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Abstract6

We use matrix analysis to study a cycle plus random, uniform shortcuts—the classic small world model.7
For such graphs, in addition to the usual edge and vertex information there is an underlying metric that8
determines distance between vertices. The metric induces a natural greedy algorithm for navigating between9
vertices and we use this to define a pathlength. This pathlength definition, which is implicit in [J. Kleinberg,10
The small-world phenomenon: an algorithmic perspective, in: Proceedings of the 32nd ACM Symposium on11
Theory of Computing, 2000] is entirely appropriate in many message passing contexts. Using a Markov chain12
formulation, we set up a linear system to determine the expected greedy pathlengths and then use techniques13
from numerical analysis to find a continuum limit. This gives an asymptotically correct expression for the14
expected greedy pathlength in the limit of large network size: both the leading term and a sharp estimate of15
the remainder are produced. The results quantify how the greedy pathlength drops as the number of shortcuts16
is increased. Further, they allow us to measure the amount by which the greedy pathlength, which is based17
on local information, exceeds the traditional pathlength, which requires knowledge of the whole network.18
The analysis allows for either O(1) shortcuts per node or O(1) shortcuts per network. In both cases we find19
that the greedy algorithm fails to exploit fully the existence of short paths.20
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1. Introduction25

We consider a class of graphs where there is an underlying connectivity pattern on top of which26
extra links have been added at random. Such partially random graphs, which lie between the two27
classical areas of deterministic and random graph theory, have attracted interest in a number of28
application areas within computer science [1,4,5,10–12], the social sciences [19], bioinformatics29
[7,14,18] and chemistry [6]. From a theoretical perspective, fascinating results have been proved,30
or conjectured through simulations, concerning the decrease of the expected pathlength as a31
function of the amount of disorder added, and the ability of navigational algorithms to find the32
short paths [2,12,15,16,21].33

Much of the work in this area makes reference to the small world experiments of the psy-34
chologist Stanley Milgram. In [13] Milgram used the US postal service to compute short paths35
in a large social acquaintance graph: here the nodes in the graph are people and two nodes are36
connected if the two people know each other on a first name basis. In the experiment, a source37
person in Nebraska was given basic information about a target person in Boston. The source was38
asked to get the letter to the target as efficiently as possible. In the (likely) event that the source39
did not know the target, he/she was to send the letter to a suitable first name basis acquaintance,40
with the process continuing iteratively until the target was reached. Hence, using the information41
about the target, each person in the chain chose the next recipient with the aim of minimizing42
the overall number of steps. Milgram found that successful chains had a typical length of around43
six. Given that the social acquaintance graph is large, sparse, and highly clustered (if A knows44
B and B knows C, then C is very likely to know A), it seems counter-intuitive that the typical45
pathlength is so short. This raises a key question; what kind of highly clustered networks permit46
a short typical pathlength? Watts and Strogatz [21] showed via simulation that such small world47
networks can be constructed by randomly re-wiring a small percentage of links in a deterministic48
lattice. Newman, Moore and Watts [16] looked at a variation of the Watts–Strogatz model that49
is more amenable to analysis. Here, random links are superimposed rather than existing links50
being rewired. They gave a semi-heuristic mean-field derivation of an expression for the expected51
pathlength of a large network in the limit of either a large or small number of shortcuts. Barbour52
and Reinert [2] subsequently gave a fully rigorous treatment.53

Kleinberg [12], see also [11], recognized that in addition to the existence of short paths in54
Milgram’s experiment there is a second surprising discovery: the participants, using only local55
knowledge about their own acquaintances, were able to construct short paths. This leads to a56
second question: what combination of small world network and navigation algorithm leads to the57
computation of short paths? By analogy with Milgram’s experiment, Kleinberg looked at the task58
of transmitting a message between a typical pair of nodes using a decentralized algorithm, that59
is, an algorithm where the current message holder knows60

(i) the underlying lattice connectivity structure,61
(ii) the location of the target,62

(iii) its own random edges,63
(iv) the random edges of each node that has previously come into contact with the message.64

The measure of success of an algorithm was the expected delivery time to a randomly chosen65
target. Item (iv) above was used only in the derivation of negative results. A positive result was66
proved for the following greedy algorithm that satisfies (i)–(iii).67
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Algorithm 1.1. The current message holder passes the message on to a contact that is closest (in68
lattice distance) to the target.69

This motivates the following definition.70

Definition 1.2. Given a graph where, independently of the connectivity pattern, there is a measure71
of distance between nodes, the greedy pathlength between nodes i and j is the number of steps72
taken by the greedy algorithm 1.1 to pass a message from i to j .73

With regard to Milgram’s experiment, the lattice distance between nodes can be interpreted74
as an idealization of geographic distance: choose the person you know who lives closest to the75
target (although, of course, other factors such as the target’s age and occupation may have had76
some influence). A similar greedy algorithm that uses “social distance” on a sophisticated social77
network model has also been studied in [20]. More generally, in many message-passing scenarios78
it is reasonable to assume that, independently of the precise connectivity structure, individual79
nodes may use some inherent metric to guide their choice. Indeed, the greedy pathlength can be80
regarded as the free packet delay for a simple routing algorithm; see, for example, [5].81

The model that we consider in this work has an underlying cycle: N nodes, labeled 0, 1, . . . ,82
N − 1, are arranged in a ring structure, so i and j are connected when i = j ± 1 modN , and the83
distance between them is min{|i − j |, N − |i − j |}. For each node an additional random link is84
added with probability p; that is, for each node, we flip a (biased) coin to determine whether to85
add an extra link. If an extra link is to be added, its endpoint is picked uniformly from the entire86
set of nodes. This model was analyzed in [16] (we have k = 1) and is a minor variation of the87
original small world network of [21]. Our aim is to study the greedy pathlength for this type of88
network.89

We consider two regimes that add different amounts of disorder to the cycle:90

p = K

N
, for fixed K > 0, as N → ∞ (1.1)

and91

p is constant with 0 < p � 1, as N → ∞. (1.2)

In expectation, (1.1) is the case where O(1) extra links are added to the network, whereas O(N)92
extra links are added in (1.2). Both extremes have been discussed in the literature and are of93
practical interest.94

We mention that some related work for a cycle plus random edges appeared in [3]. In that95
work, high probability upper and lower bounds on the maximum pathlength are derived for the96
case where a random matching is added to a cycle: letting �·� denote the integer part, exactly97
�N/2� extra links are inserted at random in such a way that every node has degree 3 (except, of98
course, that one node must miss out when N is odd).99

In the p = constant regime (1.2), our work relates closely to that in [12]. Kleinberg considers100
a 2-dimensional lattice where each node, u, is connected to its nearest neighbors up to fixed101
lattice distance and, in addition, has “random” directed edges to q other nodes, for some fixed q.102
These extra links are constructed from q independent trials where the probability of connecting103
node u to node v is inversely proportional to the rth power of the lattice distance between u104
and v. In the uniform case, r = 0, Kleinberg showed that any decentralized algorithm has an105

expected delivery time bounded below by a non-zero multiple ofN
2
3 , and hence exponential in the106

expected pathlength. He went on to show that this mismatch occurs for any r /= 2, but for r = 2 the107
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greedy algorithm has an expected delivery time bounded above by a multiple of (logN)2. Hence,108
Kleinberg’s results allow a parametrized “range-dependent” distribution for O(N) shortcuts and109
they distinguish a critical inverse-square distribution where the greedy algorithm works best. Our110
results, which apply to a different model and are restricted to the uniform (r = 0) setting, cover111
the cases of both O(1) and O(N) shortcuts and give precise asymptotic expressions for the leading112
terms, plus sharp remainders.113

In the next section we show how the greedy pathlength can be analyzed through a Markov chain114
formulation. In §3 we state and interpret our results, which are proved in §4. General conclusions115
are given in §5.116

2. Markov chain formulation117

The expected value of the greedy pathlength between a pair of nodes in the ring network118
described above can be calculated using a Markov chain approach. Without loss of generality,119
we consider starting at node j and navigating towards node 0 using the greedy algorithm. This120
induces a Markov chain on the distance to node 0. Our state space is labeled 0, 1, 2, . . . ,M − 1,121
where M := �N/2� + 1. State 0 corresponds to node 0, state 1 corresponds to nodes {1, N − 1}122
and, generally, state i corresponds to the two nodes that are a distance i from 1. When N is even,123
state M − 1 corresponds to the single node that is a distance M − 1 from 0. For example, for124
N = 12, the states correspond to nodes125

{0}, {1, 11}, {2, 10}, {3, 9}, {4, 8}, {5, 7}, {6}
and for N = 13 they correspond to126

{0}, {1, 12}, {2, 11}, {3, 10}, {4, 9}, {5, 8}, {6, 7}.
Now, given node i, the probability that it has an extra link to any particular node j is given by127

1 − probablity of no extra links.

This is 1 − (1 − p/N)(1 − p/N), which simplifies to 2p/N − p2/N2. (This follows because128
independent coin flips take place for both node i and node j .) We will let p̂ :=2p − p2/N , so129
that the appropriate probability may be written conveniently as p̂/N . In considering a step of the130
greedy algorithm to progress towards state 0, note that131

• if an extra link exists it is given by an edge that is equally likely to meet up with any node in132
the ring,133

• the greedy algorithm will use an extra link only if it decreases the distance to node 0 by more134
than one, otherwise it will use the nearest neighbor edge to decrease the distance by one.135

Putting this together we find that if the Markov chain at time level n has the value Xn = i for136
some i � 2 then137

Xn+1 =

i − 1, with probability 1 − (2i − 3)p̂/N,
j, for 1 � j � i − 2, with probability 2p̂/N,
0, with probability p̂/N.

Here, the event Xn+1 = j for 1 � j � i − 2 arises if there is a shortcut to either of the two138
nodes that are a distance j from the target node 0; hence the appropriate probability is 2p̂/N . To139
complete the specification, we note that if Xn = 1 or Xn = 0 then Xn+1 = 0 with probability 1.140
The transition matrix P ∈ RM×M , which has general entry pij :=P(Xn+1 = j , given Xn = i),141
thus has the lower triangular form142
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P =



1

1 0

p̂
N

1 − p̂
N

0

p̂
N

2p̂
N

1 − 3p̂
N

0

p̂
N

2p̂
N

2p̂
N

1 − 5p̂
N

0

...
...

...
. . .

. . .
. . .

p̂
N

2p̂
N

2p̂
N

. . .
2p̂
N

1 − (2M−5)p̂
N

0


. (2.1)

Now let hj be the hitting time for state 0, starting from state j ; that is hj (ω) := inf{n � 0 :143
Xn(ω) = 0, given X0 = j}, and let zj be the corresponding mean hitting time for state j ,144

zj :=E(hj ), j = 0, 1, . . . ,M − 1. (2.2)

In general, zj is the expected value of the greedy pathlength between nodes {j,N − j} and 0.145
We are interested in the average over all nodes i ∈ {0, 1, . . . , N − 1} of the greedy pathlength146
between node i and 0; that is147

zave :=
{

1
N
(z0 + 2(z1 + z2 + · · · + zM−1)) N odd,

1
N
(z0 + 2(z1 + z2 + · · · + zM−2)+ zM−1) N even.

(2.3)

Note that zave is equivalent to the expected greedy pathlength between a pair of nodes chosen148
uniformly at random.149

Clearly z0 = 0. A classical result, see for example [17, Theorem 1.3.5], shows that the mean150
hitting times {z1, z2, . . . , zM−1} satisfy a linear system that involves the entries in the transition151
matrix. In our case, the system is152 

1

p̂
N

− 1 1

− 2p̂
N

3p̂
N

− 1 1

− 2p̂
N

− 2p̂
N

5p̃
N

− 1 1

...
...

...
. . .

. . .

− 2p̂
N

− 2p̂
N

. . . − 2p̂
N

(2M−5)p̂
N

− 1 1





z1
z2
...
...
...

zM−1


= e, (2.4)

where e :=[1, 1, . . . , 1]T ∈ RM−1. This system may be re-written in the form153 −2p̂

N


1
1 1
1 1 1

1
...

. . .
. . .

1 1 . . . . . . 1

 +
(

1 + 2p̂

N

)


1
−1 1

−1 1
. . .

. . .
−1 1


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+ p̂

N


0
5 0

7 0
. . .

. . .
2M − 1 0







z1
z2
...
...

zM−1

 = e. (2.5)

The essence of our analysis is to observe that the system (2.5) has the form of a finite difference154
method for computing discrete approximations zj ≈ z(xj ), where xj = j�x with�x :=1/(M −155
1) and z(x) is some continuous function. The first matrix in (2.5) represents an integral operator,156
the second a first derivative operator (assuming z(0) = 0) and the third a linear scaling. Overall,157
the putative continuum limit function z(x) satisfies158

−4p

N

1

�x

∫ x

0
z(y) dy +

(
1 + 4p

N

)
�xz′(x)+ 2p

N

(
2x

�x
+ 1

)
z(x) = 1, z(0) = 0

(2.6)

and we may reasonably hope that
∫ 1

0 z(y) dy is a good approximation to zave in (2.3).159
From this point of view obtaining asymptotically valid expressions for zj and zave reduces to160

a convergence analysis for a numerical method applied to an integro-differential equation. We161
note that Eq. (2.6) itself depends upon�x, in contrast to the usual situation in numerical analysis162
where a method is applied to a fixed problem. Further, when written as a second order initial value163
ordinary differential equation (ODE), in the regime (1.2) Eq. (2.6) has a Lipschitz constant that164
is unbounded as �x → 0, which rules out the traditional approach to establishing convergence.165
However, the equation does have a sufficiently simple structure that a customized convergence166
theory can be developed. This theory treats convergence in a relative, rather than absolute, sense;167
the solution grows with N , but the finite difference error remains O(1). In the next section we168
quote the final results. Proofs are given in §4.169

3. Results170

Theorem 3.1. In the regime (1.1) the mean hitting time zj in (2.2) satisfies171

zj = N

√
π

2
√

2K
erf

(
j
√

2K

N

)
+ O(1) (3.1)

and the average mean hitting time zave in (2.3) satisfies172

zave = N

2K

(√
2Kπ

2
erf

(√
2K

2

)
+ e− 1

2K − 1

)
+ O(1). (3.2)

Here, erf(y) := 2√
π

∫ y
0 e−t2 dt is the error function.173

Proof. See §4. �174

Theorem 3.2. In the regime (1.2) the mean hitting time zj in (2.2) satisfies175

zj = N
1
2

√
π

2
√

2p
erf

(
N− 1

2 j
√

2p
)

+ O((logN)2) (3.3)
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and the average mean hitting time zave in (2.3) satisfies176

zave = N
1
2

√
π

2
√

2p
+ O((logN)2). (3.4)

Proof. See §4. �177

We focus first on Theorem 3.1. Here we are adding a fixed number, K , of shortcuts to the178
cycle, on average. This does not alter the power of N that governs the asymptotic behavior of the179
expected pathlength—it remains O(N)—but it does affect the constant factor in the leading term.180
From (3.2), the factor by which the shortcuts reduce the greedy pathlength is given by181

zave with p = K/N

zave with p = 0
= 2

K

(√
2Kπ

2
erf

(√
2K

2

)
+ e− 1

2K − 1

)
+ O(N−1). (3.5)

The solid line in the upper plot of Fig. 3.1 shows the leading term in this expression as a function182
ofK . On the same picture, the circles denote the corresponding expected value for the traditional183
pathlength (that is, the length of the shortest path between a randomly selected a pair of nodes).184
Because an analytical formula for this quantity is not known, data was computed via simulation.185
We fixed N = 3000 and used p = 10α , with 40 equally spaced α values between −5 and 0.186
For each p we generated 500 instances of a random graph and averaged the pathlength from187
nodes j to 0 for 0 � j � N − 1. The results agree, to visual accuracy, with those in [16]. For188
the purpose of comparison, we have also plotted the mean-field approximation to the expected189
traditional pathlength from [16]. We note that this approximation is not claimed to be accurate190
in this O(1) shortcut regime; as we can see it tends to underestimate the true value. The lower191
picture in Fig. 3.1 repeats the same data with a log scaling of the x-axis. This emphasizes the192
region 1 � K � 100. Overall we see a striking discrepancy between the two pathlength measures193
for K larger than about 10. As reported in [16], it requires an average of around 3.5 shortcuts to194
reduce the traditional pathlength by a factor of two. (That is, the circles pass through height 1

2 in195
Fig. 3.1 at K = 3.5.) In contrast, it takes around 16 shortcuts per network to reduce the greedy196
pathlength by a factor of two. With just 2 shortcuts, the expected greedy pathlength is around 16%197
bigger than the traditional pathlength, and with 10 shortcuts it is around 70% bigger. Hence, even198
when the shortcuts are sparse, there is a significant difference between taking a shortcut whenever199
the chance arises and taking a shortcut only when it is globally optimal to do so.200

In the regime (1.2), with O(N) shortcuts added, Theorem 3.2 shows that the greedy pathlength201

behaves like a nonzero multiple of N
1
2 . In this case, the analysis in [2] shows that the expected202

traditional pathlength between a pair of randomly chosen nodes behaves like a polynomial in203
logN . Hence, on average, the greedy algorithm is exponentially worse than a global breadth first204
search in this regime.205

4. Proofs206

The following subsections give proofs of Theorems 3.2 and 3.1.207
We remark that numerical tests indicate that the O(1) second term in (3.2) is sharp, in the208

sense that a non-zero, constant remainder was observed. It is, of course, difficult to distinguish209
numerically between (logN)2 and a constant, but we suspect that (3.4) remains true with the210
O((logN)2) second term replaced by O(1).211
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Fig. 3.1. Pathlength reduction ratios for p = K/N regime (1.1). Solid curve: expected greedy pathlength (3.5). Circles:
traditional pathlength. Dashed curve: mean-field approximation to traditional pathlength from [16]. Lower figure uses log
scaling on x-axis.

4.1. Proof of Theorem 3.2212

It is convenient to let p̃ = 2p and consider the system (2.4) with p̂ replaced by p̃; that is213 

1
p̃
N

− 1 1

− 2p̃
N

3p̃
N

− 1 1

− 2p̃
N

− 2p̃
N

5p̃
N

− 1 1

...
...

...
. . .

. . .

− 2p̃
N

− 2p̃
N

. . . − 2p̃
N

(2M−5)p̃
N

− 1 1





z̃1

z̃2
...
...
...

z̃M−1


= e. (4.1)

We show later that, since p̂ = p̃ − p2/N , (4.1) and (2.4) have solutions that are sufficiently close.214
We let z(x) denote the solution to the ODE215

z′′(x)+ 1

2
p̃(Nx + 1)z′(x) = 0, z(0) = 0, z′(0) = N

2
. (4.2)

Note that this equation can be derived by differentiating (2.6), setting N�x = 2 and neglecting216
small terms. For convenience our notation does not reflect the dependence of z(x) uponN , but in217
the subsequent analysis it is crucial to take account of the fact that z(x), and its derivatives, grow218
with N .219

Eq. (4.2) can be solved via an integrating factor to yield the following expressions:220

z′(x) = N

2
e−Np̃x2

4 − p̃x
2 , (4.3)

z(x) =
√
N

p̃
e
p̃

4N

√
π

2
erf

(√
Np̃

2
x + 1

2

√
p̃

N

)
−

√
N

p̃
e
p̃

4N

√
π

2
erf

(
1

2

√
p̃

N

)
, (4.4)
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0
z(x) dx = 1

p̃
e−Np̃

4 − p̃
2 − 1

p̃
+ (N + 1)√

Np̃

√
π

2

× e
p̃

4N

[
erf

(√
Np̃

2
+ 1

2

√
p̃

N

)
− erf

(
1

2

√
p̃

N

)]
. (4.5)

We also note for later use that221

max[0,1] |z′′(x)|=O(N
3
2 ), (4.6)

max[0,1] |z′′′(x)|=O(N2), (4.7)

max[0,1] |ziv(x)|=O(N
5
2 ). (4.8)

Now we make a precise connection between the linear system (2.4) and a numerical method222
applied to (4.2).223

Lemma 4.1. Let the sequences
{
y

[1]
j

}M−1
j=0 and

{
y

[2]
j

}M−1
j=0 be defined by �x = 2/N and224

y
[1]
j =y[1]

j−1 +�xy
[2]
j−1, (4.9)

y
[2]
j =y[2]

j−1 −�x
1

2
p̃(N(j − 1)�x + 1)y[2]

j−1 (4.10)

for j � 1, with y[1]
0 = 0 and y[2]

0 = N/2. Then, for z̃j in (4.1), we have225

y
[1]
j = z̃j for 0 � j � M − 1.

[Note that (4.9) and (4.10) represents Euler’s method, see, for example, [8], with stepsize �x226
applied to the ODE (4.2) written as a first order system.]227

Proof. By construction, y[1]
0 = 0 = z̃0 and y[1]

1 = 1 = z̃1. Generally, substituting y[2]
j−1 = (

y
[1]
j −228

y
[1]
j−1

)
/�x from (4.9) into (4.10) gives229

y
[1]
j+1 − 2y[1]

j + y
[1]
j−1 + p̃

N

(
y

[1]
j − y

[1]
j−1

)
(2j − 1) = 0

and subtracting row j of (4.1) from row j + 1 gives the same recurrence for z̃j . �230

Now, for z(x) in (4.2), we let231

e
[1]
j :=z(xj )− y

[1]
j and e

[2]
j :=z′(xj )− y

[2]
j ,

where xj :=j�x with �x = 2/N . Here, e[1]
j and e[2]

j represent the errors in the Euler approxi-232
mations to z(xj ) and z′(xj ), respectively.233

Lemma 4.2. The errors satisfy234

e
[1]
j =e[1]

j−1 +�xe
[2]
j−1 + 1

2
�x2z′′(βj ), (4.11)

e
[2]
j =Rj−1e

[2]
j−1 + 1

2
�x2z′′′(γj ) (4.12)
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for some βj , γj ∈ [xj−1, xj ], where235

Rj−1 :=1 − p̃

N
(2j − 1).

Proof. Taking Taylor series expansions, using (4.2), we have236

z(xj )=z(xj−1)+�xz′(xj−1)+ 1

2
�x2z′′(βj ), (4.13)

z′(xj )=z′(xj−1)−�x
1

2
p̃(Nxj−1 + 1)z′(xj−1)+ 1

2
�x2z′′′(γj ). (4.14)

Subtracting (4.9) and (4.10) from (4.13) and (4.14), respectively, gives the result. �237

Our task is to show that max0�j�M−1 |e[1]
j | = O(1). Lemma 4.2 gives recurrences satisfied238

by the errors, and we see that (4.12) involves only e[2]
j . Our approach is therefore to use (4.12)239

to get an estimate for
∑M−1
j=0 e

[2]
j that can be inserted into (4.11). The result relies on subtle240

cancellation and we found it necessary to retain asymptotic estimates, rather than bounds, as far241
as possible.242

To motivate the subsequent analysis, note from (4.3) that z′(x), z′′(x) and z′′′(x) have a factor243

e−Np̃x2

4 . It follows that these derivatives become negligible as x increases beyond O
(
N− 1

2
)
. To244

exploit this effect we define245

x� := 4√
p̃
N− 1

2
√

logN and n� :=
⌊
x�

�x

⌋
. (4.15)

It follows directly that246

max
[x�,1]

{|z′′(x)|, |z′′′(x)|} = O(N−1). (4.16)

Lemma 4.3. For 0 � j � n�,247

e
[2]
j = e−Nx2

j
p̃

4

j∑
k=1

e
Nx2
k
p̃

4
1

2
�x2z′′′(xk)+O((logN)2).

Proof. Since e[2]
0 = 0, it follows from (4.12) that248

e
[2]
j =

j∑
k=1

R̂
(j)
k

1

2
�x2z′′′(γk), (4.17)

where249

R̂
(j)
k :=

j−1∏
i=k

Ri,

with the empty product regarded as unity. Now, for 0 � i � n�, we have250

logRi = −2ip̃

N
+ O(N−1 logN)
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and hence251

log R̂(j)k =
j−1∑
i=k

logRi = −2p̃

N

j−1∑
i=k

i + O(n�N−1 logN),

which simplifies to252

log R̂(j)k = − p̃

N
(j2 − k2)+ O

(
N− 1

2 (logN)
3
2

)
.

Hence,253

R̂
(j)
k = e− p̃

N
(j2−k2)

(
1 + O

(
N− 1

2 (logN)
3
2

))
. (4.18)

Now, from (4.8), we have z′′′(γk) = z′′′(xk)+ O
(
N

3
2
)
. Using this, along with (4.7) and (4.18), in254

(4.17) leads to the required result. �255

Lemma 4.4. For all 0 � j � M − 1,256

�x

j∑
k=0

e
[2]
k = O((logN)2).

Proof. Using (4.3) in (4.2) gives an expression for z′′(x). Differentiating this and inserting the257

expression for z′′′(x) into the expansion for e[2]
j in Lemma 4.3, we find that for 0 � j � n�258

e
[2]
j = e−Nx2

j
p̃

4
1

N

j∑
k=1

e− p̃xk
2

(
p̃2

4
(Nxk + 1)2 − Np̃

2

)
+ O((logN)2).

After some asymptotic expansion and manipulation, this simplifies to259

e
[2]
j = Np̃

4
ψ(xj )+ O((logN)2), (4.19)

where260

ψ(s) :=e−Ns2p̃
4 s

(
Np̃s2

6
− 1

)
.

Since max[0,1] |ψ ′(s)| = O(1), we have for 0 � xj � x�,261 ∫ xj

0
ψ(s) ds = �x

j∑
k=1

ψ(xk)+ O
(
N− 3

2
√

logN
)
. (4.20)

Using262 ∫ xj

0
ψ(s) ds = e−Nx2

j
p̃

4

(
−x

2
j

3
+ 2

3Np̃

)
− 2

3Np̃

in (4.20) gives263

�x

j∑
k=1

ψ(xk) = −x
2
j

3
e−Nx2

j
p̃

4 + O(N−1).
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Hence, from (4.19),264

�x

j∑
k=1

e
[2]
j = −Np̃

12
x2
j e−Nx2

j
p̃

4 + O(1) = O(1)

for 0 � j � n�.265
Now, from (4.19), e[2]

n� = O((logN)2). So, from (4.12) and (4.16), for n� < k � M − 1266

|e[2]
k | � |e[2]

k−1| + 1

2
�x2|z′′′(γk)| � · · · �

∣∣e[2]
n�

∣∣ + 1

2
�x2

k∑
r=n�+1

|z′′′(γk)| = O((logN)2)

and hence�x
∑j

k=n� |e[2]
k | = O((logN)2) for n�<j � M − 1, which completes the result. �267

Lemma 4.5268

max
0�j�M−1

|e[1]
j | = O((logN)2).

Proof. From (4.11) and Lemma 4.4 we have, using e[1]
0 = 0,269

e
[1]
j = �x

j−1∑
k=1

e
[2]
k + 1

2
�x2

j∑
k=1

z′′(βk) = O((logN)2)+ 1

2
�x2

j∑
k=1

z′′(βk).

Further, (4.7) implies that270

�x

j∑
k=1

z′′(βk) =
∫ 1

0
z′′(x) dx + O(N) = z′(1)− z′(0)+ O(N) = O(N),

and the result follows. �271

Lemmas 4.1 and 4.5 show that z̃j = z(xj )+ O((logN)2) for all 0 � j � M − 1. Inserting272
the expression (4.4) for z(xj ) and simplifying gives273

z̃j = N
1
2

√
π

2
√

2p̃
erf

(
N− 1

2 j
√

2p̃
)

+ O((logN)2). (4.21)

Now, we may write (4.1) and (2.4) as M z̃ = e and (M + E)z = e, respectively, where274

• ‖E‖∞ = O(N−1),275

• and, since z̃ = M−1e and M is an M-matrix, ‖M−1‖∞ = ‖z̃‖∞ = O
(
N

1
2
)
.276

So,277

M(z̃ − z) = −Ez = E(z̃ − z)− Ez̃

and hence278

‖z̃ − z‖∞ � ‖M−1‖∞‖E‖∞‖z̃ − z‖∞ + ‖E‖∞‖z̃‖∞,
so that279

‖z̃ − z‖∞ � ‖E‖∞‖z̃‖∞
1 − ‖M−1‖∞‖E‖∞

= O
(
N− 1

2
)
.
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Hence, (4.21) also holds for zj , establishing (3.3) in Theorem 3.2.280

Since each zj = O
(
N

1
2
)
, in (2.3) we have281

zave = 1

M

M−1∑
j=0

zj + O(1)

= 1

M

M−1∑
j=0

z(xj )+ O((logN)2)

=
∫ 1

0
z(x) dx + O

(
N−1 max[0,1] |z′(x)|

)
+ O((logN)2)

=
∫ 1

0
z(x) dx + O((logN)2).

Using the expression (4.5) for the integral leads us to the result (3.4) in Theorem 3.2.282

4.2. Proof of Theorem 3.1283

To prove Theorem 3.1 we again appeal to the connection established in Lemma 4.1. In the284
regime (1.1), the continuum equation (4.2), when written as a system of two first order ODEs, has285
a global Lipschitz constant L :=1 +K in the L2 norm. We may thus apply a standard “Taylor286
series plus Gronwall inequality” argument for convergence of Euler’s method, see, for example,287
[8, Theorem 3.4], to give288

sup
1�j�M−1

|z̃j − z(j�x)| � C(L)
1

N
max[0,1] {|z

′′(x)| + |z′′′(x)|},

where C(L) depends on L (but not on N ). Since z′′(x) and z′′′(x) are O(N), we conclude that289
the overall error is O(1). Converting from z̃j in (4.1) to zj in (2.4), as in §4.1, leads to (3.1). The290
result (3.2) for zave also follows as in §4.1.291

5. Summary292

Partially random graphs form an appealing model for capturing features in many real-life293
networks and yet have yielded relatively little, so far, to rigorous analysis. This work makes three294
main theoretical contributions.295

1. To formalize the idea of the greedy pathlength as a natural measure of the separation between296
nodes in a graph where there is an underlying metric.297

2. To show that the expected greedy pathlength for a cycle plus shortcuts can be computed as the298
mean hitting time for a Markov chain.299

3. To show that a rigorous continuum limit for the set of mean hitting times can be established300
via a convergence analysis for a finite-difference method.301

Regarding item 1, we emphasize that the greedy pathlength is implicit in the work of Kleinberg302
[12] and has a natural interpretation as the free packet delay for a simple routing algorithm, [5].303
Regarding items 2 and 3, we mention that the author has used a similar Markov chain approach304
to study mean hitting times for a random walk on a partially random graph [9]. In that case, the305



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

LAA 8797
23/1/2006 DISK used ARTICLE IN PRESS No. of pages: 14, Model 1+

14 D.J. Higham / Linear Algebra and its Applications xx (2006) xxx–xxx

underlying Brownian motion gives rise to a diffusion term and the continuum limit is a singly306
perturbed boundary value problem, in contrast to the initial value problem encountered here.307

The key new insight from this work is encapsulated in Fig. 3.1. Even when relatively few308
shortcuts are present in the network, the strategy of taking any shortcut that presents itself (without309
looking ahead to see if a better shortcut is coming up) is, on average, significantly sub-optimal.310
When a large number, O(N), of shortcuts are added our results mirror those of [12] for a different311
model, in showing that the greedy algorithm completely fails to exploit the existence of a small312
world.313
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