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To augment the discrete Runge-Kutta solutlon to the mitlal value problem, piecewlse Hermite

interpolants have been used to provide a continuous approximation with a continuous first

derivative We show that it M possible to construct mterpolants with arbltrardy many continu-

ous derivatives which have the same asymptotic accuracy and basic cost as the Hermite

interpol ants. We also show that the usual truncation coefficient analysis can be applied to these

new interpolants, allowing their accuracy to be examined in more detad As an Illustration, we

present some globally C2 interpolants for use with a popular 4th and 5th order Runge-Kutta

pair of Dormand and Prince, and we compare them theoretically and numerically with existing

interpolants.

Categories and Subject Descriptors: G 1.7 [Numerical Analysis]: Ordinary Differential Equa-

tions— mitzal value problems, stngle step methods; G 4 [Mathematical Software]: Algorithm
Analysis

General Terms: Performance, Reliability

Additional Key Words and Phrases: Hermlte, mterpolant, Runge-Kutta

1. INTRODUCTION

In this paper we look at the problem of superimposing a continuous inter-

polant onto the discretized approximation which arises when an explicit

Runge-Kutta (RK) method is used to solve the initial value problem

y’(x) = f(x, y(x)), y(a) = y.c RN, a~x <b. (1.1)

Such interpolants are clearly useful for producing dense output and for

plotting solution curves. They can also be used to solve root-finding problems

such as g( x, Y(x)) = O (see Enright’s et al. paper for example [51) and have
been successfully exploited in the integration of problems with low order

discontinuities [61. The availability of an interpolant, P(x), also opens up the

possibility of monitoring and controlling the defect (residual) 6(x):= p’(x) –

~( x, P( x)), which is a natural measure of the error in the numerical solution

[3, 4, 11, 12, 13, 141. A number of interpolation schemes have been proposed
in recent years. These schemes can be assessed according to the three main
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Highly Continuous Runge-Kutta Interpolants . 369

criteria of cost, accuracy, and degree of global continuity. The cost k usually

measured by the number of extra ~ evaluations per step required to construct

the interpolant. The basic measure of accuracy is the asymptotic order of the

local error, although more detailed information can be obtained by examin-

ing the leading truncation cc}efficients in the local error expansion. With the

exception of some early schemes of Horn [15], most RK interpolants have

global Cl continuity. The main purpose of this work is to show that the

standard Cl Hermite interpo [ants introduced by Shampine [201 can be adapted

so that they have an arbitrary number of continuous derivatives, without

affecting either the order of accuracy or the cost. We show how to obtain a

local error expansion for the new interpolants, and, for the specific examples

that we consider, we quantifi~ the extent to which the local accuracjy depends

on the mesh distortion.

2. HERMITE INTERPOLANTS

An s-stage, pth order RK formula applied to (1.1) advances the discrete

approximation y. = Y( x.) to the point X.+l = x. + h, according to

where

( )k: = f xn+c,hn, yn+hn? a,lk~ , i=l ,. ... s.
]=1

The coefficients { a,j, b,, c,} y,~. 1 which define the formula can be displayed in
the tableau

c1

C2

C2

%1
a12 . . . . . . . . .

%, s

a21

We are concerned here with the use of explicit RK formulas, for which

a = O when j > i, although implicit formulas will be needed later for the

p~rpose of analysis. The local solution for the step, u.(x), is defined by

.u~(x~) = y. and u;(x) = ~( x, u~(x)), and the local error satisfies y~+l —

P+ l). (Here, and throughout the paper, we assume that f is~.((ix. +1) = O(h.
sufficiently differentiable.) 11~modern codes, in order to obtain an efficient,

reliable solution, the stepsize h. is varied throughout the integration, with

the proviso that some error measure (usually an estimate of the local error in

a subsidiary, lower order a~pproximation) is kept within a user-supplied

tolerance. An interpolant prt( x) which approximates u.(x) over [ .x., x.+ ~1
may also be formed. Typically p~( x) interpolates to a set of local data which

includes y., f(x., y.), y. + 1 and f(x. +l, Y.+l). We say that P.(x) has local
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370 . Desmond J. Higham

order q + 1 if p.(x) – ~n(x) = O(lz~+l). A

then be constructed by Joining together the

fashion:

P(x) := p.(x) for x=(

global approximation p(x) may

local interpolants in a piecewise

xxn> 1n+l .

For a pth order RK formula, the global error Y.+l – Y( xn+J is O(%k),
where h~aX = max{ h.}, and hence an interpolant of local order p may be

sufficient for such purposes as dense output and plotting. However, there are

other applications, including some root-finding and defect control algorithms,

which require a local order of p + 1.

In this section we restrict our attention to the Hermite interpolants which

were introduced by Shampine [20]. To define these interpolants, we require

the existence of distinct points { &,} fl ~ in [ x., x.+ ~] with corresponding

approximations u, ~ RN such that

U, — un(:,) = O(h;+l), i=l, . . ..m.

We also require the derivative data u: := f(i, /, U,/) e RN to be available for
i = 1, . . . . r < m. For Lipschitzian f’, this implies that

u; — U;(~L) = O(h:+l), i=l ,.. .,r.

We may take &l = x., UI = y., g, = X.+l, and Ur = y~+l. (Note that u; =
f( x.+,, y.+,) is needed at the start of the next step, and hence is available at

no extra cost. ) We assume that any additional data u, and u{ that is used is

generated by adding stages, if necessary, to the RK step. Specifically, we

require that the RK tableau can be extended into an explicit t-stage tableau

with coefficients { a,~, b,, CL}:, J=l Such that U: = ~:, for some h,e{l,2,. ... t},

and such that each u, has the form

We then define p~( x) to be the unique Hermite interpolating polynomial in

P ~+,. ~ which satisfies

Pn(t, ) = u,, i=l, . . ..m.

P;($, ) = z i=l >. ... r,

where Pm+,. ~ is the set of polynomials from R ~ R N of degree less than or
equal to m + r — 1.

Shampine examined the accuracy of the above Hermite interpolant and its

derivatives, showing that

p~~)(x) – u~~)(x) = O(hyd-~), O<k<m+r, (2.1)

where ord = rein{ m + r, q + 1}. The result can be interpreted as saying that

to achieve a certain order of accuracy, both the order of accuracy of the data,

q + 1, and the number of pieces of data, m + r, must be sufficiently large.
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Highly Continuous Runge-Kutta Interpolants . 371

Since adjacent local interpolants p~( x) and p.+ 1( x) both interpolate to the

solution value y.+ ~ and the derivative value f( x. + ~, y.+ ~) at x.+ ~, it follows

that the piecewise polynomial P(x) is continuous and has a continuous first

derivative. In the next section, we develop a new class of interpolants which

have a higher degree of continuity.

3. FULLY HERMITE INTERPOI.ANTS

In order to achieve a greater degree of global continuity from a piecewise

polynomial interpolant, it is clear that the higher derivatives of the local

interpolants must be forced to match at the mesh points. To this end, we

consider below the fully Hernzite interpolant. (Note that there is some

ambiguity in the literature over the meaning of the phrase “Herm ite inter-

polant .“ We use a slight variation of the nomenclature used by Davis [1] in

referring to the interpolants defined in Section 2 as Hermite, and the more

general interpolants defined below as fully Hermite.)

The fully Hermite interpolating polynomial q~( x) is defined in terlms of the

data {p,}:= I and { vj}~~~i~ 1 bY

&(Pt) = u:> O~j<l, –l, l~i <k. (3.1)

If the points {p,}~=l in [x., x ~+ ~1 are distinct, then letting L == z ~=~lz,

qn( X) ~ % 1 exists and is unique from the standard interpolation theory [1,
p. 281. We assume that the data has the following asymptotic order of

accuracy,

u; – Uy)(pt) = o(h:+l-~). (3.2)

The accuracy of qn( x) can be examined by extending the arguments of

Shampine [20]. The analysis is greatly simplified by the introduction of the

normalized variable ~ := ( x -- x~)/ h.. We may write the interpolant in the

following form

(3.3)

where d, ~(~) is the unique scalar polynomial of degree not exceeding L – 1

which satisfies

d:’}(~~) = O if i#sor J” #t, for O~t<l, andl<s~k

=1 if i=sandj=t

where ~~ = (K. – x.)/h.. The interpolation conditions (3. 1) are easily veri-

fied, (Note that d/ dx = (1/A)n)d / d~). To examine the local error, we first

introduce the polynomial Q.(x) .s PL _ ~ which matches the exact data:

The local error may then be clecomposed into two components

q.(x) - u.(x) = [gn(x) - Qn(x)] + [Q.(x) - u.(x)],
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372 . Desmond J. Higham

where the first term in square brackets may be thought of as the data error

and the second term may be thought of as the interpolation error. Taking

equation (3. 3) and subtracting the corresponding expression for Q.( x. + ~h.)

we obtain

Since the polynomials d,,j(~) are bounded on [0, 11, it follows from (3.2) and

(3.4) that the data error satisfies

qn(x) – Qn(x) = O(h::l).

Similarly, the data error in the kth derivative satisfies

q:k)(x) – Q~k)(x) = O(h@+l-k).

The main result of Kansey’s paper [17] can be used to give the following

expression for the interpolation error,

Hence, recombining the interpolation and data errors, we find

qy(x) – Z@(x) = o(hy(~+l’-k), O<k <L, (3.5)

which generalizes (2. 1).

To construct an interpolant q(x) with a high degree of global continuity,

we must obtain data corresponding to derivatives of u.(x) at x. and x.+ ~.

Choosing PI = x., ~k = X.+l, and ZI = lk = D + 1 will give D continuous

derivatives, providing that the data { v:}~~=~ agrees with the data { U~}~~=~ from

the previous step. One way to obtain such data is to differentiate the Hermite

polynomial P.(x) from Section 2; that is, we set

‘J)(xn+,),u~ = pn O<j <D,

and, in order to match the derivative data from the previous step, we set

For D s oral, the error result (2.1) shows that

u~ - u~)(xn+l) = O(h~d-J), O <j < D (3.6)

and

(Note that u._ I(x) denotes the local solution for the previous step.) For

sufficiently smooth ~, we can replace u ~_ I( x) in (3.7) by the current local

solution, to give

Uj—n ord –JZJ’yxn) = O(hn ) O<j <D, (3.8)
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assuming h._ ~ /h. remains bounded above. Hence, with @+ 11= ord in

(3.2), using pm(x) to provide additional pieces of data so that L > m-d, we see

from (3.5) that it is possible to construct an interpolant q~( x) which is

accurate to 0( h~d). Furthermore, from (3.2), for j > oral, vi and vi do not

need any asymptotic accuracy, and hence, theoretically, we could achieve an

arbitrary degree of continuity fi by fixing

v;=v~=o, j=ord+l ,. ... D.

Note that the interpolant q~( x) defined above has the same asymptotic

order of accuracy as the underlying interpolant p~( x) from which it is

defined. Also, the formation of q~( x) does not require any additional ~

evaluations (other than those needed to form p~( x)). However, ~since it is

typically a higher degree polynomial, the overhead of evaluating q~( x) will

be greater than that of evaluating p~( x), and extra storage will be needed for

the additional D – 1 derivative values which must be passed frclm step to

step. For these reasons, and because of the oscillatory nature of high degree

polynomials, the fully Hermite interpolant is only likely to be of practical use

when D is reasonably smal 1. Particular examples for which D = 2 will be

given in the next section.

Like the basic RK method, Hermite interpolants are one-step in nature;

that is, P.(x) does not require any information other than y. to be carried

forward from the previous step. In order to obtain the extra global continuity

of the fully Hermite interpolants, however, we were forced to relax the

one-step property: q~( x) is a two-step interpolant since it requires derivatives

of p._ 1( x) from the previous step. This is reflected by our requirement in

(3.8) that h~_ ~ / h. remains bounded. Intuitively, if the previous stepsize

h ._ ~ was much larger than the current stepsize h. then we would expect the

data p$/?l(x.), j = 2, . . . . D to be inappropriate. One of our aims in the next

section is to quantify the range of h ~_ ~ / h ~ for which the data from the

previous step is sufficiently accurate.

An alternative approach for constructing a fully Hermite interpolant is as

follows: use the derivatives of the previous fully Hermite interpolant at x.,

so that V? = Y~, u; = f’(x~, Y,,), and U< = q~!l(x.) for j = 2, 3, ..., D, and use

only Yn + 1 and f( x.+ ~, y..+ 1) as data at x.+ ~. The resulting glclbal inter-
polant will have D continuous derivatives and does not use P.(x) or pm. 1( x)

to produce data. In this way it may be possible to avoid computing some of

the extra stages needed to form p~( x). However, with this approach there is a

danger that instabilities may arise when the higher derivative data is

updated from step to step. The author examined several schemes of this form,

with D = 2,3,4,5, and found each of them to be unstable; the process of

forming [ q~2J(x~+ ~), q~3)( x. + ~), . . . , q~D)( x~+ ~)lTinvolves multiplying

[ q~2! I( Xn), q~3?I( Xn),. ... q~?l( Xn)lT by a matrix whose spectral radius de-
pends upon the ratio h.. ~ /h. and is typically much larger than unity. These

instabilities manifested themselves in practice. The Hermite interpolant

P.(X) of Section 2 uses only data computed on the current step and lhence will
not suffer from such instabilities. Similarly, the fully Hermite interpolant

defined earlier in terms of F.(x) and pm_ 1( x) will also be stable.
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We point out at this stage that it will not always be appropriate to ask for a

high degree of continuity in an interpolant, since there are many practical

problems where the solution y(x) has a low order discontinuity. It is reason-

able to assume that f in (1.1) is continuous, which implies the continuity of

Y’(x), but in general additional assumptions about f may not be valid. Hence

the interpolants presented here are not intended to be used as first-choice

interpolants for general purpose codes. However, on problems where it is

known that y(x) has many continuous derivatives, the option of a smoother

interpolant may be useful. Generally, whenever the interpolant is to be

post-processed in some way, the extra smoothness could prove valuable. In

particular, there are applications where C2 continuity is necessary, (see

Gladwell et al., [81). As mentioned by Gladwell et al., [81, a globally C2

approximation could be obtained by fitting a cubic spline to the data { x., y.}.

However, in this context, cubic splines suffer from the following deficiencies:

(i)

(ii)

(iii)

With exact data y. = Y( x.), the error in the cubic spline C(x) has the

form

~a;llC(x) – y(x)ll = O(h$_), hmaX = max{h.},

(see, Schultz for example [19, p. 541). Hence, for a RK formula of order

= 5, C(x) cannot match the order of accuracy at the mesh points.

In general, all the data { x., y.} must be computed and stored before the

spline can be formed, whereas the fully Hermite interpolant can be

generated dynamically and requires only a relatively small amount of

information to be passed from step to step.

Unlike the fully Hermite interpolant, the cubic spline does not satisfy

the desirable condition C’( x.) = f( x., C( x.)).

4. TRUNCATION ANALYSIS

The local error in a pth order RK formula can be expanded as

rp+l

Yn+l – Un(xn+l) = h;+’ ~ !qp+’)q(~+’’(zn, yn) + O(h:+z), (4.1)
J=l

where the truncation coefficients TJ(P+ 1) e R depend only on the RK formula,

and the elementary differentials F~p + 1)( x., y.) e RN depend only on the

differential equations. For simplicity, we write ~(p+ 1)(x., y.) = F~p+ l). For
small values of h., the local accuracy of y.+ ~ is governed by the leading term

in (4.1), and hence it is desirable to make this term as small as possible.

Although this term is problem-dependent, it is widely believed that there is

some virtue in choosing the RK formula so that some norm of the truncation

coefficients is small [2,211. (Usually either the Euclidean norm or the infinity

norm is used.) Numerical tests have shown that reducing the size of IIT(p+ 1) II

increases the overall efficiency when a large set of problems is solved,

although other constraints on the truncation coefficients should be imposed

to ensure that the error estimate behaves reliably, (see Prince and Dormand

[181).
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Shampine showed that an analogue of the expansion (4.1) can be obtained

for the Hermite interpolants. To see this, first write p~( x) in normalized

form,

(4.2)

From the form of the data { u,}~ ~ and { u~}~= ~, it follows that (4.2) may be

re-arranged to give

where e,(~) is a known polynomial. Using the identity x ~ ~d,, o(~) = 1

(which follows from the fact that g(~) = X:= ~d,, o(,) – 1 is a polynomial of

degree s m + r – 1 with at least m + r roots, counting multiplicity) we

may write

t eL(7-)
pn(xn + Thn) = yn + Thn ~ —k:.

~=1 T
(4.4)

Thus, for any fixed ~ e [0, 1] p~( x. + Th.) can be regarded as coming from a

step of length ~h ~ with the t-stage explicit RK formula with coefficients

{aL~/~j eL(~)/~j Cz/7}~,j=1. It follows from (4.1) that the local error can be

expanded in the form

Pn(xn + Thn) – Un(xn + Thn) = (Thn)”rd ~ 7“~(T)q”’@ + 0(12::+ 1).
J=l

(4.5)

If ord = p + 1, then the ratio ~~+lllT(P+l) (~)11/ II1“(~+1)11 can be used as a

basis for assessing the relative local accuracy of the interpolant and the

underlying RK formula [9].

At first sight, the style of analysis above does not seem to be applicable to

the fully Hermite interpolant q~( x), since this interpolant makes use of the ~

},. 1 from the previous step. However, we show below thatevaluations { k,’- 1 t

q~( X. + ~hn) can be manipulated into a suitable form by introducing, for the
purpose of analysis only, a related (2 t) x (2 t)implicit RK tableau.

Denoting the ratio h.. ~ /h~ by o, we see that

( )k:-l = f Xn., + c,hn.,, yn.l + h.-l ~ aZJk~-l , i=l >. ... t,
j=l

may be written

( ( ))k:-l = f Xn + (Cz – l)uhn,,yn + h. ,~1 a,Jak~-l -,$1 bJakY-’ ,

i=l, . . ..t. (4.6)
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Also, we have

0 := Pn-l(%) = Yn>VI

and, from (4.4),

()1’u; := p:?l(xn) ‘ ~ hn., ~ f+’(l)k;
n–1 J=l

(-)

1
J–l t

—— Z e$)(l)k:-l, j = 1,.
oh. ~=1

Similarly, for i = 2, . . . . k,

()1
J–1

v: := Py(p,) = ~ i e!)(-yz)~f, j=l,

n C=l

L

, D.

.,1, –1

(4.7)

(4.8)

(4.8)

(4.9)

Substituting (4. 7) to (4.9) in (3.3) we find that q~( x. + rh ~) has the form

(4.10)

where ~~(r) is a polynomial in r, and 2~(o, r) is a polynomial in r and a

rational polynomial in o. Hence, using the identity X ~=~d,, o(~) = 1 in (4.10),

it follows from (4.6) that q.( x. + ~h.) may be regarded as the result of a step

of length ~h. with the (implicit) 2 t – stage RK method given by the tableau

Cl/r

c2/T

et/T

(C1 - 1)0/7

(C2 - l)u/T
(4.11)
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Hence, from (4. 1), the local error in the interpolant may be written in the

form

qn(xn + Thn) – Un(xn + Thn) = (dzn)”rd~ iy”’qo> T)q”’d) + O(hp+l).
J=l

(4.12)

The truncation coefficients ~(ord)(u, T) are determined by the tableau (4.11)

and are computable for any choices of r and D. We may thus gain some

insight into the relative accuracy of q~( x) and p~( x) by examining the ratio

max,e[o,ll{~”’dll ?(ord)(~, 0) II}
r(a) := —

maxr~[o,ll{~ord ll~(ord)(~)ll} “
(4.12)

Also, by varying u in (4.12) we can gauge the extent to which the per-

formance of q~( x) is likely tc) depend upon the local mesh pattern.

To illustrate the ideas discussed so far, we consider the Dormand-Prince

formula pair RK5(4)7FM [2]. We assume that the 5th order formula is used to

advance the solution. The method uses 7 stages with the ‘first-same-as-last’

property (k 7 = ~( x. + ~, y.+ ~)’) so that only 6 new function evaluations are
required on a general step. Shampine [21] showed that a locally 0( h:)

approximation Uz = u.( x. + .5hn) can be constructed from { k ,’}~= ~. Hence

with m = 3, r = 2 and q + 1 = 5, a Hermite interpolant with local (order 5 is

available. We denote this interpolant by p~( x). We may then consider the

two fully Hermite interpolants, q(~’( x) and q~’7( x), which are defined in

terms of P:(x) as follows:

q:’6(x): u{ = p:g](xn), .i= 0,1,2,

5(J)(xn + 1),Vi = pn j=0,1,2, (k=2,11=lz=3, L=6)

qy(x): v: = p:y](xn), ~i= 0,1,2,

U; = p~(xn + .5hJ,

) j=0,1,2, (k=3,11= 1,=3,1, =1, _L= 7).vi = pp(xn+l ,

Both interpolants have local order 5 and possess global C2 continuity. Note

that q~”( x) interpolates to the minimum amount of data, while fcm q~’7( x)

we have added the extra value p~( x. + .5h~) which is Uz.

A locally 6th order Hermite interpolant for RK5(4)7FM was also given in

[21]. Here an extra stage waa added to the method and it was shown that an

O(h~) approximation Uz = u.( x. + .5hm) could be formed. Hence with m = r

= 3 and q + 1 = 6 the resulting interpolant, p~( x), has local order 6. Based

on p;(x) we define the following fully Hermite interpolants,

d’6(~)’“i = I&}(%), j= 0,1,2,

vi = p:(J) (xn+l), j=0,1,2, (k=2,11=lz=3, L==6)
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d“(~)’ Ui = PM(L2)
Ug = P:(xn + .5hn),

j= 0,1,2,

6(J)(xn+J7U$ = pn j=0,1,2, (k=3,11= 1,=3,1, =1, L=7)

j=o, l,2,

u~ = p:(J)(xn + .5hn), j=o, l,

6(J)(%2+I))u; = pn j=0,1,2, (h =3,11=13=3,12=2, L= 8).

These interpolants have global C2 continuity and are of local order 6. For

q~’G( x) we use the minimum 6 pieces of data, and for q~’7( x) and q~’8( x) we

add the extra data U2 and { Uz, u~ } respectively.

In order to monitor the behavior of r(u) in (4.12) for these new inter-

polants, it is necessary to determine a reasonable range of values for g :=

h.., /h~. Modern codes vary the stepsize in order to take account of the

nature of solution, while ensuring that on every step some error test is

satisfied. An asymptotic model which predicts the effect on the error estimate

of a change in stepsize is used as the basis of the stepsize-changing algo-

rithm. (Precise implementation details of stepsize-changing algorithms for

several codes are given by Shampine and Watts [22]. ) There are two distinct

cases to consider:

(i) A successful step from x.. ~ to x.. ~ + h._ ~ = x. has been taken, and a

stepsize h. must be chosen for the next attempted step to x. + h..

(ii) An attempted step from x. to x. + h. failed the error test and a smaller

stepsize with which to reattempt the step must be chosen.

For case (i), most codes impose a limit of the form ~~ s ah.. ~ on the amount

by which the stepsize can be increased. It follows that on every step we will

have ~ z 1/ CY.A typical value for a is 5. A simple upper bound for o cannot

be derived, because it may be necessary to apply the stepsize reduction (ii)

repeatedly before the error test is finally satisfied. Usually codes restrict the

factor by which the stepsize may be reduced after a failed step, although a

large reduction may be enforced after a fixed number of successive failures.

As an example, DVERK [16] uses an asymptotic formula after the first failed

step, and then halves the stepsize if successive failures arise. In the testing

below, we allow u to vary between .2 and 8. The case o = 8 would arise, for
example, if fin = h ~_ ~ in (i) and then three stepsize halvings were performed

before the step was successful.

In Table I we give values of r(a), measured in the Euclidean norm, for
g = Zk, – 1< k <3. (To obtain the “maximum” values for ~s [0,1] in (4.12),

we sampled at 20 equally spaced points in [0, l]. ) The interpolants q~’6( x)
and q~’ 7(x) are compared with p~( x), and q~’G( x), q~’7( x) and q~’8( X) are

compared with p~( x). Detailed plots of r(a) for u in the range [.2, 2] are

given in Figures 1-5. (Note that the scale varies between plots.)
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Table I. r(~) Values Using the Euclidean Norm

u .5 1 2 4 8

9:’ ‘(~)! P:(x) 1.6E0 2.6E0 1.3E1 9.3EI 7.4E2

9:’ 7(~)> P:(x) 4.9E – 1 4.6E – 1 4.lEO 3.5E1 2.8E2

@6(~), P:(x) 8.lE – 1 1.3E0 1.8E1 2.8E2 4.5E3

9:’7(~)) P;(x) 1.OEO 1.OEO 6.9E0 1.1E2 1.7E3

9: ‘( ~)) P:(x) 1.OEO 1.OEO 4.OEO 6.lE1 9.7E2
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.“
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.“
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4 .... ... ... ..
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. ... ..
... ... . ...””””
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.2 .4 6 .8 1 1.2 1.4 1.6 1.8 2

ff

Fig. 1. r(o) values for q5’6(x) and p5(x) interpolants

solid line = Euclidean norm

dotted line = infinity norm.

Although a local interpolant is normally used only to provide approxima-

tions for ~ ● [0, 1], there are applications where extrapolation to ~ e [0,2] is

necessary; for example, see Enright et al. [6]. Hence, in Table II we present

the ratio

miaxre[o,zl{~”rd II 2P(0rd)(7, u) 1]}
T(U) := —

rnaxr=[o,zl{~ordll ~(ord)(~)]l} “

Table I and Figures 1-5, which deal with r ~ [0, 1], indicate that the

accuracy of the new interpolants decreases as a increases beyond 1. For
a = 8, the truncation coefficients are as much as four thousand times as large

as those of the corresponding Hermite interpolant. These results are not

surprising, since, as we mentioned in Section 3, if h ~_ ~ > h ~ then the data

from the previous step is likely to be less accurate than that obtained during

the current step. Further insight is gained by noting that, from (2. 1),

J&i(%) - Z&l(xn) = O(h;.l) = 0(a3h;).

ACM Transactions on Mathematical Software, Vol 17, No. 3, September 1991.



380 . Desmond J, Higham

5

4–
.“

.’
..

..
.“

3– .“
.“

r(u)
..

..
..

2– ..
......

l–

....................

0 I
I I I I I I I I

.2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2

u

Fig. 2. r(u) values for q5, 7( x) and p5( x) interpolants

solid line = Euclidean norm

dotted line = infinity norm.
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Fig. 3. ~(u) values for q6”( x) and P6( x) interpolants,

solid line = Euclidean norm

dotted line = infinity norm.

So the data error passed to q~”( x) from the previous step should behave like

a 3. Similarly, a a4 term arises for the higher order interpolants. Also, we see

that in general, for 0>1, q~”( x) has smaller r(o) values than q~’7( x),
which in turn has smaller values than q~’ G(x). Similarly the r(o) values for
q~’7( x) are smaller than those for q~”( x). A plausible explanation for this is
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Fig. 4. r(o) values for q6’7( x) and p6( x) interpolants

solid line = Euclidean norm

dotted line = infinity norm.
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Fig. 5. r(u) values for qe’ ‘(x) and P6( x) interpolants.

solid line = Euclidean norm

dotted line = infinity norm.

that adding extra data from the current step diminishes the effect of the

inaccurate data from the previous step.

Overall, the results suggest that if u > = 2 with the locally sixth order
interpolants, or if a > = 4 with the locally fifth order interpolants, then the

fully Hermites will have much larger local errors than their standard
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Table II. F(u) Values using the Euclidean Norm

o .5 1 2 4 8

9:’6(~),d(x) 6.OE – 1 3.2E – 1 1.9E0 2.OE1 1.6E2

9;’ 7(~)>P:(~) 2.2E0 3.OEO 9.5E0 6.lE1 4,8E2

9:’6(~), P:(l) 1.lEO 1.OEO 2,0E0 4 3E1 7.0E2

9:’ 7(X)> P;(~) 6.9E – 1 1.lEO 8.7E0 1.3E2 2.1E3

q:’s(x), P:(x) 2.2E0 1.4E0 2.3E1 3.9E2 6.3E3

Hermite counterparts. Note that u can be computed on every step and hence

it would be possible to monitor its size and, if necessary, switch from a C2 to

a Cl interpolant. (We mention that one of the most common causes of a rapid

stepsize reduction is a singularity or low order discontinuity in the local

solution. In this case it is obviously inappropriate to ask for too much

smoothness from the interpolant. )

5. NUMERICAL TESTING

In this section we record the results of some numerical testing of the new

interpolants. For the tests, the RK5(4)7FM pair [2] was implemented with a

standard error-control mechanism (locally extrapolated error-per-step) using

an absolute local error tolerance of TOL. After a successful step from x._ ~ to

x n—1 + h..l, a new stepsize h. for the next attempted step was chosen

according to the usual asymptotically-based criterion (see Hall and Higham

[101), subject to the constraint h. s 5h._ ~. After each rejected step, the
stepsize was halved and the step retaken.

On every step, each of the interpolants discussed in Section 4 was formed.

(On the initial step a fully Hermite interpolant was defined to be the same as

the underlying Hermite interpolant.) For each interpolant r~( x) we found the

overall maximum global error based on ten samples from every step, that is,

=[r] ‘= III:x{,:~@n(xn + (~/lo)k) - Y(X, + (W)izllz]}—

Similarly, to monitor the local error we used

le[rl ‘= max{,~;o[llrn(% + (~@)k) - %(% + WWL)I121}n

where ii~(x~ + (i/lO)h~) is the result of a step from x. to x. + (i\lO)h~
with the 8th order RK formula of the RK8(7) 13M pair of Prince and

Dormand [18].

We also computed the maximum discontinuity in the second derivatives of

the two Hermite interpolants:
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Table 1[11. Orbit Problem with e = .1

le[ q5,6]/le[ p5] 1.0 1.0 1.1 1.1

le[q5’7]/le[ p5] 1.0 1.0 1.0 1.0

le[q661/le[ P6] 1.0 1.0 1.0 1.0

le[q6’71/le[ p6] 1.0 1.0 1.0 1.0

le[ q6, 8]/le[ p6] 1,0 1.0 1.0 1,10

max. o 2.0 2.2 1.0 1.(0

min. a 0.5 0.3 0.3 0.3

d5 2.lEO 2.8E – 2 1.6E – 3 1.lE–4

d6 2.7E0 6.3E – 2 8.5E – 4 1,(3E – 5

Table IV. Orbit Problem with e = ,5

le[q561/le[p5] 1.0 0.7 2.5 2.!5

le[q5’71/le[p5] 1.0 0.8 0.8 0.’7

le[q6’61/le[p6] 1.010 1.0 1.0 1.0

le[ q6, 71/le[ Pel 1.0 1.0 1.0

le[ q6, 81/le[ P61 1.0 1.0 1.0 1.0

max. u 4.4 2.0 2.2 1.1

min. o 0.5 0.5 0.5 0.’7

d5 3.8E0 4.2E – 1 3.3E – 2 2.2E – 3

de 6.2E0 2.7E – 1 3.9E – 3 6.;3E – 5

Finally, we recorded the maximum and minimum values of u (= h._ ~ / h.).

(For the maximum value, we ignored the case where the stepsize on the last

step is artificially reduced in order to hit the desired output point b.)

We used the orbit equations [7, Class D]:

Y; =Y3> yl(o) = 1 – E,

Y;=Y4> Y2(0) = 0>

– Y1

‘~= (y: + Y;)’2 Y3(0) = 0,

1+, ’12

()
~i = ~yf;;;)3,2) Y4(0) = ~ _ , , 0SXS20,

with values of .1, .5, and .9 for the eccentricity parameter e.

The results are presented in Tables III-V. We see that, in terms of the

maximum local error,

“ 8 and p: perform almost identically,‘q~’Gt q~’79 qn

—the error in q~’6 is occasionally smaller than that of p~, but is sometimes

larger by a factor of up to 2.6.

—!l:’7 is always at least as accurate as p:.
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Table V. Orbit Problem with ~ = 9

TOL 10-2 10-4 10-6 ~~-8

le[q6GI/le[p51 1.2 0.8 2.6 2.6

le[q571/le[p51 1.0 0.7 0.7 0.4

le[q661/le[p61 1.0 1.8 1.0 0.8

le[q6,71/le[p61 1,0 1.0 1.0 1.1

le[q681/le[ p61 1.0 1,0 1.0 1.0

max. u 4.0 21 2.2 1.1

min. u 0,5 0.5 0.5 0.7

d5 8 7E2 1 2E2 1.OE1 61E–1

d6 1 2E3 3.8E1 5.8E – 1 llE–2

The corresponding ratios for the maximum global errors were 1.0 in all

cases. Note that the maximum u value is typically = 2, and can be as large

as 4.4. Hence, given the truncation analysis of Section 4, the competitive

performance of the fully Hermite interpolants is perhaps surprising. A more

detailed examination of the local errors incurred on every step showed that,

on the steps where u was large ( > = 2), the fully Hermite interpolants had

local errors which were greater than those of the corresponding Hermite

interpolants by a factor of up to 30. (On such steps the relative performance

of the fully Hermite interpolants improved with the amount of extra data

taken from the current step, as the results of Section 4 suggest.) However,

the local errors on such steps were never as large as the overall maximum

values, and hence made no impact on the tabulated results.

The results also show that the Hermite interpolants can have second

derivative discontinuities which are several orders of magnitude larger than

the local error tolerance. This behavior can be explained as follows. From

(2.1), with ord = 5, we have

It?](%) - &!,(%J = O(M),

py(xn) - uy(xn) = O(h:),

and similarly, with ord = 6,

Pwl(xn) - w,(%) = O(MJ,

py(xn) – U:’(xn) = O(h:).

Hence, the best results that we can deduce from (2.1) about the second

derivative discontinuities are

( ) = O(WJ,py(xn) – Pyl x.

P:(’)(xn) - p:<i( x.) = O(h:) ~
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Since the local error estimate, whose norm is being kept smaller than TOL, is

an O(h~) quantity, it is reasonable to expect O(h~) and 0( h%) quantities to

be much larger than TOL.

In summary, the analysis and results presented here show that, on suffi-

ciently smooth problems, unwanted derivative discontinuities can be avoided

by the use of fully Hermite interpolants. We have given a theoretical

framework for assessing the accuracy of these interpolants, as a function of

the local stepsize ratio h._ ~ / h., and we have shown that practical C2

schemes exist for the Dormand-Prince formula pair RK5(4)7FM.
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