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CONVERGENCE AND STABILITY OF IMPLICIT METHODS
FOR JUMP-DIFFUSION SYSTEMS

DESMOND J. HIGHAM AND PETER E. KLOEDEN

Abstract. A class of implicit methods is introduced for Ito stochastic differ-

ential equations with Poisson-driven jumps. A convergence proof shows that

these implicit methods share the same finite time strong convergence rate as

the explicit Euler–Maruyama scheme. A mean-square linear stability analysis

shows that implicitness offers benefits, and a natural analogue of mean-square

A-stability is studied. Weak variants are also considered and their stability

analyzed.
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1. Introduction

Applications in economics, finance, and several areas of science and engineering,
give rise to jump-diffusion Ito stochastic differential equations [2, 4, 24] of the form

(1) dX(t) = f(X(t−))dt + g(X(t−))dW (t) + h(X(t−))dN(t), t > 0,

with X(0) given, where X(t−) denotes lims→t− X(s). Here, f : Rn → Rn is the drift
coefficient, g : Rn → Rn×m is the diffusion coefficient and W (t) is an m-dimensional
Brownian motion. We assume that N(t) is a scalar Poisson process with intensity
λ, and hence the jump coefficient has the form h : Rn → Rn. Extension of our work
to vector-valued jumps with independent entries is straightforward. Conditions on
the coefficients and initial data that guarantee a unique solution will be introduced
in section 2.

We consider a class of theta methods for (1). For a constant stepsize ∆t > 0 and
a particular choice of θ ∈ [0, 1], the theta method is defined by Y0 = X(0) and

(2) Yn+1 = Yn + (1− θ)f(Yn)∆t + θf(Yn+1)∆t + g(Yn)∆Wn + h(Yn)∆Nn.

Here, Yn is the approximation to X(tn), for tn = n∆t, with ∆Wn := W (tn+1) −
W (tn) and ∆Nn := N(tn+1) − N(tn) denoting the increments of the Brownian
motion and the Poisson process, respectively.

We refer to (2) as a class of theta methods because in the deterministic ordinary
differential equation (ODE) case, where g(·) ≡ h(·) ≡ 0 and X(0) is constant,
(2) reduces to the well-known class with this name. For Ito stochastic differential
equations (SDEs), where h(·) ≡ 0, the class has been referred to as the semi-
implicit Euler method [11, 23] and the stochastic theta method [9]. Our motivation
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for introducing and studying (2) is that for the ODE and SDE cases, it has been
found that the class offers good linear stability properties [8, 9, 23] and excellent
potential for capturing long time dynamics [20, 25]. Our aim here is to show
that the theta method offers a means to define useful implicit integrators in the
presence of jumps. Section 2 justifies the methodology by giving a finite time
strong convergence proof. Section 3 analyzes mean-square stability and quantifies
precisely what may be gained by moving away from the Euler–Maruyama (θ = 0)
case. Stability for a weak version of the theta method is studied in section 4.

Previous work on numerical methods for jump-diffusion problems includes [3,
6, 7, 12, 14, 15, 16, 17, 21, 22]. The references [6, 7, 12, 14, 21, 22] deal with
weak convergence. In [6, 7, 12, 21] ‘jump-adapted’ explicit methods that directly
incorporate the jump points are studied, whereas [14, 22] use a fixed ∆t. Glasserman
[5, page 364] points out that jump-adaption may be expensive when the jump
intensity λ is large. Strong convergence for fixed stepsize explicit methods is studied
in [3, 15, 16, 17]. Our work differs from these references in that (a) implicit methods
are considered, and (b) in addition to finite time strong convergence, mean-square
stability properties are analyzed.

2. Strong Convergence Proof

In this section we suppose that the problem (1) is to be solved over a finite time
interval, [0, T ], where T is a constant. We study classical strong convergence, and
hence we are concerned with the regime where ∆t → 0 with T fixed. The reference
[1] mentions a number of applications where this type of convergence is required,
the most relevant for our work being mathematical finance. The initial steps of
the proof follow the ideas in [10, Appendix A], where a strong convergence result
for the theta method on a non-jump SDE is given. Our proof is more general in
that it deals with the jump term and also places the supremum over time inside
the expectation operator (see Theorem 2.4 below).

Letting | · | denote both the Euclidean vector norm and the Frobenius matrix
norm, we assume that f, g, h satisfy the global Lipschitz condition:

(3) |a(x)− a(y)|2 ≤ K|x− y|2, for a ≡ f, g, or h,

where K is a constant independent of x and y, and we note that this implies the
linear growth bound

(4) |a(x)|2 ≤ L(1 + |x|2), for a ≡ f, g, or h,

where L is a constant independent of x and y. Our assumption on the initial data
is that E|X(0)|2 is finite and X(0) is independent of W (t) and N(t) for all t ≥ 0.
We note that these conditions imply the existence of a unique solution for (1), see,
for example, [4, 24].

For convenience, we will extend the discrete numerical solution to continuous
time. We first define the ‘step functions’

(5) Z1(t) =
∑

k

Yk1[k∆t,(k+1)∆t)(t), Z2(t) =
∑

k

Yk+11[k∆t,(k+1)∆t)(t),

where 1G is the indicator function for the set G. Then we define

Y (t) = Y0 +
∫ t

0

(1− θ)f(Z1(s)) ds +
∫ t

0

θf(Z2(s)) ds +
∫ t

0

g(Z1(s)) dW (s)

+
∫ t

0

h(Z1(s)) dN(s).(6)
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(Note that by construction Z1(s−) = Z1(s) and Z2(s−) = Z2(s) for s 6= k∆t.)
It is straightforward to check that Z1(tk) = Z2(tk−1) = Y (tk) = Yk. Our plan
is to prove a convergence result for Y (t). Because Y (t) interpolates the discrete
numerical solution, this will immediately give a convergence result for {Yk}.

To begin, we note that for θ 6= 0 the numerical solution in (2) is defined by
an implicit equation. Under our global Lipschitz assumption on f , it follows from
the Banach contraction mapping theorem that a unique solution Yk+1 exists, with
probability 1, for all

√
K∆t < 1; see, for example, [10, Lemma A.1]. Hence, we

assume that this inequality holds so that there is a well defined numerical solution.
Throughout the following analysis we use C1, C2, . . . to denote generic constants

that depend upon K,L and T , but not upon ∆t. The precise values of these
constants may be determined via the proofs.

Our first lemma shows that the discrete numerical solution has bounded second
moments.

Lemma 2.1. Under the assumptions above, there exists ∆t? > 0 such that for all
0 < ∆t ≤ ∆t?,

E|Yk|2 ≤ C1(1 + E|X(0)|2), whenever k∆t ≤ T.

Proof. By construction, we have

Yk+1 = Y0 +
∫ (k+1)∆t

0

(1− θ)f(Z1(s)) + θf(Z2(s)) ds +
∫ (k+1)∆t

0

g(Z1(s)) dW (s)

+
∫ (k+1)∆t

0

h(Z1(s)) dN(s).

So, for (k + 1)∆t ≤ T ,

E|Yk+1|2 ≤ 4E|Y0|2 + 4E

∣∣∣∣∣
∫ (k+1)∆t

0

(1− θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣∣

2

+ 4E

∣∣∣∣∣
∫ (k+1)∆t

0

g(Z1(s)) dW (s)

∣∣∣∣∣

2

+ 4E

∣∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s)) dN(s)

∣∣∣∣∣

2

.(7)

Now, using the Cauchy-Schwarz inequality, the linear growth bound (4) and
Fubini’s Theorem,

E

∣∣∣∣∣
∫ (k+1)∆t

0

(1− θ)f(Z1(s)) + θf(Z2(s)) ds|2

≤ TE
∫ (k+1)∆t

0

|(1− θ)f(Z1(s)) + θf(Z2(s))|2 ds

≤ 2TE
∫ (k+1)∆t

0

|f(Z1(s))|2 + |f(Z2(s))|2 ds

≤ 2TLE
∫ (k+1)∆t

0

2 + |Z1(s)|2 + |Z2(s)|2 ds

≤ 4T 2L + 2TL

∫ (k+1)∆t

0

E|Z1(s)|2 + E|Z2(s)|2 ds

≤ 4T 2L + 4TL∆t

k∑

i=0

E|Yi|2 + 2TL∆tE|Yk+1|2.(8)
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Using the Ito isometry and the linear growth bound (4), we have

E

∣∣∣∣∣
∫ (k+1)∆t

0

g(Z1(s)) dW (s)

∣∣∣∣∣

2

=
∫ (k+1)∆t

0

E|g(Z1(s))|2 ds

= ∆t

k∑

j=0

E|g(Yj)|2

≤ ∆tL

k∑

j=0

(1 + E|Yj |2)

≤ LT + ∆tL

k∑

j=0

E|Yj |2.(9)

For the jump integral, we convert to the compensated Poisson process Ñ(t) :=
N(t)− λt, which is a martingale, and use the isometry

(10) E
∣∣∣∣
∫ t2

t1

h(Z1(s)) dÑ(s)
∣∣∣∣
2

= λ

∫ t2

t1

E|h(Z1(s))|2 ds,

see, for example, [3]. We then obtain

E | ∫ (k+1)∆t

0
h(Z1(s)) dN(s) |2

= E

∣∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s)) dÑ(s) + λ

∫ (k+1)∆t

0

h(Z1(s)) ds

∣∣∣∣∣

2

≤ 2E

∣∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s)) dÑ(s)

∣∣∣∣∣

2

+ 2λ2E

∣∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s)) ds

∣∣∣∣∣

2

≤ 2λ

∫ (k+1)∆t

0

E|h(Z1(s))|2 ds + 2λ2T

∫ (k+1)∆t

0

E|h(Z1(s))|2 ds

= (2λ + 2λ2T )∆t

k∑

j=0

E|h(Yj)|2,

where we have used the Cauchy-Schwarz inequality and Fubini’s Theorem. The
linear growth bound (4) then gives

(11) E

∣∣∣∣∣
∫ (k+1)∆t

0

h(Z1(s)) dN(s)

∣∣∣∣∣

2

≤ 2λT (1+λT )L+2λ∆t(1+λT )L
k∑

j=0

E|Yj |2.

Inserting (8), (9) and (11) in (7) gives

E|Yk+1|2 ≤ 4
[
E|Y0|2 + 4T 2L + LT + 2λT (1 + λT )L

]

+ 4∆t [4LT + L + 2λ(1 + λT )L]
k∑

j=0

E|Yj |2 + 8TL∆tE|Yk+1|2.

Choosing ∆t sufficiently small for 1− 8TL∆t ≥ 1
2 , we obtain

E|Yk+1|2 ≤ 8
[
E|Y0|2 + LT (4T + 1 + 2λ(1 + λT ))

]

+ 8∆tL [4T + 1 + 2λ(1 + λT )]
k∑

j=0

E|Yj |2.
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The result then follows from an application of the discrete Gronwall inequality, see
for example, [18]. ¤

The next lemma shows that the continuous approximation has bounded second
moments in a strong sense.

Lemma 2.2. Under the assumptions above, there exists ∆t? > 0 such that for all
0 < ∆t ≤ ∆t?,

(12) E sup
t∈[0,T ]

|Y (t)|2 ≤ C2(1 + E|X(0)|2).

Proof. From (6),

|Y (t)|2 ≤ 4|Y0|2 + 4
∣∣∣∣
∫ t

0

(1− θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

+ 4|
∫ t

0

g(Z1(s)) dW (s)|2 + 4
∣∣∣∣
∫ t

0

h(Z1(s)) dN(s)
∣∣∣∣
2

.

Thus, using the Cauchy-Schwarz inequality and the definition of Ñ ,

E sup
t∈[0,T ]

|Y (t)|2 ≤ 4E|Y0|2 + 4E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(1− θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

+ 4E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

g(Z1(s)) dW (s)
∣∣∣∣
2

+ 4E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

h(Z1(s)) dN(s)
∣∣∣∣
2

≤ 4E|Y0|2 + 4E sup
t∈[0,T ]

∫ t

0

12 ds

∫ t

0

2|f(Z1(s))|2 + 2|f(Z2(s))|2 ds

+ 4E sup
t∈[0,T ]

∣∣∣∣
∫ t

0

g(Z1(s)) dW (s)
∣∣∣∣
2

+ 8E sup
t∈[0,T ]

(∣∣∣∣
∫ t

0

h(Z1(s)) dÑ(s)
∣∣∣∣
2

+
∣∣∣∣
∫ t

0

h(Z1(s))λ ds

∣∣∣∣
2
)

.

Then, using the Doob inequality for the two martingale integrals and the Cauchy-
Schwarz inequality, we have

E sup
t∈[0,T ]

|Y (t)|2 ≤ 4E|Y0|2 + 8T

∫ T

0

E
(|f(Z1(s))|2 + |f(Z2(s))|2

)
ds

+ 16E

∣∣∣∣∣
∫ T

0

g(Z1(s)) dW (s)

∣∣∣∣∣

2

+ 32E

∣∣∣∣∣
∫ T

0

h(Z1(s)) dÑ(s)

∣∣∣∣∣

2

+ 8Tλ2

∫ T

0

E|h(Z1(s))|2 ds.
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Finally, using the Ito isometry and the martingale isometry (10), along with the
linear growth bounds (4), we have

E sup
t∈[0,T ]

|Y (t)|2 ≤ 4E|Y0|2 + 8LT

∫ T

0

2 + E
(|Z1(s)|2 + |Z2(s)|2

)
ds

+ 16L

∫ T

0

1 + E|Z1(s)|2 ds

+ 32λL

∫ T

0

1 + E|Z1(s)|2 ds + 8LTλ2

∫ T

0

1 + E|Z1(s)|2 ds

≤ 4E|Y0|2 + 16LT 2 + 16LT + 32λLT + 8Lλ2T 2

+ [8LT + 16L + 32λL + 8LTλ2]
∫ T

0

E|Z1(s)|2 ds

+ 8LT

∫ T

0

E|Z2(s)|2 ds.

Applying Lemma 2.1 over the interval [0, T + 1] (since some Z2(t) terms may
extend beyond T ), we obtain the result (12). ¤

Next, we show that the continuous-time approximation remains close to the step
functions Z1(t) and Z2(t) in a strong sense.

Lemma 2.3. Under the assumptions above, there exists ∆t? > 0 such that for all
0 < ∆t ≤ ∆t?,

(13) E sup
t∈[0,T ]

|Y (t)− Z1(t)|2 ≤ C3∆t(1 + E|X(0)|2)

and

(14) E sup
t∈[0,T ]

|Y (t)− Z2(t)|2 ≤ C4∆t(1 + E|X(0)|2).

Proof. Consider t ∈ [k∆t, (k + 1)∆t] ⊆ [0, T ]. We have

Y (t)− Z1(t) = Y (t)− Yk =
∫ t

k∆t

(1− θ)f(Z1(s)) + θf(Z2(s)) ds

+
∫ t

k∆t

g(Z1(s)) dW (s) +
∫ t

k∆t

h(Z1(s)) dN(s).

Thus,

|Y (t)− Z1(t)|2 ≤ 3
∣∣∣∣
∫ t

k∆t

(1− θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

+ 3
∣∣∣∣
∫ t

k∆t

g(Z1(s)) dW (s)
∣∣∣∣
2

+ 3
∣∣∣∣
∫ t

k∆t

h(Z1(s)) dN(s)
∣∣∣∣
2

,
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for each t ∈ [k∆t, (k + 1)∆t]. Thus

sup
t∈[0,T ]

|Y (t)− Z1(t)|2 ≤ max
k=0,1,...,T/∆t−1

sup
τ∈[k∆t,(k+1)∆t]

{

3
∣∣∣∣
∫ τ

k∆t

[(1− θ)f(Z1(s)) + θf(Z2(s)) ds

∣∣∣∣
2

+ 3
∣∣∣∣
∫ τ

k∆t

g(Z1(s)) dW (s)
∣∣∣∣
2

+ 6
∣∣∣∣
∫ τ

k∆t

h(Z1(s)) dÑ(s)
∣∣∣∣
2

+ 6
∣∣∣∣
∫ τ

k∆t

h(Z1(s))λ ds

∣∣∣∣
2 }

.

Now, | ∫ τ

k∆t
h(Z1(s)) ds|2 ≤ ∫ τ

k∆t
12 ds

∫ τ

k∆t
|h(Z1(s))|2 ds ≤ ∆t

∫ τ

k∆t
|h(Z1(s))|2 ds

by the Cauchy-Schwarz inequality, so, taking expectations and using the Doob
inequality on the martingale integrals we have

E sup
t∈[0,T ]

|Y (t)− Z1(t)|2 ≤ max
k=0,1,...,T/∆t−1

sup
τ∈[k∆t,(k+1)∆t]

{

6∆tE
∫ (k+1)∆t

k∆t

|f(Z1(s))|2 + |f(Z2(s))|2 ds

+ 12
∫ (k+1)∆t

k∆t

E|g(Z1(s))|2 ds

+ 24
∫ (k+1)∆t

k∆t

E|h(Z1(s))|2λ ds

+ 6∆tλ2E
∫ (k+1)∆t

k∆t

|h(Z1(s))|2 ds
}
.

Applying the linear growth bounds (4), we find that

E sup
t∈[0,T ]

|Y (t)− Z1(t)|2 ≤ max
k=0,1,...,T/∆t−1

{

6∆tL

∫ (k+1)∆t

k∆t

2 + E|Z1(s)|2 + E|Z2(s)|2 ds

+ 6L[2 + 4λ + ∆tλ2]
∫ (k+1)∆t

k∆t

1 + E|Z1(s)|2 ds
}
.

But Z1(s) ≡ Yk and Z2(s) ≡ Yk+1 on [k∆t, (k+1)∆t), and hence, from Lemma 2.1.

E sup
t∈[0,T ]

|Y (t)− Z1(t)|2 ≤ 6∆t2L
[
2 + 2C1(1 + E|Y0|2)

]

+ 6L[2 + 4λ + ∆tλ2]∆t
(
1 + C1(1 + E|Y0|2)

)
,

giving (13).
A similar analysis gives (14). ¤

We are now in a position to prove a strong convergence result.

Theorem 2.4. Under the assumptions above, there exists ∆t? > 0 such that for
all 0 < ∆t ≤ ∆t?,

(15) E sup
t∈[0,T ]

|Y (t)−X(t)|2 ≤ C5∆t(1 + E|X(0)|2).



132 DESMOND J. HIGHAM AND PETER E. KLOEDEN

Proof. By construction,

Y (t)−X(t) =
∫ t

0

(1− θ)[f(Z1(s))− f(X(s−))] + θ[f(Z2(s))− f(X(s−))] ds

+
∫ (t

0

g(Z1(s))− g(X(s−)) dW (s) +
∫ t

0

h(Z1(s))− h(X(s−)) dN(s).

Hence, for any 0 ≤ t1 ≤ T ,

E sup
t∈[0,t1]

|Y (t)−X(t)|2 ≤ 3E sup
t∈[0,t1]

|
∫ t

0

(1− θ)[f(Z1(s))− f(X(s−))]

+ θ[f(Z2(s))− f(X(s−))] ds|2

+ 3E sup
t∈[0,t1]

|
∫ t

0

g(Z1(s))− g(X(s−)) dW (s)|2

+ 3E sup
t∈[0,t1]

|
∫ t

0

h(Z1(s))− h(X(s−)) dN(s)|2

≤ 6E sup
t∈[0,t1]

∫ t

0

12 ds

∫ t1

0

|f(Z1(s))− f(X(s−))|2

+ |f(Z2(s))− f(X(s−))|2 ds

+ 3E sup
t∈[0,t1]

|
∫ t

0

g(Z1(s))− g(X(s−)) dW (s)|2

+ 6E sup
t∈[0,t1]

|
∫ t

0

h(Z1(s))− h(X(s−)) dÑ(s)|2

+ 6E sup
t∈[0,t1]

∫ t

0

12 ds

∫ t

0

|h(Z1(s))− h(X(s−))|2λ2 ds,

where we have used the Cauchy-Schwarz inequality and the definition of Ñ . Now,
using the Doob inequality in the two martingale terms,

E sup
t∈[0,t1]

|Y (t)−X(t)|2 ≤ 6t1E
∫ t1

0

|f(Z1(s))− f(X(s−))|2

+ |f(Z2(s))− f(X(s−))|2 ds

+ 12E
∣∣∣∣
∫ t1

0

g(Z1(s))− g(X(s−)) dW (s)
∣∣∣∣
2

+ 24E
∣∣∣∣
∫ t1

0

h(Z1(s))− h(X(s−)) dÑ(s)
∣∣∣∣
2

+ 6t1λ
2E

∫ t1

0

|h(Z1(s))− h(X(s−))|2 ds.
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The integral isometries and Fubini’s Theorem then give

E sup
t∈[0,t1]

|Y (t)−X(t)|2 ≤ 6T

∫ t1

0

E|f(Z1(s))− f(X(s−))|2

+ E|f(Z2(s))− f(X(s−))|2 ds

+ 12
∫ t1

0

E|g(Z1(s))− g(X(s−))|2 ds

+ 24
∫ t1

0

E|h(Z1(s))− h(X(s−))|2λ ds

+ 6Tλ2

∫ t1

0

E|h(Z1(s))− h(X(s−))|2 ds.

Applying the Lipschitz conditions (3) we have

E sup
t∈[0,t1]

|Y (t)−X(t)|2 ≤ 6TK

∫ t1

0

E|Z1(s)−X(s−)|2 + E|Z2(s)−X(s−)|2 ds

+ 12K

∫ t1

0

E|Z1(s)−X(s−)|2 ds

+ 24λK

∫ t1

0

E|Z1(s)−X(s−)|2 ds

+ 6Tλ2K

∫ t1

0

E|Z1(s)−X(s−)|2 ds

= 6K[T + 2 + 4λ + Tλ2]
∫ t1

0

E|Z1(s)−X(s−)|2 ds

+ 6TK

∫ t1

0

E|Z2(s)−X(s−)|2 ds

≤ 12K[T + 2 + 4λ + Tλ2]
∫ t1

0

E|Z1(s)− Y (s)|2

+ E|Y (s)−X(s−)|2 ds

+ 12TK

∫ t1

0

E|Z2(s)− Y (s)|2 + E|Y (s)−X(s−)|2 ds.

Applying Lemma 2.3 we obtain a bound of the form

E sup
t∈[0,t1]

|Y (t)−X(t)|2 ≤ C6∆t(1 + E|Y (0)|2) + C7

∫ t1

0

E sup
t∈[0,s]

|Y (t)−X(t−)|2 ds.

The result (15) then follows from the continuous Gronwall inequality, see, for ex-
ample, [19]. ¤

Theorem 2.4 shows that the theta method has strong convergence rate of at
least 1

2 . This result is sharp in the sense that 1
2 is the actual rate obtained for

Euler–Maruyama; that is, for θ = 0. It is of interest to note that the error bound
(15) places the supremum inside the expectation, which shows that the error in the
continuous-time version of the method is controlled uniformly across [0, T ], even
though the discrete method does not use information about the precise location of
the jumps. We also mention that the θ = 0 case is covered in [3]. Having established
that the theta method has acceptable finite time convergence, in the next section
we consider long-time stability.
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3. Mean-Square Stability

This section looks at stability in mean-square. Here, we are concerned with the
regime where t →∞ with ∆t fixed. Following the approach used in the determinis-
tic case, we examine the behaviour of the method on a linear test equation and ask:
for what ∆t does the method share the stability/instability of the test equation?

3.1. Test Equation. We consider the case where f(·), g(·) and h(·) in (1) are
scalar and multiplicatively linear, that is

(16) dX(t) = µX(t−)dt + σX(t−)dW (t) + γX(t−)dN(t),

where µ, σ and γ are real constants. We assume X(0) 6= 0 with probability one.
We note that (16) is a natural generalization of both the classical linear equation

used to study stability of methods for deterministic ODEs, [8], and the multiplica-
tive noise SDE that has been used to study linear stability of methods for SDEs,
[1, 9, 23]. We also remark that (16) has been proposed as a model in mathematical
finance, [5, 13].

The problem (16) has solution

(17) X(t) = X(0)e(µ− 1
2 σ2)t+σW (t) (1 + γ)N(t)

,

see, for example, [5, 13]. For γ 6= −1, using E
(
(1 + γ)N(t)

)
= eλtγ(2+γ), see, for

example, [13, Ex. 39], we have

EX(t)2 = E
(
X(0)2

)
e2(µ− 1

2 σ2)tE
(
e2σW (t)

)
E

(
(1 + γ)2N(t)

)

= E
(
X(0)2

)
e(2µ+σ2+λγ(2+γ))t.

Hence, mean-square stability (of the zero solution) for γ 6= −1 in (16) may be
characterized by

(18) lim
t→∞

EX(t)2 = 0 ⇔ 2µ + σ2 + λγ(2 + γ) < 0,

and it is straightforward to check that (18) remains true when γ = −1.
A few comments are in order regarding the parameters in (18).
• The jump intensity λ > 0.
• The sign of the diffusion parameter does not matter, it will only appear in

the form σ2 when we look at mean-square stability.
• The jump parameter γ may be positive or negative. We see that γ in (18)

appears through the factor γ(2 + γ), which is symmetric about γ = −1.
This is intuitively reasonable, as a jump at time τ changes the solution
from X(τ−) to X(τ), where X(τ) − X(τ−) = γX(τ−); that is, X(τ) =
(1 + γ)X(τ−). Only the absolute value of 1 + γ matters for mean-square
stability.

• The drift parameter µ may be positive or negative. It is interesting to note
that in the non-jump case (γ = 0) we must have µ < 0 in order for the
problem to be mean-square stable. We still need µ < 0 for mean-square
stability when we introduce a positive jump coefficient γ > 0. However,
with γ < 0, the amplification factor of the jump can be less than one in
modulus and it is then possible to have mean-square stability when µ > 0.
(So the jump term may stabilize the problem.) For example, µ = 1, λ = 4,
σ = 0 gives stability for all γ between −1−√ 1

2 and −1 +
√

1
2 .

Our aim is now to analyze the corresponding mean-square stability property,
limn→∞ EX2

n = 0, for the theta method applied to (16). For brevity we will refer
to “stability” rather than “mean-square stability (of the zero solution)” and we will
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make reference to the “deterministic case”, which is σ = γ = 0 with X(0) ∈ R, and
the “non-jump” case, which is γ = 0.

3.2. Stability of the Theta Method. Applying the theta method (2) to (16)
gives the recurrence

(19) Yn+1 = Yn + (1− θ)∆tµYn + θ∆tµYn+1 + σYn∆Wn + γYn∆Nn.

For the implicit case, θ > 0, we require µ∆tθ 6= 1 in order for the method to
be well defined, as in the deterministic case. The Brownian increments satisfy
E∆Wn = 0 and E∆W 2

n = ∆t, and the Poisson increments satisfy E∆Nn = λ∆t and
E(∆Nn)2 = λ∆t(1+λ∆t), see, for example, [11, 13]. Hence, using the independence
of the increments, we find that

(1− θ∆tµ)2E(Y 2
n+1) = E(Y 2

n )
(
1 + ∆t[2(1− θ)µ + σ2 + λγ(2 + γ)]

+∆t2[(1− θ)2µ2 + 2(1− θ)µγλ + λ2γ2]
)
.

This leads to a simple stability characterization for the theta method:
(20)

lim
n→∞

E
(
Y 2

n

)
= 0 ⇔ ∆t (µ + λγ) (µ(1− 2θ) + λγ) < − (

2µ + σ2 + λγ(2 + γ)
)
.

Note that the right-hand side involves the mean-square stability term in (18) for
the underlying problem.

3.3. Euler–Maruyama. Taking θ = 0 in (19) gives the explicit Euler–Maruyama
(EM) method, which has been studied by, for example, [3, 15]. We have the follow-
ing result immediately.

Lemma 3.1. For the EM method applied to (16),

1: problem stable ⇒ EM stable for

∆t <
|2µ + σ2 + λγ(2 + γ)|

(µ + γλ)2
,

2: problem unstable ⇒ EM unstable for all ∆t > 0.

Proof. Note that if the problem is stable then we cannot have µ = −γλ (see the
proof of part 2). Thus, for part 1., we may write the mean-square stability condition
(20) as

(21) ∆t < −2µ + σ2 + λγ(2 + γ)
(µ + γλ)2

,

and the result follows. For µ 6= −γλ, the condition (21) continues to determine EM
stability, and part 2. follows. In the remaining case where µ = −γλ, the SDE is
unstable because the right-hand side of (18) involves 2µ+σ2+λγ(2+γ) = σ2+λγ2.
In this case the stability condition in (20) becomes ∆t × 0 < −(σ2 + λγ2), which
never holds, confirming part 2. ¤

Note that this result is a clean generalization of the deterministic and non-jump
cases, see, for example, [9, Theorem 4.1]. The EM method has a bounded stability
region that is strictly contained in that of the differential equation.
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3.4. General θ. Theorem 4.1 of [9] showed that in the non-jump case there is a
well-defined inclusion: for θ < 1

2 , the method’s stability region is strictly contained
in that of the problem, for θ = 1

2 , the two regions coincide, and for θ > 1
2 , the

method’s stability region strictly contains that of the problem, The next theorem
shows that these inclusions do not extend to the jump case. Also, for all 0 < θ ≤ 1
the theta method stability region is unbounded. In particular, the theta method
can be stable for all ∆t in cases where the problem is stable, and we can find cases
where the problem is unstable but the method is stable for all ∆t > ε.

Theorem 3.2. For any 0 < θ ≤ 1
1: there exist {µ, σ, λ, γ} for which the problem is stable and the theta method

is stable for all ∆t > 0,
2: given any ε > 0, there exist {µ, σ, λ, γ} for which the problem is unstable,

yet the theta method is stable for all ∆t > ε.

Proof. Part 1. For 1
2 ≤ θ, the result follows from the standard deterministic stability

theory. For 0 < θ < 1
2 take

µ = −1, σ = 0, λ =
(1− θ)2

θ
, γ =

θ

1− θ
.

We have 2µ + σ2 + λγ(2 + γ) = −θ, so the problem is stable by (18). The stability
condition in (20) reduces to ∆t(−θ)(θ) < θ, which holds for all ∆t > 0.

Part 2. For 1
2 < θ, the result follows from the standard deterministic stability

theory. For 0 < θ ≤ 1
2 take

µ = −1, σ =
√

θ + εθ2, λ =
(1− θ)2

θ
, γ =

θ

1− θ
.

We have 2µ + σ2 + λγ(2 + γ) = εθ2, so the problem is unstable. Yet the stability
condition in (20) reduces to ∆t(−θ)(θ) < −εθ2, so the method is stable for all
∆t > ε. ¤

In the non-jump case, the theta method stability is monotonic with respect to θ,
in the sense that (with γ = 0), given any {µ, σ, λ} and ∆t, if the method is stable
for θ = θ? then the method is also stable for θ > θ?. Such a monotonicity property
does not hold in the jump case. To see this, take µ = 1, σ = 0, λ = 4 and γ = − 1

2 .
The theta method stability constraint (20) is then ∆t < 1/(1+2θ), which becomes
more stringent as θ increases.

3.5. A-stability. The concept of A-stability for a numerical method may be sum-
marized as “problem stable ⇒ method stable for all ∆t”. In the deterministic and
non-jump cases, the theta method is A-stable if and only if θ ≥ 1

2 , [9, Theorem 4.1].
The result extends to the jump case if we constrain the jump parameter to be
non-negative.

Theorem 3.3. Under the restriction γ ≥ 0, the theta method is A-stable for θ ≥ 1
2 .

In other words, given {µ, σ, λ, γ} with γ ≥ 0 for which the stability condition in (18)
holds, the theta method with θ ≥ 1

2 is stable for all ∆t > 0.

Proof. Consider θ ≥ 1
2 . Suppose the stability condition in (18) holds and γ ≥ 0.

Then µ < 0, µ + λγ < 0 and µ(1 − 2θ) + λγ ≥ 0. It follows that the stability
condition in (20) holds for any ∆t > 0. ¤

If we allow γ < 0, then the A-stability property no longer holds.
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Theorem 3.4. For γ ∈ R, the theta method is not A-stable for any 1
2 ≤ θ ≤ 1.

In fact, there exist {µ, σ, λ, γ} satisfying the stability condition in (18) with the
property that for any 1

2 ≤ θ ≤ 1 there exists a finite ∆tθ such that the theta method
is unstable for all ∆t > ∆tθ.

Proof. The proof hinges on the fact that when γ is allowed to be negative, we can
get stability of the problem when µ > 0. For example, take µ = 1, λ = 4, σ = 0 and
γ = −1. In this case we have µ+λγ < 0 and µ(1−2θ)+λγ < 0. It follows that the
stability condition in (20) becomes ∆t < 2/(9 + 6θ), and the result is proved. ¤

3.6. Jump Symmetry. We observed in section 3.1 that, from (18), the stability
of (16) is symmetric about γ = −1; that is, changing γ to −2 − γ does not affect
the mean-square stability. It is interesting to note that numerical methods do
not generally preserve this symmetry. To formalize this we make the following
definition.

Definition 3.5. A numerical method applied to (16) is said to be jump symmet-
ric if, whenever stable (unstable) for {µ, σ, λ, γ, ∆t} it is also stable (unstable) for
{µ, σ, λ,−2− γ, ∆t}.
Lemma 3.6. The theta method is not jump symmetric for any θ.

Proof. The right-hand side of the stability condition in (20) is unchanged under
γ 7→ −2 − γ. However, it is readily confirmed that this is not the case for the
product (µ + λγ)(µ(1− 2θ) + λγ) on the left-hand side. ¤

4. Mean-Square Stability for the Weak Theta Method

An alternative version of the theta method that uses increments that are cheaper
to simulate is given by

(22) Yn+1 = Yn + (1− θ)f(Yn)∆t + θf(Yn+1)∆t + g(Yn)∆̂Wn + h(Yn)∆̂Nn,

where

(23) P
(
∆̂Wn =

√
∆t

)
=

1
2

= P
(
∆̂Wn = −

√
∆t

)
,

and

(24) P
(
∆̂Nn = 0

)
= 1− λ∆t, P

(
∆̂Nn = 1

)
= λ∆t.

For θ = 0 and g(·) = 0 this is the classical weak Euler–Maruyama method, [11],
and in the jump case with θ = 0 this is the weak stochastic Taylor method of order
1
2 , called WST1 in [14, equation (2.2)] . We note that the probabilities in (24) must
be non-negative, and hence the method is only defined for λ∆t ≤ 1. This places a
parameter-dependent constraint on the stepsize, and hence the method cannot be
A-stable.

Changing from ∆Wn in the strong method (2) to ∆̂Wn in the weak method
(22) does not affect the mean-square stability properties, since E(∆̂Wn) = 0 and

E(∆̂W
2

n) = ∆t, as before. (Similarly, matching higher moments of the Brownian
increments, as with ∆̂Wn such that P(∆̂Nn =

√
3∆t) = 1/6 = P(∆̂Nn = −√3∆t)

and P(∆̂Nn = 0) = 2/3, has no effect on mean-square stability.) However, changing
from ∆Nn to ∆̂Nn three times does make a difference, because E(∆̂Nn) = λ∆t,

as before, but E(∆̂N
2

n) = λ∆t, which differs from the correct version by O(∆t2).
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Since we are concerned with the “∆t fixed, n →∞” regime, this difference will be
significant. Working through the algebra, we find that (20) changes to

lim
n→∞

E
(
Y 2

n

)
= 0

⇔ ∆t
(
(µ + λγ)(µ(1− 2θ) + λγ)− λ2γ2

)
< − (

2µ + σ2 + λγ(2 + γ)
)
.(25)

The next result is immediate.

Theorem 4.1. For any 0 ≤ θ ≤ 1 and any {µ, σ, γ, λ,∆t} (with λ∆t ≤ 1):
1.: strong theta method stable ⇒ weak theta method stable, and hence
2.: weak theta method unstable ⇒ strong theta method unstable.

Proof. A proof follows directly from (20) and (25). ¤

Theorem 4.1 shows that (in the case where λ∆t ≤ 1) the weak method is “more
stable” than the strong method. In particular, the “A-stability” result for 1

2 ≤ θ ≤ 1
when γ ≥ 0 in Theorem 3.3 that we derived for the strong method also holds for
the weak method, except that we need λ∆t ≤ 1.

For γ ∈ R we have the following lemma, giving a positive result for the θ = 1
(backward Euler) weak method that holds for all γ ∈ R. This lemma gives “A-
stability” except for the restriction λ∆t ≤ 1.

Lemma 4.2. For θ = 1, if λ∆t ≤ 1 then problem stable ⇒ weak theta method
stable.

Proof. For θ = 1, the weak theta method stability condition in (25) reduces to

(26) −∆tµ2 < − (
2µ + σ2 + λγ(2 + γ)

)
.

If the problem is stable then, from (18), the right-hand side of this inequality is
positive; whence the inequality is satisfied for all ∆t > 0. ¤

4.1. Jump Symmetry. It is clear from (26) that the θ = 1 WTM has the jump
symmetry property in Definition 3.5. This turns out to be the only case.

Lemma 4.3. The weak theta method is jump symmetric if and only if θ = 1.

Proof. From (25), the weak theta method has jump symmetry if and only if the
factor (µ+λγ)(µ(1−2θ)+λγ)−λ2γ2 is unchanged under γ 7→ −2−γ. It is readily
confirmed that this reduces to θ = 1. ¤

4.2. Plotting Stability Regions. Stability of the test equation (16) depends on
three quantities: the drift factor, µ, the diffusion factor, σ, and the factor λγ(2+γ)
that could be called the jump strength. Generally, for the methods considered
here, because of the lack of jump symmetry, the numerical stability depends on
the four parameters µ, σ, λ and γ, plus the stepsize ∆t. For this reason, it does
not seem worthwhile, in general, to attempt to visualize stability regions; that is,
to display regions of the parameter space where stability occurs. However, for the
jump symmetric θ = 1 weak theta method, it is possible to get some insight this
way, and the pictures form a natural generalization of that in [9, Figure 4.1].

Let x = ∆tµ, y = ∆tσ2 and z = ∆tλγ(2 + γ). Note that this forces y ≥ 0. The
stability condition in (18) may then be written

(27) y < −2x− z

and the θ = 1 weak theta method stability condition in (26) may be written

(28) y < x2 − 2x− z.
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If we consider slices through (x, y, z) space with z fixed, then there are three distinct
cases. Figure 1 illustrates the behaviour by showing finite portions of the regions.
Here, horizontal hashing shows the region (27) where the problem is stable and
vertical hashing shows the region (28) where the numerical method is stable. For
each fixed z, the problem stability region (27) consists of a wedge and the numerical
method stability region (28) consists of the region below a parabola. For z > −1,
the parabola cuts the x axis at two distinct points, x = 1±√1 + z, and hence the
numerical method stability region consists of two unconnected sets. The stability
wedge (27) lies strictly below the left-hand set. For z = −1, the parabola touches
the x axis at x = 1 and for z < −1, the parabola lies strictly above the x axis. In
all cases the “A-stability” property is clear—the numerical method has a stability
region that contains the wedge.

Note that for fixed values of µ, σ, and λγ(2 + γ), varying the timestep ∆t
corresponds to moving along a ray through the origin in (x, y, z) space.

0
x

y

z > −1

0
x

y

z = −1

0
x

y

z < −1

Figure 1. Mean-square stability regions for z > −1 (left), z =
−1 (middle) and z < −1 (right). Vertical hashing is stability
region (28) for weak theta method with θ = 1. Horizontal hashing
is stability region (27) for the SDE.

5. Conclusions

The main aim of this work is to show that it is feasible to use implicit methods for
jump-diffusion problems, and that this leads to an improvement in mean-square sta-
bility properties. There are many directions in which this work could be extended,
including (a) the derivation of higher order implicit methods, (b) the search for
an implicit method that is A-stable for all γ ∈ R (c.f. Theorem 3.4) and (c) the
analysis of long-time dynamics of nonlinear jump-diffusion simulations.
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