (SSBE) method for (1) by Y0 = X(0−) and

Y ?
n = Yn + f(Y ?

n )∆t, (10)

Yn+1 = Y ?
n + g(Y ?

n )∆Wn + h(Y ?
n )∆Nn. (11)

Here, Yn is the approximation to X(tn) for tn = n∆t, with ∆Wn :=
W (tn+1) − W (tn) and ∆Nn := N(tn+1) − N(tn) representing the
increments of the Brownian motion and the Poisson process, respec-
tively.

A key component in our analysis is the compensated Poisson pro-
cess

Ñ(t) := N(t) − λt, (12)

which is a martingale. Defining

fλ(x) := f(x) + λh(x) (13)

we may rewrite the jump-diffusion Ito SDE (1) in the form

dX(t) = fλ(X(t−)) dt + g(X(t−)) dW (t) + h(X(t−)) dÑ (t). (14)

We note that fλ also satisfies a one sided Lipschitz condition with
larger constant; that is,

〈x − y, fλ(x) − fλ(y)〉 ≤
(
µ + λ

√
Lh

)
|x − y|2, for all x, y ∈ R

n.

(15)
The compensated Poisson process motivates an alternative to the

SSBE method in (10)–11). We define the compensated split-step back-
ward Euler (CSSBE) method for (1) by Y0 = X(0−) and

Y ?
n = Yn + fλ(Y ?

n )∆t, (16)

Yn+1 = Y ?
n + g(Y ?

n )∆Wn + h(Y ?
n )∆Ñn, (17)



4 Desmond J. Higham, Peter E. Kloeden

where ∆Ñn := Ñ(tn+1) − Ñ(tn).
Both SSBE and CSSBE are implicit methods, and hence the ques-

tion of existence and uniqueness arises. Under our one-sided Lipschitz
condition (3), the equation (10) for SSBE has a unique solution, with
probability one, for all

∆tµ < 1, (18)

whereas with the one-sided Lipschitz condition (15), the equation
(16) for CSSBE has a unique solution, with probability one, for all

∆t(µ + λ
√

Lh) < 1, (19)

see, for example, [8, Theorem 14.2].
Our aims in this work are to analyse the strong convergence and

stability of the SSBE and CSSBE methods under the one-sided Lip-
schtiz condition for the drift. We remark that the need for pathwise
solutions to asset models in mathematical finance provides motiva-
tion for a strong (as opposed to weak) convergence theory, [2]. In
section 2 we give some preliminary analysis for the SDE (1). We
show that our assumptions are sufficient to guarantee existence of a
unique solution and we develop moment bounds. Section 3 establishes
a convergence result, Theorem 1, that is needed in the later analy-
sis. That theorem applies to a compensated version of the explicit
Euler–Maruyama method, and proves strong convergence in the case
where the SDE coefficients are locally Lipschitz. Section 4 gives our
finite-time, strong convergence results, Theorems 2 and 3, for SSBE
and CSSBE. In the case where the one-sided Lipschitz constant is
negative, it is possible for the SDE solution to be mean-square sta-
ble, and section 5 deals with the corresponding long-time stability of
the numerical methods. We derive a sufficient condition, Theorem 4,
for the SDE to have trajectories that are exponentially contractive in
mean-square. We then show in Theorem 5 that under this condition
SSBE inherits the contractivity property independently of initial data
for all stepsizes up to a limit that scales inverse linearly with Lhλ2.
For CSSBE, we find even better behavior. Theorem 6 shows that the
method preserves stability for all stepsizes under the condition for
the SDE in Theorem 4. Section 6 focusses on the special case of a
linear test equation. Here, we are able to derive a very strong stability
result for CSSBE; namely a complete generalization of A-stability.

In summary, both methods offer strong convergence, CSSBE has
superior nonlinear stability properties and SSBE has a less restrictive
existence condition.

A key aspect of this work is the reliance on a one-sided Lipschitz
assumption (3). This makes the results relevant to range of nonlinear
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drift terms, [5,8,20]. Previous convergence theory for jump-diffusion
systems has been based on the more restrictive assumption that the
drift satisfies a global Lipschitz property, [9,13,14]. The one-sided
Lipschitz condition has proved to be an extremely useful abstraction
in deterministic numerical dynamics, and has led to a large body
of important results; see, for example, [5,8,20]. The work in [10,12,
16,18] has looked at numerical methods for non-jump SDEs under a
one-sided Lipschitz assumption on the drift, and our work is a natural
extension to the jump case. We remark that the one-sided Lipschitz
condition is closely related to the existence of a quadratic Lyapunov
function; a Lyapunov function approach to dealing with non-globally
Lipschitz non-jump SDEs is taken in [17]. Lyapunov functions are
also used in [1] for non-jump SDEs with delay. We found it pleasing
that clean and easily interpretable nonlinear stability results can be
proved for SSBE and CSSBE, and we found it surprising that incor-
porating the compensated process into a numerical method can make
a significant improvement to nonlinear stability.

The SSBE method (10)–(11) is a straightforward generalization
of the non-jump split-step backward Euler method studied in [10,
16]. It was found in [10,16] that the structure of the method fits in
well with the one-sided Lipschitz condition and allows positive results
to be derived. We find here that the same is true in the jump case.
The idea of developing the CSSBE method (16)–(17) based on the
compensated process appears to be new and leads to clear advantages
in terms of nonlinear stability.

2 Existence, Uniqueness and Moment Estimates

By extending the non-jump proof of [15, Theorem 2.3.1], it can be
shown that a unique solution exists for (1) under our assumptions.
The essential change to that proof is the inclusion of the jump term;
this can be estimated with the martingale isometry for the compen-
sated Poisson process:

E

(∫ t

0
F (s−) dÑ(s)

)2

= λ

∫ t

0
E |F (s)|2 ds, (20)

which holds for appropriate integrand functions F (in particular,
nonanticipative, if random). Thereafter such terms are handled in
the same way as the Ito integral terms. This leads to a solution on
any bounded time interval [0, T ] with E|X(t)|2 ≤ C

(
1 + E|X0|2

)
, for

some constant C = C(T ).
For later use, we need the following more general moment bound.
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Lemma 1 Under the assumptions (2), (3), (4), (5) and (9), for each
p > 2 there is a constant C = C(p, T ) such that

E sup
0≤t≤T

|X(t)|p ≤ C (1 + E|X0|p) .

Proof A proof is given in the Appendix. ut
Sections 3 and 4 deal with finite-time convergence. Some of the

proofs are extensions of proofs in [10] to the jump case. We have
attempted to make this material self-contained, while focussing on
the new issues arising from the Poisson process. We refer to [10] for
a fuller description of the some of the technical details.

3 The Euler Method for Locally Lipschitz Coefficients

In this section we prove a convergence result that will be needed
later. Considering the SDE in compensated form, (14), motivates the
explicit method

Yn+1 = Yn + fλ(Yn)∆t + g(Yn)∆Wn + h(Yn)∆Ñn, (21)

which we will refer to as the compensated Euler–Maruyama (CEM)
method. We denote the piecewise constant interpolant of the CEM
solution by Y (t); so Y (t) = Yn for t ∈ [tn, tn+1). We then define the
“piecewise linear” interpolant by

Y (t) = X0+

∫ t

0
fλ(Y (s−)) ds+

∫ t

0
g(Y (s−)) dW (s)+

∫ t

0
h(Y (s−)) dÑ (s).

In this section, we suppose that f , g and h satisfy local Lipschitz
conditions, that is, for a = f, g, h, given any R > 0 there exists a
constant LR such that

|a(x) − a(y)|2 ≤ LR|x − y|2, for all |x|, |y| ≤ R. (22)

We note that the function fλ in (13) automatically inherits this con-
dition, with a larger LR.

The following result generalises [10, Theorem 2.2] to the case of
jumps.

Theorem 1 Suppose that f , g, h satisfy the local Lipschitz condi-
tion (22), and that for some p > 2 there is a constant A such that
E sup0≤t≤T |X(t)|p ≤ A and E sup0≤t≤T |Y (t)|p ≤ A, Then

lim
∆t→0

E sup
0≤t≤T

|Y (t) − X(t)|2 = 0.
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Proof The beginning and end of this proof follow that in [10, Theo-
rem 2.2]. We write θR = τR∧ρR, where τR = inf{t ≥ 0 :

∣∣Y (t)
∣∣ ≥ R}

and ρR = inf{t ≥ 0 : |X(t)| ≥ R}, and we let E(t) = Y (t) − X(t).
Using P (τR ≤ T or ρR ≤ T ) ≤ 2A/Rp and E sup0≤t≤T |E(t)|p ≤ 2pA,
we have, for any δ > 0,

E sup
0≤t≤T

|E(t)|2

= E sup
0≤t≤T

|E(t)|21{τR>T, ρR>T} + E sup
0≤t≤T

|E(t)|21{τR≤T, ρR≤T}

≤ E sup
0≤t≤T

|E(t) ∧ θR|21{θR>T} +
2δ

p
E sup

0≤t≤T
|E(t)|p

+
1 − 2/p

δ2/(p−2)
P (τR ≤ T or ρR ≤ T )

≤ E sup
0≤t≤T

∣∣Y (t ∧ θR) − X(t ∧ θR)
∣∣2 +

2p+1δA

p
+

2(p − 2)A

pδ2/(p−2)Rp
.(23)

Now

∣∣Y (t ∧ θR) − X(t ∧ θR)
∣∣2 =

∣∣∣
∫ t∧θR

0
fλ(Y (s−)) − fλ(X(s−)) ds

+

∫ t∧θR

0
g(Y (s)) − g(X(s)) dW (s)

+

∫ t∧θR

0
h(Y (s−)) − h(X(s−)) dÑ (s)

∣∣∣
2

≤ 4

[
T

∫ t∧θR

0
|fλ(Y (s)) − fλ(X(s))|2 ds

+

∣∣∣∣
∫ t∧θR

0
g(Y (s)) − g(X(s)) dW (s)

∣∣∣∣
2

+

∣∣∣∣
∫ t∧θR

0
h(Y (s−)) − h(X(s−)) dÑ (s)

∣∣∣∣
2
]

.
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From the local Lipschitz property and the Doob martingale inequality
applied to the two martingale integrals we obtain

E sup
0≤t≤τ

∣∣Y (t ∧ θR) − X(t ∧ θR)
∣∣2 (24)

≤ 4LR(T + 8)E

∫ τ∧θR

0
|Y (s) − X(s)|2 ds

≤ 8LR(T + 8)

[
E

∫ τ∧θR

0

∣∣Y (s) − Y (s)
∣∣2 ds

+

∫ τ

0
E sup

0≤r≤s

∣∣Y (r ∧ θR) − X(r ∧ θR)
∣∣2 ds

]
. (25)

To bound the first term inside the parentheses we denote by ns the
integer for which s ∈ [tns , tns+1

) and note that

Y (s) − Y (s) = −fλ(Yns)(s − tns) − g(Yns) (W (s) − W (tns))

− h(Yns) (Ñ (s) − Ñ(tns))

and hence that

∣∣Y (s) − Y (s)
∣∣2 ≤ 4

[
|fλ(Yns)∆t|2 + |g(Yns)∆Wns |2 +

∣∣∣h(Yns)∆Ñns)
∣∣∣
2
]

.

The local linear growth bounds, the second moments of the martin-
gale increments and the pth moment bound on the numerical solution
yield

E

∫ τ∧θR

0

∣∣Y (s) − Y (s)
∣∣2 ds ≤ C1∆t,

for a constant C1 = C1(R, T,A). Using this bound in (25) and apply-
ing the continuous Gronwall inequality gives

E sup
0≤t≤T

∣∣Y (t ∧ θR) − X(t ∧ θR)
∣∣2 ≤ C2∆te8LR(T+8)T , (26)

for a constant C2 = C2(R, T,A). Now, given any ε > 0, we may
first choose δ so that 2p+1δA/p < ε/3. Then we may choose R
so that (2(p − 2)A)/(pδ2/(p−2)Rp) < ε/3, and finally choose ∆t to
ensure that C2∆te8LR(T+8)T < ε/3, whence, from (23) and (26),
E sup0≤t≤T |E(t)|2 < ε as required. ut
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4 Strong Convergence of the Backward Euler Methods

It was shown in [10] that the SSBE method for an Ito SDE without
jumps is equivalent to the explicit Euler–Maruyama method applied
to a modified SDE. We now show that this extends to the jump case.
As in [10, Lemma 3.4] we define F∆t : R

n → R
n by F∆t(x) = y, where

y satisfies y = x + f(x)∆t. Following (18) and (19), we know that
such a y exists uniquely for all ∆t ∈ (0,∆t?), where we may take
∆t? = 1/|µ| for SSBE and ∆t? = 1/|µ + λ

√
Lh| for CSSBE. We then

define

f∆t(x) = f(F∆t(x)), g∆t(x) = g(F∆t(x)), h∆t(x) = h(F∆t(x)).

Under the assumptions (3) on f , it follows that f∆t satisfies an anal-
ogous one-sided Lipschitz condition uniformly in ∆t ∈ (0,∆t?). Simi-
larly, under (4), (5), there are global Lipschitz conditions for g∆t and
h∆t uniformly in ∆t ∈ (0,∆t?).

It follows by construction that SSBE in (10)–(11) is is equivalent
to the explicit Euler–Maruyama method

Yn+1 = Yn + f∆t(Yn)∆t + g∆t(Yn)∆Wn + h∆t(Yn)∆Nn

applied to the SDE

dX∆t(t) = f∆t(X∆t(t
−))dt+g∆t(X∆t(t

−))dW (t)+h∆t(X∆t(t
−))dN(t),

(27)
with X∆t(0

−) = X0. Lemma 1 applies to this SDE to give the follow-
ing result.

Corollary 1 Under the assumptions (2), (3), (4), (5) and (9), for
each p > 2 there is a constant C = C(p, T ) such that, for the SDE
(27),

E sup
0≤t≤T

|X∆t(t)|p ≤ C (1 + E|X0|p) ,

for all ∆t ∈ (0,∆t?).

In addition we have the following estimate comparing solutions of
(1) and (27).

Lemma 2 Under the assumptions (2), (3), (4), (5) and (9), the so-
lutions X(t) in (1) and X∆t(t) in (27) satisfy

lim
∆t→0

E sup
0≤t≤T

|X∆t(t) − X(t)|2 = 0.
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Proof Let θR = inf{t ≥ 0 : |X(t)| ≥ R}∧inf{t ≥ 0 : |X∆t(t)| ≥ R}.
We start with the identity

X(t ∧ θR) − X∆t(t ∧ θR) =

∫ t∧θR

0
f(X(s−)) − f∆t(X∆t(s

−)) ds

+

∫ t∧θR

0
g(X(s−)) − g∆t(X∆t(s

−)) dW (s)

+

∫ t∧θR

0
h(X(s−)) − h∆t(X∆t(s

−)) dN(s).(28)

Now we note that given R > 0 we can find a function KR :
(0,∞) 7→ (0,∞) for which KR(∆t) → 0 as ∆t → 0 and a con-
stant HR for which |h(u) − h(v)|2 ≤ HR|u − v|2 whenever |u| ≤ R
and |v| ≤ R. We may split the jump integral in (28) into two parts,
corresponding respectively to the martingale compensated Poisson
process Ñ(t) in (12) and the deterministic integrator λt. Splitting
h(X(s))−h∆t(X∆t(s)) into (h(X(s))−h(X∆t(s

−)))+(h(X∆t(s
−))−

h∆t(X∆t(s))), using the growth bounds on h and h∆t, and applying
the Doob inequality on the martingale part for τ ∈ [0, T ], we obtain

E sup
0≤t≤τ

∣∣∣∣
∫ τ∧θR

0

[(
h(X(s−)) − h∆t(X∆t(s

−))
)]

dÑ(s)

∣∣∣∣
2

≤ K

(∫ τ

0
E sup

0≤τ≤s
|X(t ∧ θR) − X∆t(t ∧ θR)|2 ds + KR(∆t)

)
,

where, here, and throughout this proof, K is a constant (depending
upon T ) that may change at each occurrence. Similarly, we may use
the Cauchy-Schwarz inequality in the deterministic part to obtain

E sup
0≤t≤τ

∣∣∣∣
∫ t∧θR

0
[(h(X(s)) − h∆t(X∆t(s)))] λds

∣∣∣∣
2

≤ K

(∫ τ

0
E sup

0≤t≤s
|X(t ∧ θR) − X∆t(t ∧ θR)|2 ds + KR(∆t)

)
.

The other integrals on the right-hand side of (28) can be dealt
with in a similar way—see the proof of [10, Lemma 3.6] for details—
leading to the bound

E sup
0≤t≤τ

|X∆t(t) − X(t)|2

≤ K

(
KR(∆t) +

∫ τ

0
E sup

0≤t≤s
|X(t ∧ θR) − X∆t(t ∧ θR)|2 ds

)
.
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An application of the continuous Gronwall inequality leads to a bound
on E sup0≤t≤T |X∆t(t)−X(t)|2, and using an analogous inequality to
(23) we may may complete the proof. ut

Similarly, we may extend [10, Lemma 3.7] to show that the mo-
ments of the SSBE method are bounded on any finite time interval.

Lemma 3 Under the assumptions (2), (3), (4), (5) and (9), for each
p ≥ 2 there exists a constant C = C(p, T ) and a ∆t? > 0 such that
for SSBE in (10)–(11),

E sup
0≤n∆t≤T

|Yn|2p ≤ C, ∀∆t < ∆t?.

Proof The result may be proved using a similar approach to that in
[10, Lemma 3.7] with the additional jump increment ∆Nn being split

into ∆Ñn + λ∆t. ut
We now define a continuous time extension Y ∆t(t) of the SSBE

method using the fact that it is equivalent to the explicit Euler
method applied to the modified SDE (27). Specifically, for s ∈ [0,∆t)
we define

Y ∆t(tn + s) = Yn + sf∆t(Yn) + g∆t(Yn)∆Wn(s) + h∆t(Yn)∆Nn(s),
(29)

where ∆Wn(s) = W (tn+s)−W (tn) and ∆Nn(s) = N(tn+s)−N(tn).
The next lemma extends [10, Corollary 3.8] to the jump case.

Lemma 4 Under the assumptions (2), (3), (4), (5) and (9), for each
p ≥ 2 there exists a constant C = C(p, T ) and a ∆t? > 0 such that

E sup
0≤t≤T

∣∣Y ∆t(t)
∣∣2p ≤ C, ∀∆t < ∆t?.

Proof For θ = s/∆t we have

Y ∆t(tn + s) = θY ?
n + (1 − θ)Yn + g∆t(Yn)∆Wn(s) + h∆t(Yn)∆Nn(s),

(30)
with s ∈ [0,∆t). Now, using (6) in (10), we have

|Y ?
n |2 = 〈Yn, Y ?

n 〉 + ∆t〈f(Y ?
n ), Y ?

n 〉
≤ 1

2
|Yn|2 + 1

2
|Y ?

n |2 + ∆t
(
α + β|Y ?

n |2
)
,

and so

|Y ?
n |2 ≤ |Yn|2 + 2α∆t

1 − 2β∆t
. (31)
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It follows from (30) and (31) that for some constant C that may
change from line to line,

sup
0≤t≤T

∣∣Y ∆t(t)
∣∣2p

(32)

≤ sup
0≤n∆t≤T

sup
0≤s≤∆t

∣∣Y ∆t(tn + s)
∣∣2p

≤ sup
0≤n∆t≤T

sup
0≤s≤∆t

C
[
1 + |Yn|2p + |g∆t(Yn)∆Wn(s)|2p + |h∆t(Yn)∆Nn(s)|2p

]

≤ C
[
1 + sup

0≤n∆t≤T
|Yn|2p + sup

0≤s≤∆t

N∑

j=0

|g∆t(Yj)∆Wj(s)|2p

+ sup
0≤s≤∆t

N∑

j=0

∣∣∣h∆t(Yj)∆Ñj(s)
∣∣∣
2p

+ sup
0≤s≤∆t

N∑

j=0

|h∆t(Yj)sλ|2p
]
, (33)

where N is the largest integer with N∆t ≤ T . We then take expec-
tations and apply the Doob martingale inequality and linear growth
bounds to the martingale terms to obtain

E sup
0≤s≤∆t

∣∣∣h∆t(Yj)∆tÑj(s)
∣∣∣
2p

≤ CE

∣∣∣h∆t(Yj)∆Ñj(∆t)
∣∣∣
2p

≤ CE |h∆t(Yj)|2p
E

∣∣∣∆Ñj(∆t)
∣∣∣
2p

≤ C
(
1 + E |Yj)|2p

)
∆tp ≤ C∆t,

and similarly for the Gaussian increment terms. In addition

E sup
0≤s≤∆t

|h∆t(Yj)sλ|2p ≤ E |h∆t(Yj)|2p λ2p∆t2p ≤ C
(
1 + E |Yj)|2p

)
∆t2p

≤ C∆t.

Using Lemma 3 in (33), taking expectations and then summing, we
obtain the desired result. ut

We can now prove a strong convergence result for SSBE.

Theorem 2 Under the assumptions (2), (3), (4), (5) and (9), the
continuous time extension Y ∆t(t) in (29) of the SSBE method (10)–
(11) satisfies

lim
∆t→0

E sup
0≤t≤T

|Y ∆t(t) − X(t)|2 = 0.

Proof Corollary 1 and Lemma 4 allow us to invoke Theorem 1 in
order to control the difference lim∆t→0 E sup0≤t≤T |Y ∆t(t)−X∆t(t)|2.
Lemma 2 and the triangle inequality complete the proof. ut

The same strong convergence result holds for CSSBE.
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Theorem 3 Under the assumptions (2), (3), (4), (5) and (9), the
CSSBE method (16)–(17) has a continuous time extension Y ∆t(t)
such that

lim
∆t→0

E sup
0≤t≤T

|Y ∆t(t) − X(t)|2 = 0.

Proof The continuous time extension for CSSBE may be defined in
the same way as for SSBE in (29). A convergence proof goes through
in an analogous way. ut

We remark that Theorems 2 and 3 establish strong convergence
under quite general assumptions, but do not give practical rates of
convergence. In [10, Sections 4 and 5] optimal strong convergence
rates were obtained by imposing the further assumption of polyno-
mial growth for the drift coefficient. This is a promising approach for
the jump-SDE case, but we do not pursue it here due to lack of space.

5 Mean-Square Stability

In the case where we have a negative one-sided Lipschtiz constant µ
in (3), it is possible for the SDE to exhibit mean-square contractivity.
This phenomenon has been well studied in the deterministic and non-
jump cases, both for the continuous problem and its discretizations,
[5,8,11,16]. Here we consider the effect of jumps. We begin by giving
a sufficient condition for mean-square contractivity of SDE solutions.

Theorem 4 Under the conditions (3), (4) and (5), any two solutions
X(t) and Y (t) of the SDE (1) with E|X0|2 < ∞ and E|Y0|2 < ∞
satisfy

E|X(t) − Y (t)|2 ≤ E|X0 − Y0|2eαt,

where

α := 2µ + Lg + λ
√

Lh

(√
Lh + 2

)
. (34)

Hence, α < 0 is a sufficient condition for exponential mean-square
contraction of trajectories.

Proof The two solutions satisfy the larger system

(
dX(t)
dY (t)

)
=

(
f (X(t−))
f (Y (t−))

)
dt +

(
g (X(t−))
g (Y (t−))

)
dW (t)

+

(
h (X(t−))
h (Y (t−))

)
dN(t).
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Applying Ito’s Lemma [6] to Z(t) = |X(t−) − Y (t−)|2, we have

dZ(t) =
[
2〈X(t−) − Y (t−), f

(
X(t−)

)
− f

(
Y (t−)

)
〉

+ |g
(
X(t−)

)
− g

(
Y (t−)

)
|2

+ 2λ〈X(t−) − Y (t−), h
(
X(t−)

)
− h

(
Y (t−)

)
〉

+ λ|h
(
X(t−)

)
− h

(
Y (t−)

)
|2

]
dt + M(t),

where M(t) is a martingale. It follows that

d|X(t) − Y (t)|2
≤

[
2µ|X(t−) − Y (t−)|2 + Lg|X(t−) − Y (t−)|2

+λ
(
2
√

Lh|X(t−) − Y (t−)|2 + Lh|X(t−) − Y (t−)|2
)]

dt + M(t),

so that E|X(t) − Y (t)|2 ≤ E|X0 − Y0|2e(2µ+Lg+
√

Lhλ(2+
√

Lh))t. ut
For brevity, we will use the phrase “mean-square stability” in

place of “exponential mean-square contraction of trajectories”, and
we note that under the additional assumption f(0) = g(0) = h(0) = 0
this property implies mean-square stability of the zero solution. The
following corollary shows that when the sufficient condition α < 0
for mean-square stability of the SDE holds, the SSBE and CSSBE
method have unique solutions for all ∆t.

Corollary 2 If µ < 0 then the SSBE method (10)–(11) produces
a well-defined, unique solution. If µ + λ

√
Lh < 0 then the CSSBE

method (16)–(17) produces a well-defined, unique solution. In partic-
ular, if α < 0 in (34) then both SSBE and CSSBE produce a well-
defined, unique solution.

Proof The results follow directly from (18) and (19). ut
Next, we give sufficient conditions for mean-square stability of

SSBE and CSSBE.

Theorem 5 Under the conditions (3), (4) and (5), if α < 0 in (34)
then for

∆t < − α

Lhλ2
(35)

any two solutions from the SSBE method with E|X0|2 < ∞ and
E|Y0|2 < ∞ satisfy

E|Xk − Yk|2 ≤ E|X0 − Y0|2eβ(∆t)k∆t,

where

β(∆t) :=
1

∆t
log

(
1 + Lg∆t + Lhλ∆t(1 + λ∆t) + 2

√
Lhλ∆t

1 − 2∆tµ

)
< 0.

(36)
Further, β(∆t) = α + O(∆t), as ∆t → 0.
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Proof Consider two numerical solutions Xn and Yn from SSBE with
different starting values. From [11, Lemma 4.3] we have

(1 − 2∆tµ)|X?
n − Y ?

n |2 ≤ |Xn − Yn|2. (37)

Now, from (10)–(11),

|Xn+1 − Yn+1|2

= |X?
n − Y ?

n + (g(X?
n) − g(Y ?

n )) ∆Wn + (h(X?
n) − h(Y ?

n )) ∆Nn |2

= |X?
n − Y ?

n |2 + |[g(X?
n) − g(Y ?

n )]∆Wn|2 + |[h(X?
n) − h(Y ?

n )]∆Nn|2

+ 2〈X?
n − Y ?

n , [g(X?
n) − g(Y ?

n )]∆Wn〉
+ 2〈X?

n − Y ?
n , [h(X?

n) − h(Y ?
n )]∆Nn〉

+ 2〈[g(X?
n) − g(Y ?

n )]∆Wn, [h(X?
n) − h(Y ?

n )]∆Nn〉.

Hence, using (37),

E|Xn+1 − Yn+1|2

≤
(
1 + Lg∆t + Lhλ∆t(1 + λ∆t) + 2

√
Lhλ∆t

)
E|X?

n − Y ?
n |2

≤
(

1 + Lg∆t + Lhλ∆t(1 + λ∆t) + 2
√

Lhλ∆t

1 − 2∆tµ

)
E|Xn − Yn|2.

The result now follows. ut

Theorem 6 Under the conditions (3), (4) and (5), if α < 0 in (34)
then for all ∆t > 0 any two solutions from the CSSBE method with
E|X0|2 < ∞ and E|Y0|2 < ∞ satisfy

E|Xk − Yk|2 ≤ E|X0 − Y0|2e
bβ(∆t)k∆t,

where

β̂(∆t) :=
1

∆t
log

(
1 + ∆t(Lg + λLh)

1 − 2∆t(µ + λ
√

Lh)

)
< 0. (38)

Further, β̂(∆t) = α + O(∆t), as ∆t → 0.

Proof Since fλ has one-sided Lipschitz constant µ + λ
√

Lh, in place
of (37) we have

(
1 − 2∆t(µ + λ

√
Lh)

)
|X?

n − Y ?
n |2 ≤ |Xn − Yn|2. (39)

Now, from (16)–(17),

|Xn+1 − Yn+1|2 = |X?
n − Y ?

n |2 + |(g(X?
n) − g(Y ?

n ))∆Wn|2

+ |(h(X?
n) − h(Y ?

n ))∆Ñn|2 + Mn, (40)
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where Mn is a martingale. Using ∆Ñn = ∆Nn − λ∆t, we have

E∆Ñ2
n = E∆N2

n + 2λ∆tE∆Nn + λ2∆t2

= λ∆t(1 + λ∆t) − 2λ∆tλ∆t + λ2∆t2

= λ∆t. (41)

It is convenient that E∆Ñ2
n does not involve an O(∆t2) term. Taking

expectations in (40), using (41) and (39), we find that

E|Xn+1 − Yn+1|2
≤ E|X?

n − Y ?
n |2 + ∆tLgE|X?

n − Y ?
n |2 + λ∆tLhE|X?

n − Y ?
n |2

= (1 + ∆t(Lg + λLh)) E|X?
n − Y ?

n |2

≤ 1 + ∆t(Lg + λLh)

1 − 2∆t(µ + λ
√

Lh)
E|Xn − Yn|2.

The result now follows. ut
To illustrate this theory, we consider the scalar problem with

f(x) = −4x − x3, g(x) = h(x) = x and λ = 1. In this case it is
readily shown that (3) holds with µ = −4, and so, with Lg = Lh = 1
we have α = −4 in (34). Theorem 5 shows that SSBE guarantees
mean-square stability for ∆t < 4, and Theorem 6 shows that CSSBE
guarantees mean-square stability for all ∆t. In Figure 1, we show the
difference |Xk−Yk| for SSBE (circles) and CSSBE (asterisks), using a

stepsize ∆t = 1, which gives β(∆t) ≈ −0.4 in (36) and β̂(∆t) ≈ −0.8
in (38). Note that the vertical axis is exponentially scaled. In each
case we used X0 = 1 and Y0 = 2, and computed five different paths.
Using Chebyshev’s inequality, see, for example, [15], and Theorem 5,
we find that for SSBE with ∆t < 4

P

(
|Xk − Yk| ≥ eβ(∆t)k∆t/4

)
≤ E|Xk − Yk|2

eβ(∆t)k∆t/2

≤ E|X0 − Y0|2eβ(∆t)k∆t/2.

So after a large time, |Xk − Yk| should be extremely small with very
high probability, which is consistent with the figure. A similar re-
sult holds for CSSBE for all ∆t. It is known, see, for example, [11,
Lemma 4.1], that the explicit Euler-Maruyama method is not mean-
square stable on this type of problem unless the timestep is restricted
relative to the size of the initial data. Our experiments indicated that
for the parameter values used here, with the jump term added, con-
tractivity is lost at around ∆t = 0.3.
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Fig. 1. Contractivity of |Xk − Yk| for paths with X0 = 1 and Y0 = 2.

6 Mean-Square Linear Stability

Although the main focus of this work is on nonlinear SDEs, in this
section we show that CSSBE has a very desirable linear stability
property. Hence, we consider the scalar, linear test equation where
f(x) = ax, g(x) = bx and h(x) = cx in (1); that is,

dX(t) = aX(t−)dt + bX(t−)dW (t) + cX(t−)dN(t). (42)

Here, a, b, c are real constants and we assume that EX 2
0 < ∞ and

X0 6= 0 with probability one. The mean-square stability of a class of
implicit methods for this SDE was studied in [9]. That class includes
natural generalizations of the trapezoidal and backward Euler meth-
ods. In particular, it was found that no methods in the class were
able to reproduce completely the natural extension of deterministic
A-stability.

On the SDE (42), the SSBE method reduces to the standard back-
ward Euler method; that is, the method of [9, (1.2)] with θ = 1.
Hence, the linear mean-square stability properties of SSBE are de-
scribed in [9, Theorems 3.2–3.4]. In particular, when c < 0 in (42),
SSBE is not guaranteed to preserve stability for all ∆t > 0.
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To analyse the properties of CSSBE, we first recall from [9, (3.3)]
that for (42)

lim
t→∞

EX(t)2 = 0 ⇔ 2a + b2 + λc(2 + c) < 0. (43)

We also note in passing that the sufficient condition for mean-square
stability derived in Theorem 4 for the general case matches this nec-
essary and sufficient condition in the linear case when we take the
optimal values µ = a, Lg = b2 and Lh = c2.

We have the following characterization and corollary.

Theorem 7 If 1 − (a + λc)∆t 6= 0 then for CSSBE applied to (42),

lim
n→∞

EY 2
n = 0 ⇔ (a + λc)2∆t > 2a + b2 + λc(2 + c). (44)

Proof Applying CSSBE to (42) gives

Yn+1 =
1 + b∆Wn + c∆Ñn

1 − (a + λc)∆t
Yn.

Hence,

(1 − (a + λc)∆t)2 Y 2
n+1 =

(
1 + b2∆W 2

n + c2Ñ2
n + Mn

)
Y 2

n ,

where Mn is a martingale that is independent of Yn. So, using (41)

(1 − (a + λc)∆t)2 EY 2
n+1 =

(
1 + b2∆t + c2λ∆t

)
EY 2

n .

It follows that the linear mean-square stability property, limn→∞ EY 2
n =

0, is characterised by (1 − (a + λc)∆t)2 > 1 + b2∆t + c2λ∆t, which
simplifies to the inequality in (44). ut

Corollary 3 shows that CSSBE has the natural extension of A-
stability.

Corollary 3 For the SDE (42), if limt→∞ EX(t)2 = 0 then for all
∆t > 0 CSSBE produces a well-defined solution satisfying limn→∞ EY 2

n =
0.

Proof The SDE stability property requires a, b, c to satisfy the in-
equality in (43). It follows that a+λc < 0, and hence 1−(a+λc)∆t 6=
0. So CSSBE produces a well-defined solution. Since (a+λc)2∆t > 0
and 2a+ b2 +λc(2+ c) < 0, the stability condition for CSSBE in (44)
is satisfied. ut
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A Proof of Lemma 1: Appendix

The proof of Lemma 1 involves the Burkholder-Davis-Gundy inequal-
ity for martingales, which in turn requires the following estimate.

Lemma 5 Under the assumptions (2), (3), (4), (5) and (9), for each

p ≥ 2 there is a constant Ĉ = Ĉ(p, t) such that

E|X(t)|p ≤ Ĉ (1 + E|X0|p) , t ∈ [0, T ].

Proof Our proof is an adaptation of the proof for the case without
jumps in [15, Theorem 2.4.1]. Throughout, we use K to denote a
generic constant that may change between occurrences. We apply the
Ito formula for the jump-diffusion SDE (1) to the function U(t, x) =
(1 + |x|2)p/2, see [6], to obtain

(
1 + |X(t)|2

)p/2

=
(
1 + |X0|2

)p/2
+ p

∫ t

0

(
1 + |X(s−)|2

)(p−2)/2 〈
X(s−), f(X(s−))

〉
ds

+
p

2

∫ t

0

(
1 + |X(s−)|2

)(p−2)/2 ∣∣g(X(s−))
∣∣2 ds

+
p(p − 2)

2

∫ t

0

(
1 + |X(s−)|2

)(p−4)/2 ∣∣〈X(s−), g(X(s−))
〉∣∣2 ds

+ p

∫ t

0

(
1 + |X(s−)|2

)(p−2)/2 〈
X(s−), g(X(s−))

〉
dW (s)

+

∫ t

0

((
1 + |X(s−) + h(X(s−))|2

)p/2 −
(
1 + |X(s−)|2

)p/2
)

dN(s).

Now, using the linear growth bound (8) for h, we have

(
1 + |x + h(x)|2

)p/2 −
(
1 + |x|2

)p/2

≤
(
1 + 2|x|2 + 2|h(x)|2

)p/2 −
(
1 + |x|2

)p/2 ≤ K
(
1 + |x|2

)p/2
,

which can be used in estimates of the deterministic integral part of the

jump integral. In addition,
(
1 + |x|2

)p/2 ≤ 2(p−2)/2 (1 + |x|p) , which
we will use to estimate the initial value.

We need to use stopping times τN := T∧inf {t ∈ [0, T ] : X(t) ≥ N},
for which τN → T as N → ∞ since X(t) is cadlag. We take expecta-
tions over the interval [0, τN ∧ t] and then the limit as N → ∞, using
the fact that the expectations of the Ito and compensated Poisson
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integrals vanish (page 60, [15]) as well as the linear growth bounds
(6)–(8) and the Cauchy-Schwarz inequality to obtain

E
(
1 + |X(t)|2

)p/2 ≤ 2(p−2)/2 (1 + E|X0|p)+K

∫ t

0
E

(
1 + |X(s)|2

)p/2
ds.

We omit the details, as similar estimates arise in the next proof,
apart from noting that |〈x, g(x)〉|2 ≤ 1

2

(
|x|2 + |g(x)|2

)
≤ |g(0)|2 +

( 1

2
+ Lg)|x|2, and similarly for h.

The continuous Gronwall inequality then gives

E
(
1 + |X(t)|2

)p/2 ≤ 2(p−2)/2 (1 + E|X0|p) eKT ,

from which follows E|X(t)|p ≤ E
(
1 + |X(t)|2

)p/2 ≤ K (1 + E|X0|p),
as required. ut

We may now give a proof of Lemma 1.

Proof (Of Lemma 1) Our proof follows that of [10, Lemma 3.2] with
the inclusion of the jump terms. We apply the Ito formula [6] for
the jump-diffusion SDE (1) to the function U(t, x) = |x|2 and after
splitting the jump term into its martingale and deterministic integral
parts and using the linear growth bounds (6)–(8) we obtain

|X(t)|2 = |X0|2 + 2

∫ t

0
〈X(s), f(X(s))〉 ds

+

∫ t

0
|g(X(s))|2 ds + 2

∫ t

0

〈
X(s−), g(X(s−))

〉
dW (s)

+

∫ t

0

(〈
X(s−), h(X(s−))

〉
+ |h(X(s−))|2

)
dÑ(s)

+λ

∫ t

0

(
〈X(s), h(X(s))〉 + |h(X(s))|2

)
ds

≤ |X0|2 + K

∫ t

0

(
1 + |X(s)|2

)
ds

+ 2

∫ t

0

〈
X(s−), g(X(s−))

〉
dW (s)

+

∫ t

0

〈
X(s−), h(X(s−))

〉
dÑ(s) +

∫ t

0
|h(X(s−))|2 dÑ(s),
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where K denotes a generic constant that may change between occur-
rences. There then exists a constant C = C(p) such that

C−1 sup
0≤τ≤t

|X(τ)|p ≤ |X0|p +

(∫ t

0

(
1 + |X(s)|2

)
ds

)p/2

+ sup
0≤τ≤t

∣∣∣∣
∫ τ

0

〈
X(s−), g(X(s−))

〉
dW (s)

∣∣∣∣
p/2

+ sup
0≤τ≤t

∣∣∣∣
∫ τ

0

〈
X(s−), h(X(s−))

〉
dÑ (s)

∣∣∣∣
p/2

+ sup
0≤τ≤t

∣∣∣∣
∫ τ

0
|h(X(s−))|2 dÑ(s)

∣∣∣∣
p/2

.

Since E|X(t)|p < ∞ on the interval [0, T ], we can take expectations
and apply the Burkholder-Davis-Gundy inequality to each of the mar-
tingale integral terms. Using the linear growth bound we obtain

E sup
0≤τ≤t

∣∣∣∣
∫ τ

0

〈
X(s−), g(X(s−))

〉
dW (s)

∣∣∣∣
p/2

≤ K

∫ t

0
E |〈X(s), g(X(s))〉|p/2 ds

≤ K

∫ t

0
E

(
1 + |X(s)|2

)p/2
ds

≤ K

∫ t

0
(1 + E |X(s)|p) ds

≤ K

∫ t

0

(
1 + E sup

0≤τ≤s
|X(τ)|p

)
ds,

and similarly for the other two integrals.
Combining all of the above estimates we obtain

E sup
0≤τ≤t

|X(τ)|p ≤ K (1 + E|X0|p) + K

∫ t

0

(
1 + E sup

0≤τ≤s
|X(τ)|p

)
ds.

An application of the continuous Gronwall inequality completes the
proof. ut
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4. S. Cyganowski, L. Grüne, and P. E. Kloeden, MAPLE for jump-

diffusion stochastic differential equations in finance, in Programming Lan-
guages and Systems in Computational Economics and Finance, S. S. Nielsen,
ed., Kluwer, Boston, 2002, pp. 441–460.

5. K. Dekker and J. G. Verwer, Stability of Runge–Kutta Methods for Stiff

Nonlinear Equations, North Holland, Amsterdam, 1984.
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