
BIT Numerical Mathematics (2006) 46: 525–532

Published online: 16 August 2006 – c© Springer 2006
DOI: 10.1007/s10543-006-0067-y

NONNORMALITY AND STOCHASTIC
DIFFERENTIAL EQUATIONS�

D. J. HIGHAM1 and X. MAO2

1Department of Mathematics, University of Strathclyde, Glasgow G1 1XH, UK.
email: djh@maths.strath.ac.uk

2Department of Statistics and Modelling Science, University of Strathclyde,
Glasgow G1 1XH, UK. email: xuerong@stams.strath.ac.uk

In memory of Germund Dahlquist (1925–2005).

Abstract.

A highly nonnormal Jacobian may give rise to large transients. This behaviour has
been shown to have implications for (a) the relevance of linearising a nonlinear system
and (b) the timestep restrictions required to keep a numerical method stable. Here, we
show that nonnormality also manifests itself for stochastic differential equations. We
give an example of a family of systems that is stable without noise, but can be made
exponentially unstable in mean-square by a noise perturbation that shrinks to zero as
the nonnormality increases. We then show via finite-time convergence theory that an
Euler approximation shares the same property, giving a discrete analogue of the result.

AMS subject classification (2000): 65C30, 34F05.
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1 Introduction.

Constant coefficient linear ordinary differential equation (ODE) systems play
a key role in our understanding of numerical methods [1, 2, 3]. Properties such
as the norm, the logarithmic norm and the spectrum of the Jacobian have been
used as the basis for analysis. More recently, pseudospectra have proved useful
for characterising a range of features. We refer to [7] for a comprehensive coverage
of pseudospectra and nonnormality, and their relevance across a diverse range
of topics.
An important message from the pseudospectra/nonnormality viewpoint is that
if a linear system is (a) stable in the long term, but (b) highly nonnormal, then
the nonnormality may manifest itself through significant transient growth. Such
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behaviour has direct consequences: for example, (i) the neighbourhood inside
which a nonlinear system behaves like its linearisation may be tiny, and (ii)
when an adaptive time-stepping method based on error control is applied, it
may forever choose “small” timesteps in order to guard against the possible
large transients.
In this work we give what we believe to be the first study of the impact of
noise on a highly nonnormal system. We are motivated by the following premise.

An ODE system that is stable yet highly nonnormal may exhibit large
transient growth. In the same way that such a system can become
unstable when a nonlinear term is added, it should also be possible to
de-stabilise by adding a small amount of noise.

We illustrate this effect analytically with an explicit example.
Section 2 introduces the example and gives the analysis. In Section 3 we show
a discrete analogue by drawing upon results from numerical analysis. Section 4
concludes by mentioning possibilities for developing a more general theory of
highly nonnormal systems that can be de-stabilised by noise.

2 Nonnormality result.

We begin with the parametrised linear system of two ODEs

dx(t)

dt
= Ax(t), x(0) = x0 ∈ R

2 given,(2.1)

where

A :=

[
−1 b

0 −1

]
.(2.2)

Here b > 0 is a parameter that determines the departure from normality of the
Jacobian; increasing b makes A more nonnormal. For all b, the matrix A has
eigenvalues of −1, and so it follows that all solutions eventually decay like e−t.
For later comparison we may state this formally as follows. Given any b > 0,
there exists a constant C = C(b) such that

‖ x(t) ‖22 ≤ C(1 + t
2) ‖ x0 ‖

2
2 e
−2t, for all t > 0,(2.3)

and hence if ‖ x0 ‖2 �= 0 we have

lim sup
t→∞

1

t
log ‖ x(t) ‖22 ≤ −2.(2.4)

Figure 2.1 illustrates the vector field for the system (2.1). We have superim-
posed a particular solution, with initial data (−1.5, 0.6) indicated by a circle.
Here we used b = 10. There is a single, stable, manifold along the x1-axis. So all
solutions approach the origin in a horizontal direction. However, solution curves
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Figure 2.1: Vector field for the ODE (2.1).

can be swept far away in the x1 direction before they eventually succumb to the
decay.
It is trivial to check that perturbing the (2, 1) element of A to ε changes the
eigenvalues to −1±

√
bε. Hence, a perturbation of size ε > 1/b creates an unstable

system.
We now consider a stochastic perturbation of (2.1). More precisely, we add
a multiplicative noise term to give an Ito SDE system of the form

dx(t) = Ax(t)dt +Gx(t)dw(t), x(0) = x0 given, E
[
‖ x0 ‖

2
2

]
<∞,(2.5)

where A is defined in (2.2) and

G :=

[
0 σ

−σ 0

]
, with σ = b−

1
4 .(2.6)

Here, w(t) denotes a scalar Brownian motion [5, 6].
Our choice of G in (2.6) was motivated partly by the fact that this skew-
symmetric structure has been observed to de-stabilise other types of SDE sys-
tem [6, Section 4.5]. Moreover, the noise perturbation can be interpreted as a ro-
tation, and from the vector field diagram in Figure 2.1 it is intuitively reasonable
that the system might be sensitive to small, random rotations.
At this stage, we make two remarks. First, our model (2.5) has connections
with the simple fluid model proposed by Trefethen et al. in [8, p. 582]. In that
case, a nonlinearity was added to a system of two ODEs. Here, we are using
a noise perturbation. Second, the literature on the stabilising/de-stabilising ef-
fects of noise tends to focus on O(1) or “sufficiently large” noise. Our work differs
in that the noise term becomes arbitrarily small in the limit b→∞ of interest.
To analyse the SDE we will use the Lyapunov function

v(x(t)) := x(t)TQx(t),(2.7)
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where

Q :=

[
1
2
b−2 1

4
b−1

1
4
b−1 1

4
+ 1

2
b−4

]
.(2.8)

The next lemma confirms that Q is positive definite.

Lemma 2.1. For all sufficiently large b, the matrix Q in (2.8) is positive
definite. Moreover, Q has eigenvalues

λminQ = 1
4b
−2 +O(b−4) and λmaxQ = 1

4 +O(b
−2), as b→∞.(2.9)

Proof. The result can be derived by explicitly computing the eigenvalues of
Q and expanding for large b.

Because Q is positive definite, v(·) is a valid Lyapunov function. From Ito’s
Lemma, v(x(t)) satisfies the SDE

dv(t) = x(t)TMx(t) dt+ x(t)TNx(t) dw(t),(2.10)

where

M := QA+ATQ+GTQG,(2.11)

N := 2QG.

The key feature of this transformation is that M is positive definite, as we
now show.

Lemma 2.2. For all sufficiently large b, the matrix M in (2.11) is positive
definite. Moreover, M has eigenvalues

λminM = 1
4b
− 5
2 +O(b−4) and λmaxM = 1

4b
− 1
2 +O(b−2), as b→∞.(2.12)

Proof. The result can be derived by explicitly computing the eigenvalues of
M and expanding for large b.

Because M is positive definite, we can prove exponential mean-square growth
of v(x(t)). Then via positive definiteness of Q we can establish the same be-
haviour for x(t). The following theorem formalises this result.

Theorem 2.3. Given sufficiently large b, there exist positive constants D =
D(b) and δ = δ(b) such that

E
[
‖ x(t) ‖22

]
≥ DE

[
‖ x0 ‖

2
2

]
eδt, for all t > 0,(2.13)

and hence if E
[
‖ x0 ‖22

]
�= 0 we have

lim inf
t→∞

1

t
log
(
E
[
‖ x(t) ‖22

])
≥ δ.(2.14)
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Proof. From (2.10), we may write

E [v(t+ h)]− E [v(t)]

h
= E

[
1

h

∫ t+h
t

x(s)TMx(s) ds

]
.

Taking the limit h→ 0 and using the positive definiteness of Q and M gives

d

dt
E [v(t)] = E[x(t)TMx(t)] ≥ λminM E

[
‖ x(t) ‖22

]

≥ λminM
E[x(t)TQx(t)]

λmaxQ

=
λminM
λmaxQ

E [v(t)] .

So

E [v(t)] ≥ e(λ
min
M /λmaxQ )t

E [v(0)] .

Hence,

E
[
‖ x(t) ‖22

]
≥
1

λmaxQ

E [v(t)] ≥
E [v(0)]

λmaxQ

e(λ
min
M /λmaxQ )t

≥
λminQ
λmaxQ

E
[
‖ x0 ‖

2
2

]
e(λ

min
M /λmaxQ )t.

In words, comparing (2.3) and (2.4) with (2.13) and (2.14) we see that as
the nonnormality in the problem increases, a vanishingly small noise term can
de-stabilise a stable ODE in the mean-square sense.

3 Discrete analogue.

The Euler–Maruyama method [5] applied to the SDE (2.5) produces approxi-
mations yn ≈ x(tn), with tn = n∆t, according to the recurrence

yn+1 = (I +∆tA+∆wnG)yn,(3.1)

where ∆wn := w(tn+1)−w(tn) is the increment in the Brownian path, and hence
{∆wn}n≥0 are i.i.d. and N(0,∆t). We may therefore write

yn = (I +∆tA+∆wn−1G)(I +∆tA+∆wn−2G) · · · (I +∆tA+∆w0G)x0,

which shows that yn arises from a random matrix product. The noncommutativity
of matrix multiplication makes it very difficult to prove sharp results in this area
in general; however, mean-square stability in the small ∆t regime can be studied
by appealing to numerical analysis convergence theory. In Theorem 3.1 below
we show that the de-stabilising small noise effect in Theorem 2.3 is also present
for the discrete analogue. The proof uses a repeated application of a finite-time
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error bound in order to obtain the infinite-time result. In particular, it exploits
the fact that the error bound is linear in the initial data. A related analysis was
done in [4], but here we are showing instability rather than stability.
For convenience, we begin by analysing a continuous-time extension of (3.1),
defined as

y(t) = (I + (t− tn)A+ (w(t) − w(tn))G) yn, for t ∈ [tn, tn+1),(3.2)

before giving a corollary for the discrete iteration.

Theorem 3.1. Given sufficiently large b, there exist positive constants γ =
γ(b), T = T (b) and ∆t� = ∆t�(b) such that

E
[
‖ y(kT )‖22

]
≥ E
[
‖ x0 ‖

2
2

]
eγkT , for all 0 < ∆t ≤ ∆t� and k ∈ Z+.(3.3)

Proof. The result is trivial when E[‖ x0 ‖22] = 0.
Consider now the case where E[‖ x0 ‖22] ≥ 1. From the identity ‖ u ‖

2
2 ≥

1
2‖ v ‖

2
2 − ‖ u− v ‖

2
2, we have

‖ y(t) ‖22 ≥ 1
2‖ x(t)

2 ‖22 − ‖ y(t)− x(t) ‖
2
2,

and hence

E
[
‖ y(t) ‖22

]
≥ 1

2E
[
‖ x(t) ‖22

]
− E
[
‖ y(t)− x(t) ‖22

]
.(3.4)

Given b, we know from Theorem 2.3 that (2.13) holds for some D and δ. We
may then choose T sufficiently large that

D
4 e
δT ≥ e

1
2 δT .(3.5)

Now, from finite-time error analysis of Euler’s method, there exist positive
constants ∆t� = ∆t�(b, T ) and C = C(b, T ) > 0 such that

E
[
‖x(T )− y(T ) ‖22

]
≤ C E

[
‖ x0 ‖

2
2

]
∆t,(3.6)

for all 0 < ∆t ≤ ∆t�. The O(∆t) mean-square error behaviour shown in (3.6)
is well known; see for example [5, Theorem 9.6.2]. In (3.6), we make it clear
that when E[‖ x0 ‖22] ≥ 1 the mean-square error can be bounded linearly in
terms of the second moment of the initial data. This can be established with
a slight generalisation of the arguments in [4, Appendix A]. By decreasing ∆t�,
if necessary, we may ensure that

C∆t� ≤ D
4 e
δT .(3.7)

It follows from (2.13), (3.4), (3.6) and (3.7) that

E
[
‖ y(T ) ‖22

]
≥ D
4 e
δT
E
[
‖ x0 ‖

2
2

]
.(3.8)
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Now, by applying the same arguments to y(t) and x̂(t) over [T, 2T ], where x̂(t)
solves the SDE (2.5) with x̂(T ) = y(T ), we obtain

E
[
‖ y(2T ) ‖22

]
≥ 1

2E
[
‖ x̂(2T ) ‖22

]
− E
[
‖ y(2T )− x̂(2T ) ‖22

]
≥ 1

2De
δT
E
[
‖ y(T ) ‖22

]
− CE

[
‖ y(T ) ‖22

]
∆t

≥ D
4 e
δT
E
[
‖ y(T ) ‖22

]
≥
(
D
4 e
δT
)2
E
[
‖ x0 ‖

2
2

]
.

Continuing with this argument gives

E
[
‖ y(kT ) ‖22

]
≥
(
D
4 e
δT
)k
E
[
‖ x0 ‖

2
2

]
, for all k ∈ Z+.

Since T was chosen to give (3.5), the result follows with γ = 1
2δ.

The remaining case, where 0 < E[‖ x0 ‖22] < 1, can be treated by noting from

(2.13) that there exists a finite time T̂ such that E[‖ x(T̂ ) ‖22] ≥ 2. Thus, from

finite-time error analysis, we have E[‖ y(T̂ ) ‖22] ≥ 1 for all sufficiently small ∆t.
The arguments from the first part of the proof may then be used, after increasing
T to T̂ if necessary.

Corollary 3.2. Suppose E[‖ x0 ‖22] �= 0. Given sufficiently large b, there
exist positive constants γ = γ(b), T = T (b) and ∆t� = ∆t�(b) such that for any
∆t ∈ (0,∆t�) with the property that T is a multiple of ∆t, the Euler–Maruyama
recurrence (3.1) satisfies

lim inf
n→∞

1

n∆t
log
(
E
[
‖ yn ‖

2
2

])
≥ γ.

Proof. We first note from Theorem 3.1 that E[‖ yn ‖22] �= 0 for all n ≥ 0;
otherwise (3.3) is contradicted. Let j = T/∆t, which is an integer, and let i be
any integer in [0, j]. It follows from Theorem 3.1 that

E
[
‖ yi+kj ‖

2
2

]
= E
[
‖ y(i∆t+ kT ) ‖22

]
≥ E
[
‖ yi ‖

2
2

]
eγkj∆t, ∀k ∈ Z+.

Now, for any n > j, let k be the integer part of n/j, with i = n− kj. Then

E
[
‖ yn ‖

2
2

]
≥ E
[
‖ yi ‖

2
2

]
eγkj∆t ≥

(
min
0≤i≤j

E
[
‖ yi ‖

2
2

])
eγ(n∆t−T ),

which implies the assertion.

4 Discussion.

There are various directions in which this work could be extended.

• Rather than mean-square stability, asymptotic stability could be considered
– here the stability criterion is limt→∞ ‖ x(t) ‖2 = 0 with probability one.
Although at least as relevant in practice, this alternative seems to be harder
to analyse.
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• An alternative canonical way to introduce nonnormality is to fix b in the
bidiagonal matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 b
−1 b

−1 b
. . .

. . .

. . . b
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN×N

and consider N → ∞. In this case the question of finding an appropriate
form of noise that vanishes as N →∞ and de-stabilises the system appears
to be open.

• More speculatively, it would be of interest to formulate and prove a general
result of the form “stable yet highly nonnormal implies de-stabilisable by
small noise” in the continuous and discrete realms.
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