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ABSTRACT

Motivation: Protein–protein interaction networks are one of the major

post-genomic data sources available to molecular biologists. They pro-

vide a comprehensive view of the global interaction structure of an

organism’s proteome, as well as detailed information on specific inter-

actions. Here we suggest a physical model of protein interactions that

can be used to extract additional information at an intermediate level: It

enables us to identify proteins which share biological interaction motifs,

and also to identify potentially missing or spurious interactions.

Results: Our new graph model explains observed interactions between

proteins by an underlying interaction of complementary binding

domains (lock-and-key model). This leads to a novel graph-theoretical

algorithm to identify bipartite subgraphs within protein–protein interac-

tionnetworkswhere theunderlyingdataare taken fromyeast two-hybrid

experimental results. By testing on synthetic data, we demonstrate that

under certain modelling assumptions, the algorithm will return correct

domain information about each protein in the network. Tests on data

from various model organisms show that the local and global patterns

predicted by the model are indeed found in experimental data. Using

functional and protein structure annotations, we show that bipartite

subnetworks can be identified that correspond to biologically relevant

interaction motifs. Some of these are novel and we discuss an example

involving SH3 domains from the Saccharomyces cerevisiae

interactome.

Availability: The algorithm (in Matlab format) is available (see http://

maths.strath.ac.uk/ãas96016/lock_key.html)

Contact: jmorriso@dcs.gla.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The vast growth in availability of high-throughout protein–protein

interaction datasets is widely documented (Bork et al., 2004) and

has been accompanied by discussion emphasising the high error

rates within such datasets. This combination necessitates the devel-

opment of robust analytical techniques to gain knowledge about the

resultant protein–protein interaction networks (Edwards et al.,
2002). Graph-theoretic tools have proved successful, although

they have largely focussed on global rather than local properties

of the networks (Salwinski and Eisenberg, 2003). By modelling

interactions based on local properties of the proteins we gain

reasoning behind the occurrence of interactions, which may help

in identifying false-positive and false-negative interactions. Also,

understanding the interactions at a local level allows us in turn to

make inferences about the global network topology.

The essence of our approach to modelling and thereby gaining

further insight into the local and global structure of protein–protein

interaction networks is the idea of lock-and-key domains. Physical

interactions between protein domains are responsible for the inter-

actions between proteins. Thus, modelling interaction networks in

terms of the domains that each protein contains is biologically

justified. The lock-and-key structure defines interactions to be

observed, with some probability, between proteins which contain

complementary domains (lock and key). This results in a network

composed of near complete bipartite subgraphs. The algorithm

designed in this lock-and-key framework is intended for application

on networks derived from experiments where interactions are

observed in a pairwise fashion, such as yeast two-hybrid data

(Y2H). For the purpose of this paper we use the term ‘domain’

in the broadest possible sense. Common lock domains (as well as

key domains) can be equivalent interaction surfaces, without being

evolutionary homologues and even without a strict requirement for

similarity and exact definition at the structural level.

This modelling approach has greater biological grounding than

previous attempts that model protein–protein interaction networks

with off-the-shelf classes of random graph. In particular, it had been

widely believed that the degree distribution of protein–protein inter-

action networks followed a power-law, indicating a scale-free struc-

ture (Jeong et al., 2000). There is mounting evidence to suggest that

this is not the case (Prulj et al., 2004; Khanin and Wit, 2006), so

simply fitting a scale-free model to the data is not a valid approach.

The use of protein domains to validate protein–protein interac-

tions is growing. For example, a statistical method developed by

Riley et al. (2005), can be used to verify known domain–domain

interactions, identify highly specific domain–domain interactions

and find domain–domain interactions involving domains of

unknown function. The novelty of our approach is that domain

information is identified from interaction data alone.

Assuming the lock-and-key interaction structure, we define a

mathematical model and a subsequent algorithm that allows us

to extract domain information about each protein in the network.

This approach is verified on synthetic data generated using the lock-

and-key definition. We also demonstrate that the approach is robust

to the introduction of false positive and false negative interactions.

We then identify a number of interaction structures indicating a�To whom correspondence should be addressed.
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lock-and-key pattern in real interactomes across a wide range of

species and provide biological interpretations for some of these

structures.

2 METHODS

2.1 Data

The mathematical model on which we base our analysis describes pairwise

interactions of proteins, rather than agglomerates or large complexes. This

corresponds most closely to the experimental situation prevailing in Y2H

experiments. Y2H interactions were obtained from BIND—the Biomole-

cular Interaction Network Database Version 3.8 (June 20, 2005) (Alfarano

et al., 2005). In an attempt to cover as broad a range of species as possible,

networks were constructed for all species for which >500 interactions had

been reported. These were Helicobacter pylori, Arabidopsis thaliana, Sac-

charomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster,

Mus musculus and Homo sapiens. In the networks each node represents a

protein and each protein–protein interaction is represented by an edge. For

yeast (S.cerevisiae) we also examined networks corresponding to the clas-

sical Y2H studies by Ito et al. (2001) and Uetz et al. (2000). Further details of

these networks are given in Supplementary Material.

The presence of noise in high-throughput protein–protein interaction

datasets is widely known [it has been suggested that between 30–50% of

high-throughput interactions are biologically relevant (Bader et al., 2004)]

and, thus, we understand that the datasets are far from complete. Despite the

presence of false positives and false negatives, our aim is to produce a robust

algorithm which will identify any bipartite structures if they exist in the

available data.

As a negative control, we also analysed the yeast dataset described in von

Mering et al. (2002), which combines interactions observed for yeast using a

number of experimental techniques, including mass spectrometry, that do

not identify pairwise binding. As these type of data do not conform to our

model, we do not expect to find strong bipartite patterns. Protein domain and

function annotations were extracted from annotation files obtained from

Affymetrix.

2.2 Interaction model and analytical algorithm

We propose a model for protein–protein interaction networks that reflects

the manner in which proteins bind to each other in experiments such as

Y2H assays. The model is based on a lock-and-key principle, where

proteins interact only if one protein contains the ‘lock’ aspect of some

interaction surface, and the other protein contains the matching ‘key’. We

also assume that an interaction will be observed between such a pair of

proteins with some probability 0 � � � 1 . An immediate consequence of

these assumptions is the prediction that there will exist nearly complete

bipartite subgraphs within the protein–protein interaction networks, i.e.

two groups of proteins with little or no intra-group connections but strong

inter-group connections. This idea of ‘complementary domains’ was intro-

duced in Thomas et al. (2003). In that work, domains were assigned at

random in order to develop a random graph model that matched the degree

distribution of experimental datasets. In our work, we impose further

assumptions and develop a technique for identifying domains. Thus, unlike

in Thomas et al. (2003), our aim is to extract information from the

network. We note that there can be any number of lock-and-key pairs

within a protein–protein interaction network and thus the network may

consist of many bipartite subgraphs. In our analysis, we focus on iden-

tifying proteins associated with one specific lock-and-key pair at a time.

We point out that the choice of which element to call a lock and which a

key is arbitrary.

We introduce the following notation. Let A 2 R
N·N denote the adjacency

graph, where aij ¼ aji ¼ 1 if proteins i and j interact and aij ¼ aji ¼
0 otherwise. Focussing on a particular lock/key combination, we define

an indicator vector u 2 R
N such that

ui ¼
a‚ if protein i has lock

b‚ if protein i has key

0‚ otherwise :

8<
:

Here a and b are real numbers that will be specified later.

In order to get a clean mathematical analysis, we make the following sim-

plifying assumptions (justification for these is given in the next paragraph).

(1) For this lock-and-key combination, any protein which contains the

lock/key

(a) will not also contain the key/lock, and

(b) will only interact with a protein containing the complementary

key/lock (it will not contain any other locks or keys).

(2) For each protein having this lock or key, owing to experimental

constraints only a fixed proportion, �, of its connections with the

matching key/lock will be recorded.

The first assumption ensures that the bipartite subgraph under considera-

tion is isolated from the rest of the network. Note that we are not placing

restrictions on the interactions of proteins in the remainder of the network.

The second assumption is a type of mean-field approximation—individual

proteins in the subgraph connect with the average frequency of the ensemble.

Although these are clearly idealizations, we demonstrate below that the main

features from our analysis are robust to the presence of multidomain proteins

and varying connectivity frequency.

If we let locksum and keysum denote the total number of proteins that

contain the one particular lock or key under investigation, our assumptions

imply that the i-th component of the matrix-vector product Au is given by

ðAuÞi :¼
XN

j¼ 1

aijuj ¼
b · � · keysum‚ if protein i has lock

a · � · locksum‚ if protein i has key

0‚ otherwise:

8<
:

If b � keysum ¼ la and a� locksum ¼ lb, for some value l, then we have

(Au)i ¼ (lu)i. In this case, u is an eigenvector of A with eigenvalue l. These

constraints give a2/b2 ¼ keysum/locksum. Ignoring trivial re-scalings, this

results in two distinct solutions, l ¼ ±�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keysum · locksum

p
. Thus, we pre-

dict that the matrix A will have a pair of eigenvalues ±�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keysum · locksum

p

with corresponding eigenvectors whose non-zero components take only two

possible values: one value ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keysum

p
and the other value ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
locksum

p
.

In other words, if we let ind[lock] and ind[key] be indicator vectors for the

lock and key, so that

ind
½lock�
i ¼ 1 if protein i haslock

0 otherwise

�

and similarly for ind
[key], then the two eigenvectors have the form

u j a j ¼ aind j lock j þ bind j key j ‚ u j b j ¼ � aind j lock j þ bind j key j :

Hence u j a j + u j b j ¼ 2bind j key j and u j a j �u j b j ¼ 2aind j lock j , so the sum

and difference of the eigenvectors reveal which proteins have the lock and

which have the key. We will refer to these vectors as the Sum and Difference

vectors, and they form the basis of our algorithm to determine domain

information.

Since the model involves a number of simplifying assumptions, we expect

equalities to become approximations for real data. Fortunately, symmetric

matrices have well-conditioned eigenvalues and eigenvectors (Golub and

Van Loan, 1996), and hence the predictions from the model are likely to

carry through when the idealised adjacency matrix undergoes perturbations.

Supporting tests are carried out below.

3 RESULTS AND DISCUSSION

Using synthetic data generated under the lock-and-key principle, we

first show that the eigenvalues and eigenvectors continue to hold

J.L.morrison et al.

2



useful information when the simplifying assumptions are relaxed.

This leads to the development of an algorithm, which we then test

on experimental datasets.

3.1 Synthetic data

For our first test case we consider the network shown in Figure 1.

This network has three interaction types, with a total of six lock and

key domains. The protein labelled 6 contains two interaction

domains, violating one of our simplifying assumptions. Motivated

by our analysis, we first calculate the eigenvalues of the correspond-

ing adjacency matrix and look for pairs of the form ±l. We find that

there exist two eigenvalues of ±2. By taking the sum and the dif-

ference of the eigenvectors corresponding to these eigenvalues, we

are able to identify the proteins in the network with the lock and the

key of one particular interaction type. From Figure 2a, we can see

that only two non-zero values exist in the sum and difference vec-

tors. These correspond directly to the proteins labelled 18, 19, 20

and 21, which have the lock and key of the third interaction type.

Despite the fact that protein number 6 contains two sites belonging

to different domains, we still have two remaining eigenvalue pairs

of ±3.76 and ±5.18. For the second pair, the Sum and Difference

vectors provide domain classification for both remaining domains

(Fig. 2b). The non-zero values in the Sum vector correspond to the

proteins that contain the key of the first and second interaction types,

where as the non-zero values in the Difference vector correspond to

the proteins that have the lock of the first and second interaction

types, and also to the single protein that contains two domains. (Of

course, all protein and domain numbering is purely arbitrary and

is only for reference purposes.)

We now test our algorithm’s ability to recover the correct domain

information when the network above is altered so that only 80% of

the possible links are observed (� ¼ 0.8). We find that we can still

classify the eigenvalues into three pairs of ±1.62, ±3.17 and ±4.34.

We first examine the Sum and Difference vectors corresponding to

the ±1.62 pair (Fig. 3a). Although these vectors do not show equal

non-zero components, extracting any non-zero components from

both vectors leads to the two groups containing the key and lock

aspects of the third interaction type. Determining domain informa-

tion about the remaining two interaction types is less straightfor-

ward, but can be be done with either of the two remaining

eigenvector pairs. Using the Sum and Difference vectors corre-

sponding to the ±4.34 eigenvalue pair, from Figure 3b we see

that proteins may be assigned to the lock/key domain if their asso-

ciated component is greater than some threshold. If 0.4 is chosen as

the threshold, we find all proteins that contain the lock/key aspect of

the first interaction surface, excluding the single protein that con-

tains two interaction domains. All remaining non-zero components

identify the second interaction type.

Based on the idea of assigning proteins to domains if their cor-

responding component in either vector is above a threshold value,

the following pseudo code describes our algorithm.

Calculate eigenvalues/vectors of adjacency

matrix

Group eigenvalues into pairs of the form �±l

For each eigenvalue pair (with eigenvectors ua
and ub)

Construct Sum ¼ ua ub and Diff ¼ ua � ub
Sort Sum and Diff by decreasing magnitude

Identify a threshold for each vector

Assign components of Sum above threshold

to lock

Assign components of Diff above threshold

to key

end

As a measure of how well the algorithm performs, a bipartite

graph with 15 locks and 20 keys was embedded within a random

network with a total of 50 nodes. For both vectors, we measured the

area under the receiver operating characteristic curve (AUC)

(see Bamber, 1975; Gribskov and Robinson, 1996) when both

vectors were ordered by decreasing order of magnitude. We

predict that the proteins containing the lock/key should be ordered

at the top of the Sum/Difference vectors. This analysis was con-

ducted for values of 0.1 � �� 1 and averaged over 200 runs for each

�. Decreasing � is equivalent to increasing the false-negative rate

of recording interactions in the network. We also varied the

false-positive rate, defined as the percentage of interactions

wrongly predicted. These were introduced randomly across the

entire network. Figure 4 shows the AUC against � for three

false-positive rates.

We see from Figure 4 that in all cases where � > 0.7, the ordered

vectors correctly predict the domain structure (AUC ¼ 1). For

values of � > 0.4, the sorted vectors still produce highly accurate

information (AUC > 0.9). At a high false-positive rate and lower

values of �, the domain prediction should be treated with caution

although performance is still much better than random and we could

still expect to obtain useful information from the ordered vectors.

To further evaluate our algorithm, we used a list of domain–

domain interactions observed in PDB structures obtained from

the 3DID database (http://3did.embl.de/). The list of observed

domain–domain interactions is accompanied by experimentally

observed protein–protein interactions which support the known

domain–domain interaction. Initially a network was constructed

using these protein–protein interactions, however, the algorithm

was unable to identify any bipartite structures within the data.

This is not surprising, as the data are based on sparse observations

scattered across a wide range of organisms and thus do not provide a

sufficiently accurate sample of any complete protein–protein inter-

action network. Also, the data are biased towards intra-protein

interactions, which our approach is not designed to detect. As an

Fig. 1. Synthetic Network with � ¼ 1.
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alternative evaluation based on known domain information, we

combined the domain–domain interaction data with from 3DID

with Pfam domain assignments (Bateman et al., 2004) for the

yeast proteome. This was used to construct an interaction network

of yeast proteins where interactions were included between any

two proteins that contained a Pfam domain pair known to interact.

To measure the ability of the algorithm to check for a large

number of bipartite subgraphs, an automated approach to finding

Fig. 2. Eigenvectors of the Synthetic Network. (a) Sum and Difference vectors for l¼ ±12 (b) Sum and Difference vectors for l¼ ±5.18

Fig. 3. Eigenvectors of the Synthetic Network with � ¼ 0.8. (a) Sum and Difference vectors for l¼±1.62. (b) Sum and Difference vectors for l¼±4.34.

0.9

Fig. 4. ROC analysis of algorithm. (a) False positive ¼ 0% (b) False positive ¼ 20% (c) False positive ¼ 40%.
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lock-and-keys in the network was developed (further details can be

found in the Supplementary Material). For each pair of Sum and

Difference vectors found for this network, the ‘quality’ of the bipar-

tite subgraph found was measured. To do this, all domains present in

the lock and key proteins were found, and from all possible domain

pairs, those which were used to construct the network were deter-

mined. For each domain pair, the total number of proteins contain-

ing each domain is known, and thus the proportion of those found in

the bipartite subgraph can be found. The proportions for each

domain pair were summed, and divided by the total number of

domain pairs; this was the measure of quality of the subgraph.

This measure was calculated for the exact network, and also per-

turbed networks where false-positive and false-negative interactions

were randomly introduced. Results are given in Table 1. For com-

parison, we tested a random allocation of proteins to lock and key

groups of equal size to those identified by the algorithm. The mea-

sure in this case produces a value of 0.01. We conclude that the

algorithm is able to identify bipartite structure in data where they

exist.

Having tested the robustness of the sorted vectors to predict

domain information, we have confidence to apply our approach

to experimental datasets where it is understood that false-negative

and false-positive rates are high. The domain assignment predicted

by the algorithm in each case can be verified by checking if a near

bipartite structure exists between the assigned lock and key domain

proteins.

3.2 Biological experimental data

From testing on synthetic networks, it is apparent that a heuristic

approach is required to identify domain information and, thus,

bipartite subgraphs in experimental datasets. In this case we can

only hope to identify approximate eigenvalue pairs. This is mainly

owing to the well-known noisiness of the datasets, which include a

large number of false-positives and false-negatives, but also to the

presence of multi-domain/multi-interaction proteins.

For all networks, except for the negative control (von Mering

dataset), we are able to identify three approximate pairs of eigen-

values. For each pair in every dataset we attempt to delimit a

bipartite subgraph using the method explained above. The threshold

value for inclusion in the subgraph varies in each case, and is chosen

by inspection of the Sum and Difference vectors. Figure 5 illustrates

subgraphs that were identified. Here, for ease of visualization, we

are showing the adjacency matrix, with a dot denoting a non-zero

entry. Where more than one subgraph is shown for a particular

species, these came from different eigenvector pairs.

We note that these structures may be used to infer protein–protein

interactions by proposing that the lock and key pairs which have not

been experimentally observed to interact, may in fact do so.

3.3 Biological interpretation of bipartite subgraphs

To validate the biological relevance of the observed bipartite struc-

tures we chose to focus on the yeast interaction network reported

by Uetz et al. (2000), which has been widely analysed and comes

from an organism with exceptionally well-understood biology. The

subgraphs from Figure 5a and b are shown in Figure 6 with corre-

sponding protein names.

We first focus on the smaller bipartite subgraph obtained using

the second eigenvector pair (Fig. 6b). Members of this subgraph are

discussed in the original paper (Uetz et al., 2000) as part of a larger

LSM pathway. The entire group of LSM pathway proteins has 18

members, of which we have identified 8. Additional members are

found if we look at the largest components in the Sum and Differ-

ence vectors: We find 17 of these proteins within the top 22 of the

Difference vector, and the one protein which is not found there is

ranked third in the Sum vector. This gives further evidence that

these vectors represent biologically relevant information. For

another validation of our results, we use the iterative Group Anal-

ysis method (iGA) (Breitling et al., 2004). In comparison with our

technique, which uses an artificial threshold to identify bipartite

subgraphs, the iGA method takes a ranked list of the entire dataset

as input, along with annotations for each entity in the network, and

identifies any enriched subgraphs that exist within the highly ranked

proteins. We produce the ranked list by ordering the proteins in the

network based on the ordering of the Sum and Difference vectors

used to identify the bipartite subgraphs. The results for the second

eigenvalue pair are given in Table 2. We can see that ranking the

proteins on both vectors produces similar results and confirms that

these proteins are involved in the LSM pathway since proteins

annotated with the Pfam database term LSM are highly enriched

in both lists. The results also identify the Sm domain as being highly

enriched among the proteins in the bipartite set. This is again owing

to the LSM proteins which are characterized by this domain. It is,

however, unlikely that the Sm domain is the interaction domain in

this case, since we find that the Sm domain is present in both the

‘key’ and ‘lock’ group, and both vectors produce similar rankings of

proteins. This suggests that the bipartite structure identified may in

fact be part of a fully connected cluster, and the connections which

have been experimentally observed indicate a bipartite structure by

chance. It is also important to note that the iGA analysis gives strong

indications with respect to the biological function of this particular

bipartite structure. It seems to be involved in spliceosomal rRNA

processing, again in accordance with previous biological knowledge

(Pillai et al., 2003).

Having validated our approach on a known subgraph, which was

already discussed in the original publication, we now investigate the

bipartite structure identified from the first eigenvector pair (Fig. 6a).

To our knowledge this biologically very interesting group has so far

escaped attention. As above, we use the iGA method to identify the

enriched protein domains and functions present within this sub-

group. The results are given in Table 3. Results are only included

Table 1. Measure of quality of bipartite subgraphs found in network

constructed from domain–domain information [FP-rate (down) versus FN

rate (across)]

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

0% 0.66 0.56 0.57 0.54 0.53 0.50 0.49 0.47 0.48 0.46

10% 0.50 0.47 0.45 0.44 0.41 0.40 0.37 0.39 0.36 0.34

20% 0.41 0.38 0.38 0.34 0.34 0.31 0.30 0.29 0.27 0.26

30% 0.35 0.33 0.31 0.28 0.28 0.26 0.27 0.25 0.22 0.22

40% 0.31 0.29 0.27 0.25 0.25 0.23 0.23 0.22 0.20 0.20

50% 0.28 0.26 0.27 0.24 0.22 0.23 0.20 0.20 0.19 0.19

60% 0.25 0.25 0.23 0.22 0.21 0.20 0.19 0.18 0.17 0.17

70% 0.23 0.21 0.21 0.21 0.20 0.19 0.18 0.17 0.16 0.17

80% 0.23 0.21 0.20 0.20 0.18 0.18 0.18 0.17 0.16 0.16

90% 0.20 0.18 0.19 0.18 0.18 0.16 0.16 0.16 0.16 0.15

Lock-and-key model
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where the enriched subclass includes members from the bipartite

subgraph.

In this case, the iGA method clearly shows that proteins with the

SH3 domain are strikingly enriched within the ‘key’ group which is

derived from the difference vector. We also obtain a first indication

of the biological relevance of the interaction pattern: The GO terms

‘actin cortical patch’, ‘actin filament organization’, ‘transmem-

brane’ and ‘integral to Golgi membrane’ are overly abundant

among the proteins of interest. These results are further strength-

ened when we examine the Gene Ontology annotations for the lock

and key groups directly, rather than on the entire eigenvectors. The

resulting p-values for these are listed in Table 4. Again, many

proteins of the lock group are annotated with terms involving

actin and Golgi, with even stronger support when these terms are

combined (‘all actin/Golgi combined’).

The biological relevance of this interaction pattern is obvious, but

was entirely unknown when the interaction dataset was first

reported. The SH3 domain is one of the best characterized

protein binding motifs (Mayer, 2001). It is present in all our

‘key’ proteins (Fig. 7) and is very likely to be the physical

representative of the interaction motif. Where more than one

SH3 domain is present within a protein, we are unable to

determine which domain is interacting. On the other hand, the

proteins of the ‘lock’ group are part of the actin cortical patchas-

sembly mechanism of vesicle endocytosis (Drees et al., 2001).

They were also identified as part of a larger group by a clustering

method in Arnau et al. (2005), but missing the highly relevant

interaction with SH3 domain proteins. The involvement of SH3

proteins in linking cytoskeletal dynamics and the trafficking of

vesicles, particularly Golgi membranes, has only very recently

been discovered in biological experiments (Friesen et al., 2005;

Kessels and Qualmann, 2004). By linking vesicular membranes

with actin polymerization, SH3 domain proteins contribute the

crucial mechanistic connection between membrane trafficking

Fig. 5. Bipartite subgraphs in interactomes of different species: a bipartite structure is indicated by a two-by-two checkerboard pattern with the non-zero blocks

away from the diagonal. (a) Uetz Network. 1st pair. (b) Uetz Network. 2nd Pair. (c) A.thaliana, 2nd Pair. (d) H.sapiens, 1st Pair. (e) S.cerevisiae, 2nd Pair.

(f) S.cerevisiae, 3rd Pair. (g) H.pylori, 1st Pair. (h) D.melanogaster,1st Pair. (i) D.melanogaster, 2nd Pair. (j) M.musculus, 1st Pair. (k) M.musculus, 3rd Pair.
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and the cytoskeleton. The bipartite subgraph that we have identified

extends on the previously reported interactions and may motivate

important cell biological follow-up experiments.

For all other bipartite subgraphs identified by our

algorithm, protein names and annotations are given where

available in the Supplementary Material. To our knowledge these

novel bipartite structures and most of the corresponding interactions

have not previously been reported. These additional subgraphs

include a number of other biologically very interesting gene

groups, such as the ion-transporter module identified in the

Mus musculus interactome, which further highlights the validity

of our approach.

Although the number of bipartite subgraphs identified is reason-

ably small, our method is wholly reliant on the underlying data

which is understood to be extremely noisy. At present we tend

to detect only the striking examples of lock-and-key interactions.

As data becomes more reliable and complete, we expect our

approach to identify the lock-and-key interactions with greater

coverage.

Fig. 6. Bipartite subgraphs in the Uetz network. Dotted lines indicate intra-

group connections. (a) Extracted using first eigenvalue pair (b) Extracted

using second eigenvalue pair.

Table 2. iGA results for the second eigenvector pair ordering

Vector Database Class p-value

Sum Interpro Sm_like_riboprot 6.56 · 10�9

Pfam LSM 6.56 · 10�9

ProDom SnRNP 6.56 · 10�9

InterPro snRNP_Sm 6.56 · 10�9

SMART Sm 6.41 · 10�9

GO Nuclear mRNA splicing,

via spliceosome

6.11 · 10�8

GO Small nuclear ribonucleoprotein

complex

2.18 · 10�8

InterPro snRNP 1.15 · 10�8

GO Pre-mRNA splicing factor activity 5.13 · 10�7

Difference Interpro snRNP_Sm 8.17 · 10�9

ProDom SnRNP 8.17 · 10�9

Pfam LSM 8.17 · 10�9

Interpro Sm_like_riboprot 8.17 · 10�9

SMART Sm 7.18 · 10�9

GO rRNA processing 4.65 · 10�8

GO Nuclear mRNA splicing, via

spliceosome

3.66 · 10�8

GO Small nuclear ribonucleoprotein

complex

1.15 · 10�8

GO Pre-mRNA splicing factor activity 1.16 · 10�7

Table 3. iGA results for the first eigenvector pair ordering

Vector Database Class p-value

Add GO Integral to Golgi membrane 3.99 · 10�5

Difference ProDom SH3 8.14 · 10�9

PRINTS SH3DOMAIN 3.73 · 10�9

PROSITE SH3 1.21 · 10�9

Interpro SH3 1.21 · 10�9

Pfam SH3 1.21 · 10�9

SMART SH3 1.05 · 10�8

GO Actin cortical patch 4.56 · 10�7

Pfam/Interpro DUF500 2.88 · 10�6

GO Actin filament organization 3.35 · 10�5

Table 4. p-values for GO annotations found in Key and Lock Group

GO term p-value

Key Group Actin filament organization 2.9916 · 10�7

Lock Group Actin cytoskeleton organization 4.3125 · 10�5

All actin combined 1.6337 · 10�11

Actin cortical patch assembly 1.8927 · 10�4

Integral to Golgi membrane 2.4789 · 10�4

All Golgi combined 4.6637 · 10�5

Lock-and-key model
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4 CONCLUSION

From the initial lock-and-key model of protein–protein interaction

networks, we have devised an algorithm that identifies proteins

containing the lock and key aspects of a particular interaction sur-

face. This is achieved through a search for bipartite subgraphs in

protein–protein interaction networks derived from Y2H experi-

ments using a spectral approach. Unlike traditional clustering tech-

niques, we identify groups that are not internally highly similar, but

have a large number of interactions with another group. We have

demonstrated that under certain modelling assumptions our

approach is guaranteed to identify the correct domain information

about proteins in a network. As experimental interaction networks

are only approximated by our model, we adopt a heuristic approach

to identifying bipartite subgraphs. The main ingredients of the algo-

rithm are Sum and Difference vectors, formed from the correspond-

ing eigenvectors of eigenvalue pairs of (approximately) the form

±l. We demonstrated that this approach reveals bipartite subgraphs

across a large variety of protein interaction networks from diverse

species. For one of these subgraphs, from S.cerevisiae, we showed

how our method discovers a novel and biologically exciting inter-

acting group, including identification of the physiological function

and the physical interaction motif, the SH3 domain. Used in this

way, our approach has the potential to add considerable value to the

experimentally observed interaction networks.
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