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Abstract

We generalise the current theory of optimal strong convergence rates for implicit Euler-based methods by allowing for Poisson-9
driven jumps in a stochastic differential equation (SDE). More precisely, we show that under one-sided Lipschitz and polynomial
growth conditions on the drift coefficient and global Lipschitz conditions on the diffusion and jump coefficients, three variants of back-11
ward Euler converge with strong order of one half. The analysis exploits a relation between the backward and explicit Euler methods.
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1. Introduction17

In this work we look at Itô stochastic differential equations (SDEs) with Poisson-driven jumps. More precisely, we
focus on SDEs of the form19

dX(t) = f (X(t−)) dt + g(X(t−)) dW(t) + h(X(t−)) dN(t), X(0−) = X0, (1)

over a finite time interval [0, T ]. Here, X(t−) denotes lims→t−X(s), f : Rn → Rn, g : Rn → Rn×m, h : Rn → Rn,21
W(t) is an m-dimensional Brownian motion and N(t) is a scalar Poisson process with intensity �. Problems of this
form arise in many areas of science [3,12] and, perhaps most significantly, in mathematical finance [1,4].23

Strong convergence of fixed timestep methods for jump-SDEs has been considered in [2,9–11] in the case of explicit
methods and [5,6] in the case of implicit methods. It is proved in [5,6] that, as with deterministic problems, implicit25
methods offer benefits in terms of linear and nonlinear stability. Further, Higham and Kloeden [5] show that strong
convergence results for implicit methods can be derived for classes of nonlinear problems that do not satisfy a global27
Lipschitz condition.

Our aim now is to show that by imposing a further, polynomial-like condition on the drift, optimal strong convergence29
rates can be established for three implicit methods based on backward Euler. This order is optimal in the sense that31
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the same order arises for non-jump-SDEs under global Lipschitz conditions on f and g [8]. The analysis uses ideas1
from [7, Sections 4 and 5], where analogous results are derived in the non-jump case.

The next section states the assumptions that we impose on the problem, the most notable being a one-sided Lipschitz3
condition on the drift. Such a condition has been used successfully in many studies of numerical methods for evolutionary
problems. In Section 3 we show that a basic, explicit Euler–Maruyama discretisation has an optimal strong convergence5
rate under the assumption that the numerical approximation has bounded moments. Then, in Section 4 we show that a
split-step variant of backward Euler

7
• has bounded moments, and
• corresponds to the explicit Euler–Maruyama method applied to a slightly perturbed problem.9

Using the result from Section 3, this allows us to prove optimal strong convergence for the implicit method. Building
on this result, in Section 5 we show that a more conventional implementation of the backward Euler method also has11
optimal strong convergence order.

Overall, this work combines ideas from [5], where jump-SDEs are studied but rates of convergence are not considered13
and [7], where rates are proved for non-jump-SDEs.We have attempted to make the material as self-contained as possible,
but refer to [5,7] for more detailed descriptions of some of the analytical techniques.15

2. Conditions on the SDE

Throughout, we assume that the initial data have bounded moments, that is, for each p > 0 there is a finite Mp such17
that

E|X0|p < Mp. (2)19

We further assume that

f, g, h ∈ C1, (3)21

the drift coefficient f satisfies a one-sided Lipschitz condition

〈x − y, f (x) − f (y)〉��|x − y|2 for all x, y ∈ Rn, (4)23

where 〈·, ·〉 denotes the Euclidean scalar product, and the diffusion and jump coefficients satisfy global Lipschitz
conditions25

|g(x) − g(y)|2 �Lg|x − y|2 for all x, y ∈ Rn, (5)

|h(x) − h(y)|2 �Lh|x − y|2 for all x, y ∈ Rn, (6)27

where | · | denotes both the Euclidean vector norm and the Frobenius matrix norm.
Under these conditions it is shown in [5, Lemma 1] that (1) has a unique solution with all moments bounded. Further,29

in [5], strong convergence is established for implicit methods based on backward Euler. However, rates of convergence
are not given. In this work we impose the extra condition that f behaves polynomially, in the sense that there is a constant31
D and a positive integer q for which

|f (x) − f (y)|2 �D(1 + |x|q + |y|q)|x − y|2 for all x, y ∈ Rn, (7)33

and show that optimal rates can be recovered. This extra condition was used in [7], where non-jump SDEs were studied.
In essence, inequality (7) makes it possible to exploit moment bounds on the numerical solution.35

3. Euler–Maruyama

One generalisation of the Euler–Maruyma method [8] to the jump problem (1) has the form Y0 = X0 and37

Yn+1 = Yn + f (Yn)�t + g(Yn)�Wn + h(Yn)�Nn. (8)
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Here �t is a fixed timestep, �Wn =W(tn+1)−W(tn) (with tn =n�t) is a Brownian increment, �Nn =N(tn+1)−N(tn)1
is a Poisson increment and Yn ≈ X(tn). Given a discrete-time approximation {Yn}n�0, we define a continuous-time
approximation Y (t) by3

Y (t) = X0 +
∫ t

0
f (Y (s−)) ds +

∫ t

0
g(Y (s−)) dW(s) +

∫ t

0
h(Y (s−)) dN(s), (9)

where5

Y (t) = Yn for t ∈ [tn, tn+1). (10)

We remark that Y (t) is not computable, since it requires knowledge of the entire Brownian and Poisson paths, not just7
their �t-increments. However, since Y (tn) = Yn, an error bound for Y (t) will automatically imply an error bound for
{Yn}n�0.9

The following result, which extends [7, Theorem 4.4], shows that this method is strongly convergent with order 1
2 if

the numerical solution has bounded moments.11
Throughout this work, we use K to denote a generic constant (independent of �t) that may change from line to line.

Theorem 1. Under the assumptions (2)–(7), if13

E sup
0� t �T

|Y (t)|p < ∞ for all p > 1,

then the continuous-time extension (9) of the Euler–Maruyama method (8) satisfies15

E sup
0� t �T

|Y (t) − X(t)|2 = O(�t).

Proof. We must adapt the arguments in the proof of [7, Theorem 4.4]. This is because, unlike W(tn+1) − W(tn), the17
Poisson increment N(tn+1) − N(tn) has all moments of order O(�t), and so an extension of [7, Lemma 4.3] is not
possible.19

Let e(t) := X(t) − Y (t). From the identity

X(t) = X0 +
∫ t

0
f (X(s−)) ds +

∫ t

0
g(X(s−)) dW(s) +

∫ t

0
h(X(s−)) dN(s)21

and (9), we apply the Itô formula [2] to obtain

|e(t)|2 =
∫ t

0
2〈f (X(s−)) − f (Y (s−)), e(s−)〉 + |g(X(s−)) − g(Y (s−))|2 ds

+
∫ t

0
2〈e(s−), (g(X(s−)) − g(Y (s−))) dW(s)〉

+
∫ t

0
2〈e(s−), h(X(s−)) − h(Y (s−))〉 + |h(X(s−)) − h(Y (s−))|2 dN(s)

=
∫ t

0
(2〈f (X(s−)) − f (Y (s−)), e(s−)〉

+ 2〈f (Y (s−)) − f (Y (s−)), e(s−)〉 + |g(X(s−)) − g(Y (s−))|2) ds

+
∫ t

0
2〈e(s−), (g(X(s−)) − g(Y (s−))) dW(s)〉

+
∫ t

0
2〈e(s−), h(X(s−)) − h(Y (s−))〉 + |h(X(s−)) − h(Y (s−))|2 dN(s).23
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Introducing the compensated Poisson process1

Ñ(t) := N(t) − �t , (11)

which is a martingale, we have3

|e(t)|2 =
∫ t

0
2〈f (X(s−)) − f (Y (s−)), e(s−)〉 + 2〈f (Y (s−)) − f (Y (s−)), e(s−)〉

+ |g(X(s−)) − g(Y (s−))|2 + 2�〈e(s−), h(X(s−)) − h(Y (s−))〉
+ �|h(X(s−)) − h(Y (s−))|2 ds + M(t),

where M(t) is a martingale. Using the Lipschitz and growth conditions (4)–(7), this gives5

|e(t)|2 �K

∫ t

0
|e(s−)|2 ds + K

∫ t

0
(1 + |Y (s−)|q + |Y (s−)|q)|Y (s−) − Y (s−)|2 ds + M(t)

�K

∫ t

0
|e(s−)|2 ds + K

(
sup

0� s � t

|Y (s) − Y (s)|2
)∫ t

0
1 + |Y (s−)|q + |Y (s−)|q ds + M(t). (12)

Now, for t ∈ [k�t, (k + 1)�t),7

|Y (t) − Y (t)|2 = |(t − tk)f (Yk) + g(Yk)(W(t) − W(tk)) + h(Yk)(N(t) − N(tk))|2
�3(�t2|f (Yk)|2 + |g(Yk)|2|W(t) − W(tk)|2 + |h(Yk)|2|N(t) − N(tk)|2).

Hence,9

E sup
tk � t<tk+1

|Y (s) − Y (s)|2 �K�t2 + KE sup
tk � t<tk+1

|W(t) − W(tk)|2 + KE sup
tk � t<tk+1

|N(t) − N(tk)|2

�K�t . (13)

Using (13) in (12), we find that11

E sup
0� s � t

|e(s)|2 �K

∫ t

0
E|e(s)|2 ds + K�t

∫ t

0
E(1 + |Y (s−)|q + |Y (s−)|q) ds + E sup

0� s � t

|M(s)|. (14)

Now, as in the proof of [7, Theorem 4.4], the Burkholder–Davis–Gundy inequality can be used to get the estimate13

E sup
0� s � t

|M(s)|� 1

2
E sup

0� s � t

|e(s)|2 + K

∫ t

0
E|e(s)|2 ds + K�t . (15)

Using this in (14), along with the moment bounds for Y (t) and Y (t), we obtain15

E sup
0� s � t

|e(s)|2 �K

∫ t

0
E sup

0� r � s

|e(r)|2 ds + K�t ,

and the result now follows from the Gronwall inequality. �17

4. Split step backward Euler

In [5], the split-step backward Euler (SSBE) method for (1) was defined by Y0 = X0 and19

Y �
n = Yn + f (Y �

n )�t , (16)

Yn+1 = Y �
n + g(Y �

n )�Wn + h(Y �
n )�Nn, (17)21

with corresponding continuous-time approximation Y (t) defined by (9) and (10). The intermediate approximation Y �
n

requires a nonlinear equation to be solved, and in [5] it is explained that under the one-sided Lipschitz condition (4), a23
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unique solution is guaranteed, with probability one, for all �t� < 1. Then defining F�t : Rn → Rn by F�t (x)=y, where1
y uniquely satisfies y = x + f (y)�t , it follows that SSBE in (16)–(17) is equivalent to the explicit Euler–Maruyama
method (8) applied to the SDE3

dX�t (t) = f�t (X�t (t
−)) dt + g�t (X�t (t

−)) dW(t) + h�t (X�t (t
−)) dN(t), (18)

with X(0−) = X0, where5

f�t (x) = f (F�t (x)), g�t (x) = g(F�t (x)), h�t (x) = h(F�t (x)).

Following [7, Lemma 3.4 and Lemma 4.5] it may be shown that f�t (x), g�t (x) and h�t (x) satisfy analogous conditions7
to f (x), g(x) and h(x), that is, (3)–(7), with possibly larger constants, and, also, for some constant c′ and positive
integer q ′9

max{|f (a) − f�t (a)|2, |g(a) − g�t (a)|2, |h(a) − h�t (a)|2}�c′(1 + |a|q ′
)�t2. (19)

We may now compare solutions of (1) and (18).11

Lemma 1. Under assumptions (2)–(7), the solutions X(t) in (1) and X�t (t) in (18) satisfy

E sup
0� t �T

|X�t (t) − X(t)|2 = O(�t2).
13

Proof. The proof follows that of [7, Lemma 4.6]. Applying the Itô formula to |e(t)|2, where e(t) := X(t) − X�t (t),
we have15

|e(t)|2 =
∫ t

0
2〈f (X(s−)) − f�t (X�t (s

−)), e(s−)〉 + |g(X(s−)) − g�t (X�t (s
−))|2 ds

+
∫ t

0
2〈e(s−), (g(X(s−)) − g�t (X�t (s

−))) dW(s)〉

+
∫ t

0
2〈e(s−), h(X(s−)) − h�t (X�t (s

−))〉

+ |h(X(s−)) − h�t (X�t (s
−))|2 dN(s). (20)

Now, using the one-sided Lipschitz condition (4) along with the Cauchy–Schwarz inequality and the growth bound17
(19) for f, we have∫ t

0
2〈f (X(s−)) − f�t (X�t (s

−)), e(s−)〉 ds =
∫ t

0
2〈f (X(s−)) − f (X�t (s

−)), e(s−)〉

+
∫ t

0
2〈f (X�t (s

−)) − f (X�t (s
−)), e(s−)〉 ds

�K

∫ t

0
|e(s−)|2 ds + K�t2

∫ t

0
1 + |X�t (s

−)|2 ds. (21)19

Similarly,∫ t

0
2|g(X(s−)) − g�t (X�t (s

−))|2 ds�2
∫ t

0
2|g(X(s−)) − g(X�t (s

−))|2 + |g(X�t (s
−)) − g�t (X�t (s

−))|2 ds

�K

∫ t

0
|e(s−)|2 ds + K�t2

∫ t

0
1 + |X�t (s

−)|2 ds. (22)21
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Now, using the compensated Poisson process (11),1 ∫ t

0
2〈e(s−), h(X(s−)) − h�t (X�t (s

−))〉 + |h(X(s−)) − h�t (X�t (s
−))|2 dN(s)

=
∫ t

0
2〈e(s−), h(X(s−)) − h�t (X�t (s

−))〉 + |h(X(s−)) − h�t (X�t (s
−))|2 dÑ(s)

+ �
∫ t

0
2〈e(s−), h(X(s−)) − h�t (X�t (s

−))〉 + |h(X(s−)) − h�t (X�t (s
−))|2 ds. (23)

The deterministic integrals in (23) can be handled by the approach that led to (21) and (22), so that, overall, from (20)3
we have

|e(t)|2 �K

∫ t

0
|e(s−)|2 ds + K�t2

∫ t

0
1 + |X�t (s

−)|2 ds + M(t), (24)5

where M(t) is a martingale that, in the same way as in the proof of Theorem 1, satisfies (15). Using this in (24) and
applying the Gronwall inequality completes the proof. �7

Because of the connection between SSBE and Euler, Lemma 1 combines with Theorem 1 to give a convergence
result for SSBE.9

Theorem 2. Under assumptions (2)–(7), the continuous-time extension (9) of the SSBE method (16)–(17) satisfies

E sup
0� t �T

|Y (t) − X(t)|2 = O(�t).
11

Proof. SSBE is equivalent to the Euler–Maruyama method applied to the modified problem (18). From [5, Lemma 4],
we know that Y (t) has bounded moments. Hence, from Theorem 1,13

E sup
0� t �T

|Y (t) − X�t (t)|2 = O(�t).

Lemma 1and the triangle inequality complete the proof. �15

A variation of SSBE that discretises the compensated version of the jump SDE was also considered in [5]. This
compensated split-step backward Euler (CSSBE) method for (1) is defined by Y0 = X0 and17

Y �
n = Yn + (f (Y �

n ) + �h(Y �
n ))�t , (25)

Yn+1 = Y �
n + g(Y �

n )�Wn + h(Y �
n )�Ñn, (26)19

where �Ñn := Ñ(tn+1) − Ñ(tn). Compared with SSBE this method was shown to require a slightly more stringent
restriction on the stepsize to guarantee existence and uniqueness under the one-sided Lipschitz condition (4), but to21
offer superior linear and nonlinear stability properties, including natural analogues of A- and B-stability. The analysis
leading to Theorem 2 can be adapted straightforwardly to show that CSSBE also converges with strong order 1

2 under23
the same conditions.

5. Backward Euler25

Perhaps the most natural extension of the deterministic backward Euler method to the jump-SDE (1) is given by
Z0 = X0 and27

Zn+1 = Zn + �tf (Zn+1) + g(Zn)�Wn + h(Zn)�Nn. (27)

Under the one-sided Lipschitz condition (4), this implicit method has the same existence and uniqueness properties as29
SSBE. We now show that it also shares the same strong convergence order under the conditions of Theorem 2. The
proof exploits a connection between the two methods.31
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Theorem 3. Under assumptions (2)–(7), there exists a continuous-time extension Z(t) of the backward Euler method1
(27) that satisfies

E sup
0� t �T

|Z(t) − X(t)|2 = O(�t).
3

Proof. Our proof is a generalisation of the proof of [7, Theorem 5.3]. First, let X̂�t (t) denote the solution to the SDE
(1) with initial data X0 − �tf (X0). Then by applying the Itô lemma to |X(t) − X̂�t (t)|2 it can be shown that this5
perturbation to the initial data has a controllable effect:

E sup
0� t �T

|X(t) − X̂�t (t)|2 = O(�t). (28)
7

Now, letting Yn denote the SSBE approximation for (1) with initial data Y0 =X0 −�tf (X0), it follows by construction
that {Yk}k �0 and {Zk}k �0 are related by9

Zk = Yk + �tf �t (Yk).

Hence, letting Z(t) and Y (t) denote the corresponding continuous-time extensions of {Yk}k �0 and {Zk}k �0, respec-11
tively, as generated by (9), we have

E sup
0� t �T

|Y (t) − Z(t)|2 ��t2E sup
0� t �T

|f�t (Y (t))|2 = O(�t2). (29)
13

Here, we have used the facts that f�t (·) is polynomially bounded and that Y (t) has bounded moments.
Now from Theorem 2, we know that SSBE converges with strong order 1

2 ; that is,15

E sup
0� t �T

|Y (t) − X̂�t (t)|2 = O(�t). (30)

We may now combine (28)–(30), using the triangle inequality, to give the result. �17

6. Numerical experiment

We finish with a numerical example. We note that it is not trivial to infer computationally a precise strong order of19
convergence on a nonlinear SDE with no explicit solution available—this underlines the importance of rigorous error
analysis.21

We took f (x) = x − x3, g(x) = 1 + x, h(x) = 1 + x and X0 = 1 (constant). Note that (2)–(7) are satisfied. We set
� = 4 for the Poisson process intensity and solved over 0� t �T = 1, giving an average of �T = 4 jumps per path.23
The backward Euler method (27) was used. In this case, a cubic polynomial must be solved at each timestep—we took
Zn+1 to be the real root closest to Zn. The Poisson increment over a time interval of length �t was computed using a25
method detailed in [4]. Letting rand denote a call to a uniform (0, 1) pseudo-random number generator, a pseudocode
description of this method is:27

p = e−��t

f = p

dN = 0
u = rand
while u > f

dN = dN + 1
p = p��t/dN

f = f + p

end while
To assess the strong error, we first computed M = 103 Brownian and Poisson paths at a resolution of �t = 2−14.29

For each path, we applied the backward Euler method with stepsizes of �t = �t, 2�t, 4�t, 8�t, 16�t, 32�t . We let Z�t
T

denote the T = 1 numerical approximation using a stepsize of �t , and we note that Theorem 3 implies that31

E|Z�t
T − X(T )|�C�t1/2, (31)
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Fig. 1. Asterisks: strong error measure on the left-hand side of (32) for backward Euler applied to a nonlinear jump-SDE. Dashed line: reference
slope of 1

2 .

for sufficiently small �t and some constant C. From the triangle inequality we have1

|Z2�t
T − Z�t

T |� |Z2�t
T − X(T )| + |Z�t

T − X(T )|.
Taking expected values and using (31) we have3

E|Z2�t
T − Z�t

T |�C(1 + √
2)�t1/2. (32)

Fig. 1 shows a log–log plot of the sample mean approximation to E|Z2�t
T − Z�t

T |, based on the M paths, against �t . A5
reference line of slope 1

2 is added in a dashed line type. In this plot, the maximum standard error (that is, the standard
deviation divided by

√
M) over all expected value estimates is 1.1×10−3, so the error bars are smaller than the graphics7

symbols. We see that the computational results are consistent with the bound (32).
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[2] A. Gardoń, The order of approximation for solutions of Itô-type stochastic differential equations with jumps, Stochast. Anal. Appl. 22 (2004)11

679–699.
[3] I.I. Gikhman, A.V. Skorokhod, Stochastic Differential Equations, Springer, Berlin, 1972.13
[4] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, Berlin, 2003.
[5] D.J. Higham, P.E. Kloeden, Numerical methods for nonlinear stochastic differential equations with jumps, Numer. Math. 101 (2005) 101–119.15
[6] D.J. Higham, P.E. Kloeden, Convergence and stability of implicit methods for jump-diffusion systems, Internat. J. Numer. Anal. Modeling 3

(2006) 125–140.17
[7] D.J. Higham, X. Mao, A.M. Stuart, Strong convergence of Euler-like methods for nonlinear stochastic differential equations, SIAM J. Numer.

Anal. 40 (2002) 1041–1063.19
[8] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Third Printing, Springer, Berlin, 1999.
[9] Y. Maghsoodi, Mean square efficient numerical solution of jump-diffusion stochastic differential equations, Indian J. Statist. 58 (1996) 25–47.21

[10] Y. Maghsoodi, Exact solutions and doubly efficient approximations and simulation of jump-diffusion Ito equations, Stochast. Anal. Appl. 16
(1998) 1049–1072.23

[11] Y. Maghsoodi, C.J. Harris, In-probability approximation and simulation of non-linear jump-diffusion stochastic differential equations, IMA J.
Math. Control Inform. 4 (1987) 65–92.25

[12] K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering, Kluwer Academic, Dordrecht, 1991.


	Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems
	Introduction
	Conditions on the SDE
	Euler--Maruyama
	Split step backward Euler
	Backward Euler
	Numerical experiment
	References




