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The identification of specialized, functional regions of the human cortex
is a vital precondition for neuroscience and clinical neurosurgery.
Functional imaging modalities are used for their delineation in living
subjects, but these methods rely on subject cooperation, and many
regions of the human brain cannot be activated specifically.

Diffusion tractography is a novel tool to identify such areas in the
human brain, utilizing underlying white matter pathways to separate
regions of differing specialization. We explore the reproducibility,
generalizability and validity of diffusion tractography-based localiza-
tion in four functional areas across subjects, timepoints and scanners,
and validate findings against fMRI and post-mortem cytoarchitectonic
data. With reproducibility across modalities, clustering methods,
scanners, timepoints, and subjects in the order of 80–90%, we
conclude that diffusion tractography represents a useful and objective
tool for parcellation of the human cortex into functional regions,
enabling studies into individual functional anatomy even when there
are no specific activation paradigms available.
© 2006 Elsevier Inc. All rights reserved.

Introduction

The identification of functionally disparate regions of the
human cortex in individual subjects is an important aspect of
neurosurgery and a prerequisite to many modern methods in
neuroscience. To gain insight into functional relationships and
networks, techniques such as transcranial magnetic stimulation
(TMS) rely on the precise definition of valid targets (Paus et al.,
1997). Furthermore, functional regions are taken into account
when planning for neurosurgery (Thiel et al., 1998) to minimize
post-operative functional deficits and maximize patient benefit in
tumor surgery (Proescholdt et al., 2005).
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The current gold standard for delineation of specialized regions
in the human brain is post-mortem analysis of cyto- or myelo-
architecture (Brodmann, 1909; Economo et al., 1925), which
enables parcellation of the human cortex on an objective basis
(Schleicher et al., 1999) at microscopic resolution.

For in vivo studies, this kind of data has not been available so
far. Consequently, surrogate markers serve to define these regions:
for some regions, such as primary sensory and motor cortex,
targets can be reliably identified by segmenting anatomical MR
images using gross landmarks such as sulci (Geyer et al., 1996,
1999; Yousry et al., 1997), but this approach cannot be reliably
used in all regions of cortex: considerable disagreement between
anatomical landmarks and functional borders has been observed in
other regions (Amunts et al., 1999).

Traditionally, the in vivo identification of functional regions in
the human cortex relies upon functional imaging methods such as
functional magnetic resonance imaging (fMRI) or positron
emission tomography (PET), where a subject performs a task to
activate the region under study while being scanned. Such tasks,
however, are not available for many areas of interest. Also,
functional mapping experiments rely on the subject’s ability to
understand and perform the task correctly. This task compliance
can be impaired in the diseased, in children and in elderly subjects,
or where language barriers cannot easily be overcome.

Naturally, areas within a functional network need to interchange
information, and underlying white matter projections for these
networks have been characterized in post-mortem studies (Flechsig,
1876, 1883).

In recent years, diffusion tensor imaging (DTI) has been
introduced as a means to measure cerebral white matter fiber
distributions in vivo, bridging the gap between functional imaging
methods and anatomical ex vivo approaches. Connectivity between
regions of the brain can now be measured in vivo with probabilistic
diffusion tractography (Behrens et al., 2003b; Parker et al., 2003;
Rushworth et al., 2005). Relationships between preferred con-
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nectivity to other regions and regional brain function have been
demonstrated. Various different approaches were undertaken to
analyze the connection patterns measured, creating parcellations of
brain regions solely on the basis of their interconnections with other
portions of the brain (Behrens et al., 2003a; Behrens and Johansen-
Berg, 2005; Johansen-Berg et al., 2004, 2005). This new enabling
technology offers insight into connectional architecture, but there is
only sparse validation of its functional implications and reliability.

In an initial approach, a priori target areas were defined
comprising regions of the human cortex that different nuclei in the
thalamus were expected to connect to (Behrens et al., 2003a;
Johansen-Berg et al., 2005). They served as a model driving
segmentation, where each voxel in thalamus was assigned to the
target region it connected to most strongly. Then, a semi-automated
approach using spectral reordering of connectivity matrices followed
to parcellate cortical areas without using a priori information about
postulated target regions (Johansen-Berg et al., 2004). Connectivity
profiles for every voxel in a seed mask were generated, where
connection probabilities to every other voxel in the brain are
quantified. Then, these connectivity profiles are reordered such that
seed voxels with similar connectivity patterns are positioned together
in a cross-correlationmatrix. A human observer finally selects cut-off
points in the connectivity matrix to separate regions with different
profiles. An alternative approach, using k-means clustering to
identify regions of distinct connectivity objectively has also been
shown to subdivide lateral premotor (Anwander et al., 2005) and
inferior frontal areas (Anwander et al., 2006).

Although these approaches offer substantial promise, there are a
number of outstanding questions regarding their reproducibility,
generalizability, and validity. Aside from the aforementioned pilot
studies, there are no data yet on inter-session and inter-subject
reliability of DTI-based brain segmentation. Here, we test an
automated approach to parcellation of human cortical regions that
does not rely on manual selection of cluster borders, removing
observer bias from the analysis process.

We use this approach to differentiate between regions previously
shown to be characterized by differing connectivity, namely SMA
(Supplementary Motor Area) and pre-SMA (Johansen-Berg et al.,
2004), and Brodmann’s areas 44 and 45 (Anwander et al., 2006).

SMA is an area that is important in the temporal organization of
movements and contains a somatotopic representation of the body,
just like the primary motor cortex (Goldberg, 1985; Tanji, 2001),
while pre-SMA plays a more abstract role (Picard and Strick, 1996):
it is active in the planning and preparation of movement, initiation of
movement on cues, acquisition of newmotor skills, and higher order
aspects of speech, such as self-ordered number generation (Petrides
et al., 1993). Brodmann’s areas 44 and 45 are part of Broca’s area on
the left side of the brain, a part of the brain that deals with the
understanding and generation of speech. They are particularly active
in semantic processing (area 45) and integrating sensory information
with motor patterns (area 44) (Gough et al., 2005), and play a key
role in the implementation of natural language grammar (Friederici,
2004) and phonological processing.

For SMAvs. pre-SMA, where functional localizer tasks exist, we
validate results against findings from functional magnetic resonance
imaging (fMRI). For BA44/45, where it is more challenging to
identify reliable functional localizers (Amunts et al., 1999; Cabeza
and Nyberg, 2000), we validate segmentations against population
maps based on cytoarchitectonic data as well as a previously
published semi-automated approach with manual division of a
spectrally reordered connectivity matrix. Using data acquired in the
same subjects on 3 different days, and on two different scanners, we
quantify the reproducibility of these approaches.

Materials and methods

Data acquisition

Pre-SMA vs. SMA
A detailed description of data acquisition for pre-SMAvs. SMA

is available in Johansen-Berg et al. (2004). In brief, nine healthy
volunteers (age 24–35, five male) underwent DTI scanning on a
1.5T Sonata MR scanner (Siemens, Erlangen, Germany) using the
standard quadrature head coil supplied with the system. Diffusion
was measured in 60 isotropically distributed directions using echo-
planar imaging (SE-EPI, TE 97ms, TR 10.1s, 72 axial slices, voxel
size 2mm×2mm×2mm) using a b-value of 1000 s mm−2. To
increase signal to noise ratio (SNR), scanning was repeated three
times for averaging, requiring a total scanning time of approximately
45min. Blood oxygen level-dependent (BOLD) fMRI data were
acquired using GE-EPI (20 axial slice, voxel size 2mm×2mm×
5mm, TE 45ms, TR 2.5s). During fMRI, subjects alternated
between 30s blocks of finger tapping, serial subtraction (counting
back in threes from a visually presented three-digit number) and rest
(ABACACAB, 3.5 repetitions). To ensure compliance, finger
tapping was performed using a button box, and subjects were asked
to enter the result of their calculation using the same button box at the
end of the counting block. The total scanning time for fMRI was
approximately 15min.

Areas 44 vs. 45
Eight volunteers underwent DTI scanning on a 1.5T Sonata

scanner (4 men, 4 women, age range 21–34years) on three different
days using the protocol mentioned above. Four of the volunteers also
received a fourth scan on a 3T Siemens Trio system (sequence
adjusted for TE 106ms, TR 13.8s), utilizing the Trio’s standard
quadrature head coil.

Data analysis

Common space
While DTI and fMRI analyses were carried out in native

acquisition space, result images were stored in MNI152 space in
both cases to enable comparison across modalities, scanners and
sessions. MNI152 space refers to the space defined by a template
generated at the Montréal Neurological Institute, where 152
stereotaxically normalized, T1-weighted scans were averaged to
form a standard representation of the human brain. This standard
template is distributed with FSL. Correspondence between MNI
and acquisition space was determined using two-step affine
registration (Jenkinson and Smith, 2001): first, transformation
parameters were determined to register the functional image in
question to a structural image obtained from the same volunteer.
Then, registration parameters were obtained taking the structural
image into MNI152 standard space. Both transformation matrices
were concatenated to obtain a transform that takes the functional
results into standard space.

fMRI analysis
fMRI data were analyzed using FMRIB’s software library

(http://www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004). Data were
motion corrected (Jenkinson and Smith, 2001), skull-stripped
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Fig. 2. Overview of the strategies used for pre-SMA vs. SMA segmentation
using fMRI, k-means clustering of DTI data and spectral reordering of the
CC matrix. Note the gap in fMRI results.
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(Smith, 2002), spatially smoothed with a Gaussian kernel (full
width at half maximum 3mm), intensity-normalized, and then
temporally high-pass filtered using a Gaussian-weighted least-
squares fit with a filter of σ=57s. Statistical analysis was per-
formed using FILM software with local autocorrelation correction
(Woolrich et al., 2001). Z statistic images were computed from
original T statistics and a threshold level of p=0.01 was applied.
Parameters for affine registration to MNI152 space were deter-
mined using individual’s structural images.

One subject was excluded from further analysis due to poor
fMRI response (fewer than 150 voxels activated during the
subtraction task).

DTI analysis
Diffusion data were corrected for eddy currents and headmotion by

affine registration to a reference volume. The three acquisitions
collected for each timepoint were averaged to increase SNR. Then,
probability distributions of fiber directions were calculated for each
brain voxel using FMRIB’s Diffusion Toolbox. In brief, probability
distributions of fiber orientation are estimated at every voxel. These
distributions’ widths correspond to the uncertainty associated with the
estimated fiber direction. Uncertainty is derived fromnoise and artifacts
in MR imaging, but also from incomplete modeling of the acquired
diffusion data, which models one fiber population in every voxel, even
though there may be other co-existing fiber populations. Using this
knowledge about local probability distributions, probabilistic diffusion
tractography can then estimate the pathways that pass through any
given seed voxel, as well as the probability that such a pathway will
pass through any other voxel in the brain (Behrens et al., 2003a,b).

For pre-SMA vs. SMA, a medial frontal mask was created in
MNI152 space. This mask was translated into each subject’s native
DTI space for tractography. For areas 44 and 45, cytoarchitectonic
probability data for both areas from FZ Jülich’s SPM Anatomy
toolbox (Eickhoff et al., 2005) were thresholded at 20% minimum
probability and transformed into MNI152 space using affine
registration (Jenkinson and Smith, 2001). The two datasets were
summed and binarized, and a sagittal slice was selected as seed mask.

For both studies, probabilistic tractography was run from every
voxel in the respective mask to assess connectivity with every brain
voxel. All tracking was performed in original DTI space but data
were stored in seed space, the MNI152 space referred to earlier. For
reasons of data storage, brain voxel space was sub-sampled to lower
resolution (5mm×5mm×5mm). Connectivity was expressed as the
number of particles from the seed voxel traveling through the low-
resolution brain voxel in question. Information about connectivity
was stored in an M-by-N matrix, where M denotes the number of
Fig. 1. The CC matrix in its native state, spectrally reordered, and k-means
voxels in the seed mask and N the number of voxels in low-
resolution brain space. Cross-correlation (CC) between the
connectivity patterns of all M voxels in the seed mask were
calculated and stored in anM-by-M CCmatrix (cf., Fig. 1, leftmost).

Classification by spectral reordering
This matrix was then reordered using a spectral-reordering

algorithm, minimizing the sum of the element value (CC value)
multiplied by the square of its distance to the matrix diagonal. The
idea is to put nodes close together if they are strongly connected. It
is not feasible to exhaustively search over all reorderings, so the
Fiedler approach exactly solves a related problem that has
continuous variables. For an in-depth discussion of this approach,
cf. Higham et al. (2006).

Potential clusters in the data will show up in the reordered matrix
and can be manually identified. A cut-off point was defined by eye
where there was a break in the connectivity pattern, dividing the
matrix into two subsets. As knowledge about the location of the M
seed voxels is retained throughout processing, the two subsets can
now be defined in volume space. The center of mass is calculated for
each, and the one with the more anterior coordinate defines which of
the two is pre-SMA or area 45, respectively.

Automated classification using k-means segmentation
The M-by-M CC matrix was fed into k-means segmentation for

automated clustering. The implementation uses the algorithm
published in Hartigan (1975). 200 iterations with a predetermined
classified. The bright red line indicates points of cluster separation.
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number of two clusters were performed, resulting in two subsets of
the M seed voxels. k-means clustering starts by randomly assigning
the columns of the matrix, equivalent to each voxel’s CC
characteristics, to one of the two clusters. Then, the iterative
process strives to minimize the variability within the clusters, while
maximizing the variability between them. This is achieved by (a)
computing the centroid of each cluster and (b) re-assigning the
elements to the clusters such that their squared difference from the
centroid is minimal. These steps are alternated until the preset
number of iterations is reached. This approach minimizes the mean
squared difference of each cluster’s elements from its centroid,
while maximizing the squared difference between cluster centroids.

In the case of pre-SMA vs. SMA, only voxels that had been
significantly activated in the fMRI study were selected for further
processing, but clustering was performed beforehand on the full
seed mask.

Fig. 1 depicts the CC matrix in its native state, where its
elements’ positions are solely determined by voxel location in the
seed mask. Further processing results in the spectrally reordered
Table 1
Results of internal and external validation of connectivity-based parcellation of ar

Internal validation

Area 44

Mean (%)

Areas 44 and 45: Areal agreement between timepoints
k-means clustering 88.8
Spectral reordering 90.5
Average across methods 89.7

Areal agreement between 1.5 T and 3 T scans
k-means clustering 88.9
Spectral reordering 86.6
Average across methods 87.7

Areal agreement between clustering methods
k-means clustering vs. spectral reordering 93.3

pre-SMA

Mean (%)

pre-SMA and SMA: Areal agreement between clustering methods
k-means clustering vs. spectral reordering 90.9

External validation

Area 44

Mean (%)

Area 44 and 45: Recovery of cytoarchitectonic probabilities
k-means clustering: recovered cytoarchitectonic probability 38.8
–As percentage of ideal segmentation 95
Spectral reordering: recovered cytoarchitectonic probability 38.9
–As percentage of ideal segmentation 95
Average across methods 38.9
–As percentage of ideal segmentation 95
For reference, an ideal segmentation would recover 40.9

pre-SMA

pre-SMA and SMA: Classification agreement between fMRI and DTI results
Concordant classification with k-means clustering and fMRI 82
Concordant classification with spectral reordering and fMRI 74
and the k-means classified versions, where a red bar indicates cut-
off between clusters (manually selected in the former, automati-
cally selected in the latter case).

Validation

pre-SMA vs. SMA
DTI results of spectral-reordering and k-means clustering were

validated against fMRI results. Also, agreement between classifi-
cation through spectral-reordering and k-means segmentation was
assessed.

Agreement between methods was quantified as the conditional
probability that a voxel classified as belonging to a particular
region in segmentation A would receive the same classification
using segmentation method B as in PA Bð Þ ¼ jA\Bj

jAj .
For differentiation between pre-SMA and SMA, fMRI results

served as the standard against which DTI was being evaluated.
Thus, fMRI results correspond to segmentation A in the notation
introduced above, resulting in the probability of a voxel being
ea 44 vs. 45 and pre-SMA vs. SMA

Area 45 Overall

SD Mean (%) SD Mean (%) SD

0.1302 88.2 0.1421 88.5 0.1337
0.0967 89.5 0.0927 90.0 0.0925
0.1147 88.8 0.1200 89.3 0.1150

0.1371 88.9 0.1495 88.9 0.1374
0.0749 85.6 0.0391 86.1 0.0580
0.1105 87.3 0.1093 87.5 0.1055

0.0509 93.5 0.0637 93.4 0.0576

SMA Overall

SD Mean (%) SD Mean (%) SD

0.0684 93.6 0.0625 92.2 0.0649

Area 45

SD Mean (%) SD

0.0194 47.1 0.0532
90

0.0181 48.9 0.0395
93

0.0188 48.0 0.0469
92
52.4

SMA

0.167 79 0.143
0.184 87 0.133
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classified as (pre-) SMA by DTI given its known designation from
fMRI.

Area 44 vs. area 45
For establishing reproducibility in the segmentation of area

44 vs. 45, there is no such standard. Thus, computation of conditional
probability in each pair of acquisitions in a given subject was
performed twice, crossing over the segmentations between runs.

For each pair A and B of acquisitions, PA(B)and PB(A)were then
averaged to give the overall, bilateral conditional probability of
concordant classification.

Equally, bilateral conditional probabilities were calculated to
assess agreement between clustering approaches in all scans of both
studies.

Results

Validation of medial frontal segmentation

Fig. 2 displays a sagittal slice through a typical result, comparing
fMRI and both DTI approaches.

Internal validation, expressed as bilateral conditional prob-
ability of concordant classification, demonstrated an agreement
between both DTI-based clustering approaches of 92%. External
Fig. 3. Reproducibility is established in a subject across dates and scanners. For co
cytoarchitectonic probabilities.
validation of DTI against fMRI results, expressed as likelihood of
correct classification with DTI-based approaches given the fMRI
result, established an average likelihood of concordant classifica-
tion of 74–87% (cf., Table 1 for detailed results).

Validation of area 44 vs. 45 segmentation

In Fig. 3, data from a single subject over all timepoints studied
are summarized, depicting a well-reproduced cut-off line across the
different acquisitions.

Internal validation showed agreement between clustering
methods of 93.4%. Average reproducibility across timepoints was
89.3%, while reproducibility between the two scanners used was
87.5% (cf., Table 1, also see Supplementary Material for details).

External validation was performed against cytoarchitectonic
data. Due to the probabilistic nature of the cytoarchitectonic maps,
the maximum recoverable probability is 40.9% for area 44 and
52.4% for area 45. Results of clustering are expressed as a per-
centage of these maximum achievable values.

Average recovery of cytoarchitectonic probability was 92 and
95% of the maximum possible value for area 44 and 45 (cf., Table 1
for detailed results).

Summed-up images of recovered cytoarchitecture are displayed
in Fig. 4, showing good agreement between the expected distri-
mparison, we depict individual anatomy and an ideal segmentation based on



Fig. 4. Likelihood of voxel classification as area 44 (blue) and area 45 (red) in our study collective using spectral-reordering and k-means segmentation of the CC
matrix is compared to established cytoarchitectonic data.
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bution as predicted via cytoarchitectonic maps and the actual
distribution of areas measured in our study collective.

Data on individual subject level are provided online as
Supplementary Material.

Discussion

Probabilistic diffusion tractography is a novel, non-invasive tool
in the analysis of structural and functional brain anatomy, and
parcellation of the human brain into functional areas is one of its
newest applications (Anwander et al., 2006; Johansen-Berg et al.,
2004). However, extending the use of such parcellations requires
validation of this approach by demonstrating its reproducibility over
time as well as across subjects and scanners. We have now
demonstrated feasibility, accuracy, repeatability and subject and
scanner independence of an automated parcellation of four different
areas in the human cortex based on probabilistic diffusion tracto-
graphy, enabling subject-specific segmentation of functional regions
even where activation tasks may offer ambiguous results (Cabeza
and Nyberg, 2000). Moreover, using k-means clustering, manual
interaction is minimized and classification is more objective than in
the previously published approach (Johansen-Berg et al., 2004).

Connectivity-based parcellation of grey matter has been pre-
viously demonstrated in medial (Johansen-Berg et al., 2004) and
inferior (Anwander et al., 2006) frontal cortex and the data presented
here suggests that parcellation in these regions is reproducible and
reliable. Generalizability of the approach to other brain regions,
however, has yet to be fully tested. For both regions tested so far, we
have strong a priori expectations of the number of anatomical
subregions that should be present, and therefore, certain limitations of
the clustering approaches employed (such as having to decide on the
number of clusters to separate for k-means clustering) are not serious.
As we extend the approach to other brain regions, however, it will
become increasingly important to explore techniques for automatic
determination of the optimal number of clusters for separation
(Girolami, 2002; Sanguinetti et al., 2005). Another feature of the
cortical areas subdivided so far is that the different regions have quite
distinct connectivity patterns and so cross-correlation in connectivity
between regions is low and separation of clusters is clear. In other
brain areas, such as the visual cortices, adjacent regions may have
more similar connection patterns and so divisions become less clear
cut. Exploration of methods such as fuzzy clustering could prove
useful for parcellation in such regions.

Separation of pre-SMA and SMA was highly consistent with
findings from fMRI. It should be noted that the separation line
predicted by DTI analysis, as depicted in Fig. 2, does not coincide
with the gap in the fMRI-generated mask or a sulcal line. The
former could suggest an artificial separation that benefits from the
fact that any coincidental separation line across the gap would
seem to separate pre-SMA from SMA, while the latter might be
due to local phenomena of fiber dispersion at the fundus of a
sulcus. Instead, the separation agrees with the functionally defined
separation in the same figure.

The agreement of the different DTI techniques with fMRI
results is about 80%. The spectral-reordering (Johansen-Berg et al.,
2004) and k-means (Anwander et al., 2006) approaches proposed
previously gave similar results in the examples shown here. The
k-means approach, however, has the advantage that the boundary
between clusters is identified objectively and does not have to be
determined by eye.

Separation of areas 44 and 45 of Brodmann was consistent with
their known distribution from cytoarchitectonic studies, as Fig. 4 and
recovered probability around 95% illustrate. Remarkably, the blend-
ing occurring between the two areas is very similar to the distribution
of probability that cytoarchitectonic analyses established (Fig. 4).
Those offer the most accurate method of separation available to date,
but are naturally available only for post-mortem analysis.

If the approaches described here successfully generalize to
other regions of cortex, then parcellation based on anatomical
connectivity could help bridge the gap that has so far existed be-
tween ex vivo anatomical and in vivo functional methods. By
allowing for identification of likely microstructural borders in vivo,
these approaches should enable further investigation of structure–
function relationships in the living human brain.

Some factors impact data quality in DTI scanning more than in
other EPI-based imaging approaches. The diffusion-weighted
sequence used suffers from the same B0 distortion problems that
BOLD imaging is notorious for, but additionally, induction of eddy
currents in metal parts of the scanner during each diffusion gradient
adds further image distortion. As explained above, we can correct
for that using affine registration, but inevitably, these effects cannot
be removed completely. Furthermore, contrast-to-noise is con-
siderably lower, owing to the fact that diffusion gradients need to
be applied for a certain period of time, which gives the excited
spins more time to decay. Long TR also means that fewer exci-
tations can be performed in a given amount of time.

While the initial signal at a field strength of 3T is higher, T2*
contrast decays more rapidly than at 1.5T, and the greater
distortions in B0 give rise to more pronounced artifacts as these
effects scale linearly with field strength. Our analysis shows that
the negative aspects of the aforementioned effects does not
significantly impact DTI in the areas under study, with reprodu-
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cibility of 87.5% between 1.5T and 3T acquisitions, which is
virtually identical to the overall reproducibility of 89.3%. Ad-
vances in scanner technology and sequence design (Andersson et
al., 2003; Bodurka et al., 2004; Gizewski et al., 2005) are expected
to resolve some of the technical issues presented and make 3T
more attractive as an imaging platform. Parallel imaging
techniques making use of array coils aim to significantly reduce
the amount of distortion, and also the scanning time. The latter is
particularly desirable in a clinical setting.

Given the current resolution available for DTI data, all major
fiber pathways can be traced. Still, improvements in DTI resolution
are desirable, as they will extend the scope of fiber populations that
can be explored.

Further analysis will need to assess if these methods are also
applicable to the diseased brain, which would offer an objective way
to identify specific target structures prior to neurosurgery, and also to
help avoid functional deficits in invasive procedures, even when
communication with and cooperation of a patient are impaired.
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