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Spectral analysis of two-signed microarray expression data
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We give a simple and informative derivation of a spectral algorithm for clustering and reordering com-
plementary DNA microarray expression data. Here, expression levels of a set of genes are recorded sim-
ultaneously across a number of samples, with a positive weight reflecting up-regulation and a negative
weight reflecting down-regulation. We give theoretical support for the algorithm based on a biologic-
ally justified hypothesis about the structure of the data, and illustrate its use on public domain data in
the context of unsupervised tumour classification. The algorithm is derived by considering a discrete
optimization problem and then relaxing to the continuous realm. We prove that in the case where the
data have an inherent ‘checkerboard’ sign pattern, the algorithm will automatically reveal that pattern.
Further, our derivation shows that the algorithm may be regarded as imposing a random graph model
on the expression levels and then clustering from a maximum likelihood perspective. This indicates that
the output will be tolerant to perturbations and will reveal ‘near-checkerboard’ patterns when these are
present in the data. It is interesting to note that the checkerboard structure is revealed by the first (dom-
inant) singular vectors—previous work on spectral methods has focussed on the case of nonnegative edge
weights, where only the second and higher singular vectors are relevant. We illustrate the algorithm on
real and synthetic data, and then use it in a tumour classification context on three different cancer data
sets. Our results show that respecting the two-signed nature of the data (thereby distinguishing between
up-regulation and down-regulation) reveals structures that cannot be gleaned from the absolute value data
(where up- and down-regulation are both regarded as ‘changes’).

Keywords: bioinformatics; cDNA; checkerboard; clustering; data mining; maximum likelihood; micro-
array; reordering; singular value decomposition; tumour classification; unsupervised feature extraction.

10

15

20

25

1. Introduction

Spectral algorithms for dimension reduction and clustering are known to be useful in a range of areas of
science and engineering. In particular, they have found success in bioinformatics applications involving30

gene/protein expression and interaction data sets (Grindrod & Kibble, 2004; Kluger et al., 2003; Xing &
Karp, 2001). The bipartite graph framework is a natural setting for many large gene expression data sets
that are currently being generated from high-throughput microarray experiments. Our aim in this work
is to develop, analyse and test the basis of a spectral algorithm for clustering such a bipartite graph. Our
emphasis is on the case where the entire data set, combining both up- and down-regulation, is treated as a35

whole. From a graph theory perspective, this corresponds to allowing both positive and negative weights,
whereas typical clustering algorithms assume that edge weights are nonnegative. We are interested in
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the big-picture question of how a spectral decomposition can be motivated from a biological perspective
and what type of information can be extracted. For fine detail issues of how to process and validate the
spectral output, we refer to Handl et al. (2005), Kluger et al. (2003), Yeung & Ruzzo (2001) and the40

references therein.
Our data are a rectangular array A ∈ R

M×N . The underlying bipartite graph has a set G =
{g1, g2, . . . , gM } of nodes, each of which has an edge to each member of a set S = {s1, s2, . . . , sN }
of nodes. The entry ai j indicates the weight of the edge from the i th node in set G to the j th node in
set S. In the microarray setting, G is a set of M genes and S is a set of N samples, and we assume that45

ai j represents the relative expression level of gene i in sample j . If ai j > 0 (respectively ai j < 0), then
gene i is relatively over-expressed (respectively under-expressed) in sample j . Further details are given
in Section 5.

The matrix A is potentially large: M = 20 000 genes and N = 20 samples are typical. To extract
meaningful information, it is necessary to process and summarize the data. The approach examined50

here is motivated by the idea of bi-clustering simultaneously the genes and samples, i.e. ‘we aim to split
the genes into two or more groups and to split the samples into two or more groups such that for each
group of genes and each group of samples, the expression levels are similar across genes and samples’.
The motivation is that genes involved in a common process are likely to be active in a common set of
samples. Thus, bi-clustering is an attempt to identify sets of related genes and the corresponding samples55

in which they are active/inactive. Further discussion of the bi-clustering approach and the justification
based on the biological literature can be found in Kluger et al. (2003).

We note that it is common either to take absolute values of expression levels or to treat up- and
down-regulation separately. In either case, a matrix of nonnegative weights is used. For example, in
Kluger et al. (2003), the authors begin by stating that ‘we will assume that the values in the matrix Ai j60

represent absolute levels and that all entries are nonnegative’ (p. 704) and then give a justification for
spectral bi-clustering. Later, though, they give results of computations involving positive and negative
data based on log-ratios. One of our aims here is to justify the use of spectral bi-clustering in the presence
of positive and negative data. We show in Section 5 that dealing directly with the two-signed data can
reveal patterns that are lost when |ai j | is used.65

Following the discussion above, our explicit working hypothesis is that the genes and samples can
both be split into two groups G = G1 ∪ G2 and S = S1 ∪ S2 in such a way that

• genes in G1 tend to be up-regulated for samples in S1,

• genes in G2 tend to be up-regulated for samples in S2,

• genes in G1 tend to be down-regulated for samples in S2 and70

• genes in G2 tend to be down-regulated for samples in S1.

More reasonably, we hope to find large subsets of genes and samples for which this type of behaviour is
approximated.

As a starting point for deriving an algorithm, we let p ∈ RM be an indicator vector that determines
whether gene i is to be placed in group G1 (so that pi = 1) or G2 (so that pi = −1). Similarly, we let75

q ∈ R
N be an indicator vector that determines whether sample j is to be placed in group S1 (so that

q j = 1) or S2 (so that q j = −1).
On the basis that

• we aim to have ai j � 0 when pi = q j = 1 and when pi = q j = −1,

• we aim to have ai j � 0 when pi = 1, q j = −1 and when pi = −1, q j = 1,80
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it is reasonable to choose p and q as solutions to the optimization problem

max
pi ∈{±1}, q j ∈{±1}

M∑
i=1

N∑
j=1

piq jai j . (1)

To understand (1), note that the objective function is encouraging gene i and sample j to be placed in the
same groups (piq j = 1) when ai j > 0 and in different groups (piq j = −1) when ai j < 0. This discrete
optimization problem will be too hard to solve for a large data set, so we will ‘relax’ the problem by
allowing p ∈ RM and q ∈ RN . In doing so, we must restrict the size of p and q in some way (otherwise,85

the solution will involve unbounded values). Hence, we consider the problem

max
p∈RM , q∈RN

∑M
i=1

∑N
j=1 piq jai j

‖Dweight
L p‖2 ‖Dweight

R q‖2

. (2)

Here, we use ‖·‖2 to denote the Euclidean vector norm and also the induced matrix norm, and Dweight
L ∈

R
M×M and Dweight

R ∈ RN×N are fixed diagonal weight matrices, with positive diagonal elements. Dif-
ferent choices of diagonal weight matrices will, in general, lead to different solutions p and q. Two
natural choices for Dweight

L and Dweight
R are90

unnormalized: Dweight
L = I and Dweight

R = I ,

row/column scaled: Dweight
L = D

1
2
gene and Dweight

R = D
1
2
sample.

Here, I denotes an identity matrix of the appropriate dimension and Dgene and Dsample denote the diag-
onal ‘absolute weight sum for gene’ and ‘absolute weight sum for sample’ matrices; so Dgene ∈ RM×M

with (Dgene)i i = ∑N
j=1 |ai j | and Dsample ∈ RN×N with (Dsample) j j = ∑M

i=1 |ai j |.95

At this stage, we recall that any matrix B ∈ RM×N has a singular value decomposition (SVD) of
the form B = UΣV �, where U ∈ RM×M and V ∈ RN×N are orthogonal and Σ ∈ RM×N has its only
nonzero elements σ1 � σ2 � · · · � σr > 0 ordered from high-to-low along the diagonal, and r is the
rank of B (see, e.g. Horn & Johnson, 1985). The kth columns of U and V are referred to as the kth left
and the kth right singular vectors of B, respectively, and we denote them by u[k] and v [k].100

THEOREM 1.1 Problem (2) is solved by taking p = (Dweight
L )−1u[1] and q = (Dweight

R )−1v [1], where

u[1] and v [1] are the first left and right singular vectors of (Dweight
L )−1 A(Dweight

R )−1.

Proof. If (Dweight
L )−1 A(Dweight

R )−1 has SVD given by UΣV �, then making the substitutions p =
(Dweight

L )−1U x and q = (Dweight
R )−1V y reduces Problem (2) to

max
x∈RM , y∈RN

∑r
k=1 σk xk yk

‖x‖2 ‖y‖2
.

A solution is clearly found by setting x1 = y1 = 1 and all other x and y components equal to zero. This105

translates to p = (Dweight
L )−1u[1] and q = (Dweight

R )−1v [1]. �
Theorem 1.1 shows how to solve the relaxed problem (2). If the relaxed solutions p ∈ R

M and
q ∈ R

N have components that divide naturally into two groups, then this suggests a bipartitioning
for the genes and samples. Moreover, regarding p and q as projections into one dimension, we may
opt,instead, for a 2D projection. A similar analysis to that giving Theorem 1.1 shows that looking for110
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the ‘next best’ directions for projection (i.e. solving (1.1) over directions orthogonal to p and q) leads to
(Dweight

L )−1u[2] and (Dweight
R )−1v [2]. So, plotting {((Dweight

L )−1u[1])i , ((Dweight
L )−1u[2])i }M

i=1 as points
in 2D gives a way of visualizing the data—genes that appear close together can be regarded as similar.
Similarly, plotting {((Dweight

R )−1v [1])i , ((Dweight
R )−1v [2])i }N

i=1 displays the samples.
Alternatively, we may use p and q to ‘reorder’ the graph (Grindrod, 2002; Grindrod & Kibble, 2004;115

Higham, 2003). Reordering the genes according to components of p (i.e. placing gene i before gene j
if and only if pi < p j ) and reordering the samples according to components of q lead to a new matrix
in which nearby rows and columns should exhibit similar behaviour.

In Sections 2 and 5, we illustrate these uses of the singular vectors.
The idea of using the SVD for bi-clustering appears in Dhillon (2001) and Kluger et al. (2003) and120

has close connections with principal component analysis (Wall et al., 2003; Yeung & Ruzzo, 2001).
The spectral approach can be used to preprocess data before applying some other clustering algorithm,
although empirical tests on gene expression data in Yeung & Ruzzo (2001) did not support this as a
general technique. Dhillon’s (2001) derivation is similar to ours in the sense that it is based on relaxation,
but, as it is designed for document/word clustering, it assumes nonnegative edge weights. We believe125

that the derivation above has the virtue of simplicity and generality and, as we show in Section 2, it
reveals an important property of the relaxed solution.

2. Recovering a perfect checkerboard structure

In this section, we show that the solution in Theorem 1.1 reveals an interesting structure whenever it is
present in the data. We begin with some preparatory notation and definitions.130

We let dgene ∈ RM and dsample ∈ RN to denote the ‘absolute out-degree’ and the ‘absolute in-degree’
vectors, i.e. (dgene)i = (Dgene)i i and (dsample) j = (Dsample) j j , and, for convenience, we assume that all
these quantities are strictly positive. (The case of a zero absolute in or out degree is easily handled.) We

use superscripts on vectors to denote componentwise powers, so, e.g. d
1
2

gene is the vector in RM with i th

component ((dgene)i )
1
2 .135

We also use DiagM×M± to denote the set of all M × M diagonal matrices with entries of ±1 on the
diagonal, and let |·| denote the componentwise absolute values, so (|A|)i j = |ai j |.
DEFINITION 2.1 The matrix A ∈ R

M×N has a ‘plus–minus checkerboard structure’, if there exist
DL ∈ DiagM×M± and DR ∈ DiagN×N± such that DL ADR = |A|.

In words, this definition says that it is possible to scale each row by ±1 and each column by ±1 in140

such a way that all the entries become nonnegative. This corresponds to there being a perfect splitting
of G = G1 ∪ G2 and S = S1 ∪ S2, as in our working hypothesis in Section 1.

There is an equivalent definition that helps to emphasize this correspondence. Here, we use
PermM×M to denote the set of all M × M permutation matrices.

DEFINITION 2.2 The matrix A ∈ R
M×N has a ‘plus–minus checkerboard structure’, if there exist145

PL ∈ PermM×M and PR ∈ PermN×N such that, for some 1 � î � M and 1 � ĵ � N ,

(PL APR)i j

⎧⎪⎪⎨⎪⎪⎩
� 0, for 1 � i � î, 1 � j � ĵ,

� 0, for î < i � M, ĵ < j � N ,

� 0, otherwise.
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In words, this definition says that it is possible to permute rows and columns in such a way that the
permuted matrix has a 2 × 2 block sign pattern:

1, 1 block: entries in rows 1 to î and columns 1 to ĵ are � 0,

1, 2 block: entries in rows 1 to î and columns ĵ + 1 to N are � 0,150

2, 1 block: entries in rows î + 1 to M and columns 1 to ĵ are � 0,

2, 2 block: entries in rows î + 1 to M and columns ĵ + 1 to N are � 0.

The two equivalent definitions are connected as follows: the permutation PL may be taken as that
which reorders DL in such a way that PL DL ∈ DiagM×M± has î contiguous +1s on the diagonal followed
by M − î contiguous −1s and, similarly, the permutation PR may be taken as that which reorders DR155

in such a way that DR PR ∈ DiagN×N± has ĵ contiguous +1s on the diagonal followed by N − ĵ contig-
uous −1s.

We now show that the SVD approach is able to recover the checkerboard structure when it is present
in the data. We follow the convention that inequalities x � 0 and X � 0 for vectors and matrices are to
be interpreted componentwise.160

THEOREM 2.1 If A ∈ RM×N has a plus–minus checkerboard structure, then Problem (2) has a solution
such that DL p � 0 and DRq � 0.

Proof. Setting x̂ = DL p and ŷ = DRq, Problem (2) becomes

max
x̂∈RM , ŷ∈RN

x̂�DL ADR ŷ

‖Dweight
L x̂‖2 ‖Dweight

R ŷ‖2

.

Now, from Theorem 1.1, this problem is solved by x̂ = (Dweight
L )−1u[1] and ŷ = (Dweight

R )−1v [1],

where u[1] and v [1] are the first left and right singular vectors of (Dweight
L )−1 DL ADR(Dweight

R )−1. Since165

DL ADR � 0 and because the singular vectors of a matrix B are eigenvectors of the matrices B�B and
BB�, Perron theory (see, e.g. Horn & Johnson, 1985, Theorem 8.3.1) shows that u[1] � 0 and v [1] � 0.
Hence, x̂ = DL p � 0 and ŷ = DRq � 0. �

Theorem 2.1 shows that the sign patterns in the relaxed solutions p and q match the sign patterns in
DL ∈ DiagM×M± and DR ∈ DiagN×N± . Hence, reordering or partitioning A according to the components170

of u[1] and v [1] will reveal the sign pattern in A by forming contiguous blocks of nonnegative and
nonpositive elements.

For the row/column-scaled case, where Dweight
L = D

1
2
gene and Dweight

R = D
1
2
sample, we can get further

insight by explicitly identifying the first singular vectors.

LEMMA 2.1 If A ∈ RM×N has a plus–minus checkerboard structure, then
∥∥D

− 1
2

gene AD
− 1

2
sample

∥∥
2 = 1.175

Proof. Using the facts that (a) ‖D1 AD2‖2 = ‖A‖2 for any D1 ∈ DiagM×M± and D2 ∈ DiagN×N± and
(b) diagonal matrices commute, we have∥∥∥∥D

− 1
2

gene AD
− 1

2
sample

∥∥∥∥
2

=
∥∥∥∥DL D

− 1
2

gene AD
− 1

2
sample DR

∥∥∥∥
2

=
∥∥∥∥D

− 1
2

gene DL ADR D
− 1

2
sample

∥∥∥∥
2

=
∥∥∥∥D

− 1
2

gene|A|D− 1
2

sample

∥∥∥∥
2
.
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Now, ∥∥∥∥D
− 1

2
gene|A|D− 1

2
sample

∥∥∥∥
2

=
∥∥∥∥∥∥
⎡⎣ D

− 1
2

gene 0

0 D
− 1

2
sample

⎤⎦ ⎡⎣ 0 |A|
|A|� 0

⎤⎦ ⎡⎣ D
− 1

2
gene 0

0 D
− 1

2
sample

⎤⎦∥∥∥∥∥∥
2

.

The matrix on the right-hand side has an eigenvalue equal to 1 corresponding to the eigenvector⎡⎣ d
− 1

2
gene

d
− 1

2
sample

⎤⎦ ,

and is similar to the matrix180 [
D−1

gene 0

0 D−1
sample

][
0 |A|

|A|� 0

]
,

which has absolute row sums equal to one. The result follows. �
THEOREM 2.2 If A ∈ RM×N has a plus–minus checkerboard structure, then the largest singular value

of
∥∥D

− 1
2

gene AD
− 1

2
sample

∥∥
2 is σ1 = 1, and the corresponding left and right singular vectors of D

− 1
2

gene AD
− 1

2
sample

are

u[1] = DLd
1
2

gene∥∥d
1
2

gene
∥∥

2

and v [1] = DRd
1
2

sample∥∥d
1
2

sample

∥∥
2

.

Proof. Lemma 2.1 shows that σ1 = 1. Letting 1s denote the vector in Rs with all elements equal to one,185

we note that

ADR1N = DLdgene and A�DL1M = DRdsample. (3)

Hence,(
D

− 1
2

gene AD
− 1

2
sample

)� (
D

− 1
2

gene AD
− 1

2
sample

)
DRd

1
2

sample = D
− 1

2
sample A�D−1

gene ADR D
− 1

2
sampled

1
2

sample

= D
− 1

2
sample A�D−1

gene ADR1N

= D
− 1

2
sample A�D−1

gene DLdgene

= D
− 1

2
sample A�DL1M

= D
− 1

2
sample DRdsample

= DRd
1
2

sample.

Thus, v [1] = DRd
1
2

sample/
∥∥d

1
2

sample

∥∥
2. A proof for u[1] follows similarly. �
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COROLLARY 2.1 If A ∈ RM×N has a plus–minus checkerboard structure, then the row/column-scaled

version of (2), with Dweight
L = D

1
2
gene and Dweight

R = D
1
2
sample, has solution p = DL1M/

∥∥d
1
2

gene
∥∥

2 and190

q = DR1N /
∥∥d

1
2

sample

∥∥
2.

Proof. From Theorems 1.1 and 2.2, we have

p = (Dweight
L )−1u[1] = D

− 1
2

gene DL
d

1
2

gene∥∥d
1
2

gene
∥∥

2

= DL1M∥∥d
1
2

gene
∥∥

2

and

q = (Dweight
R )−1v [1] = D

− 1
2

sample DR
d

1
2

sample∥∥d
1
2

sample

∥∥
2

= DR1N∥∥d
1
2

sample

∥∥
2

.

�
Corollary 2.1 shows that in the row/column-scaled case, if A has a plus–minus checkerboard struc-195

ture, then the relaxed solutions p and q ‘do not distinguish between individual members within the same

groups’, i.e. all genes get mapped to ±1/
∥∥d

1
2

gene
∥∥

2 and all samples get mapped to ±1/
∥∥d

1
2

sample

∥∥
2. From

this point of view, the first singular vectors are ‘only’ concerned with the checkerboard structure and not
with any other aspect of the interactions.

3. A maximum likelihood argument200

In this section, we show that the optimization problem (1) may be interpreted from a maximum like-
lihood viewpoint. This probabilistic interpretation suggests that the structure-revealing property shown
in Theorem 2.1 should be robust to noise, i.e. near-checkerboard patterns should be found if they are
present in the data. The idea of interpreting spectral reordering from a maximum likelihood viewpoint
was first suggested in Higham (2003), and the topic of random graph models for bioinformatics data205

sets was discussed in, e.g. Grindrod (2002), Grindrod & Kibble (2004), Morrison et al. (2006), Przulj
et al. (2004) and Thomas et al. (2003).

For simplicity, we restrict our attention to the case where entries in ai j are either −1, 0 or 1. The
theory extends to general ai j ∈ R, but the details become more cumbersome.

Given indicator vectors with components pi ∈ {±1} and q j ∈ {±1} for 1 � i � M and 1 � j � N ,210

consider the class of random matrices A ∈ RM×N with entries ai j ∈ {−1, 0, 1} drawn independently
with probabilities

P(ai j = x) = K eαpi q j x , (4)

where α > 0 is a fixed parameter and K = 1/(eα + 1 + e−α) is a normalizing constant. In other words,
when ai j represents a gene–sample weight from the set G1 to the set S1 or from the set G2 to the set S2,
we have215

ai j =

⎧⎪⎪⎨⎪⎪⎩
1 with probability K eα,

0 with probability K ,

−1 with probability K e−α,
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whereas when ai j represents a gene–sample weight from the set G1 to the set S2 or from the set G2 to
the set S1, we have

ai j =

⎧⎪⎨⎪⎩
1 with probability K e−α,

0 with probability K ,

−1 with probability K eα.

Suppose now that we are given the elements ai j in an instance of such a random matrix and we wish
to recover the indicator vectors p and q. The maximum likelihood solution is found by solving

max
pi ∈{±1}, q j ∈{±1}

M∏
i=1

N∏
j=1

eαpi q j ai j . (5)

Taking logs in this problem converts it to the form (1), and we conclude that the approach of using220

the first left and right singular vectors to reorder the matrix may be regarded as a ‘relaxed maximum
likelihood approach’, based on the random matrix model above.

From this viewpoint, the algorithm may be regarded as hypothesizing a particular random model for
the weights and, given data, finding the bipartition that best fits that data. We note that the probability
of a zero weight is the same in the two cases piq j = ±1, suggesting that the zero-weighted edges are225

equally likely to be found anywhere in the graph.
A further point of interest is that when the data values {ai j } represent log-ratios (as described in

Section 5), the probability defined in (4) has a natural, linear dependence on the underlying ratios.
This gives further support for the standard practice of applying logs to complementary DNA (cDNA)
expression ratios.230

4. Numerical tests on checkerboard structure

Our aim in this section is to illustrate the relevance of the analysis in Sections 2 and 3 in terms of recov-
ering a checkerboard structure and also to test the performance of the SVD approach in the presence of
noise.

Figure 1 illustrates the bi-clustering algorithm on some synthetic test data. In the upper left picture,235

we show a matrix in RM×N , corresponding to M = 40 genes and N = 20 samples. The matrix was
computed as W = DLG DR, where G ∈ R

M×N has elements given by the absolute value of calls
to a N (0, 1) pseudorandom number generator, and DL ∈ DiagM×M± and DR ∈ DiagN×N± are chosen
arbitrarily. Hence, this matrix has a perfect checkerboard structure. The matrix elements are displayed
in a grey-scale from light (most negative) to dark (most positive). The picture below this shows the240

same matrix with genes and samples reordered according to the weighted left and right singular vectors

D
− 1

2
geneu[1] and D

− 1
2

samplev
[1] of D

− 1
2

geneW D
− 1

2
sample. Below that we show the sign pattern of the reordered

matrix. Here, light is negative and dark is positive. We see that, as proved in Corollary 2.1, the first
singular vectors recover the checkerboard structure. Components of the weighted left and right singular
values are shown at the foot of the figure. The middle-top picture shows a matrix constructed in a245

similar manner, except that eight arbitrarily chosen elements of G were multiplied by −1 before the
transformation to DLG DR was applied. By construction, this matrix is close to having a checkerboard
structure in the sense that it may be row/column permuted to have most elements following the desired
pattern. Beneath this, we show a repeat of the computations described above, and we see that the spectral
approach does a good job of displaying the structure. The sign pattern of the reordered matrix is violated250

only in eight places. Moreover, these ‘ill-fitting’ entries occur close to the boundary, emphasizing that
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FIG. 1. Top left: a matrix with perfect plus–minus checkerboard structure. Below this: the same matrix, reordered using first

singular vectors. Below this: the sign pattern of the reordered matrix. Below this: the weighted first left singular vector, D
− 1

2
geneu[1].

Below this: the weighted first right singular vector, D
− 1

2
samplev

[1]. Middle and right columns: corresponding results for matrices
that are close to the one having plus–minus checkerboard structure.

the corresponding genes and samples have a less clear-cut categorization. The third picture in the top
row of Fig. 1 shows a similar experiment where 32 entries of G were sign-flipped. Here, the reordered
sign pattern shows 32 deviations from exact checkerboard structure.

Next, we perform a large-scale experiment where the level of noisy information is closely controlled255

and the performance is quantified. We use synthetic data of the form[
E −E

−E E

]
+ sK ∈ R100×20, (6)

where E ∈ R50×10 is a matrix with all elements equal to 1, K ∈ R100×20 is a matrix with every entry
equal to an independent sample from the N (0, 1) distribution and s ∈ R is a scaling factor. Here, with
s = 0, the data correspond to 100 genes and 20 samples forming a perfect checkerboard structure with
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equal-sized blocks. We are interested in quantifying the performance of the algorithm as s is increased260

from zero, causing the checkerboard structure to be compromised. To measure the information content

in the first weighted left singular vector, D
− 1

2
geneu[1], we assume that the signs of its components are used

to assign genes to one of the two groups, and we measure the relative number of misclassifications.
More precisely, our relative error measure is

1

2 × 100
min

(∥∥∥∥∥sign

(
D

− 1
2

geneu
[1]

)
−

[
150

−150

]∥∥∥∥∥
1

,

∥∥∥∥∥sign

(
D

− 1
2

geneu
[1]

)
+

[
150

−150

]∥∥∥∥∥
1

)
, (7)

where sign denotes the componentwise sign function and ‖·‖1 is the L1 vector norm. Here, [150, −150]�265

is an indicator vector for the target classification and the min operation allows for the fact that there are

two ways to assign genes to groups based on the sign pattern of D
− 1

2
geneu[1]. The analogous measure was

used to judge D
− 1

2
samplev

[1].
The upper plots in Fig. 2 show the behaviour of the error measure as the standard deviation s in-

creases from 0 to 20. Here, for each s, we generated 104 data matrices. The asterisks show the average270

FIG. 2. The relative error measure (7) from 104 data matrices of the form (6). Left: genes. Right: samples. The lower pictures
zoom in on a smaller range of s values.
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FIG. 3. Checkerboard structure in a liver cancer data set from Chen et al. (2002) comprising 1648 genes and 156 samples.

error over all data matrices (standard errors are smaller than the symbols used) and the triangles show
the maximum and the minimum error observed for each s. The lower plots in Fig. 2 zoom in on the
range 0 � s � 5. We see that the gene classification remains accurate (with an error less than 0.1) for
up to three standard deviations of added noise. As we would expect, the sample error, which is based on
more information, remains accurate over a larger range of noise levels.275

Figure 3 illustrates the algorithm on liver cancer microarray data from Chen et al. (2002), as available
at http://genome-www.stanford.edu/hcc/supplement.shtml. Further details of how these type of data are
generated are given in Section 5. In this data set, there are 156 samples of which 82 are hepatocellular
carcinomas and 74 are nontumour liver tissues. The 1648 genes were chosen in Chen et al. (2002) to be
useful at distinguishing between the two sample types. The figure plots the sign pattern of the reordered280

matrix. In this case, there are many zero elements, which are displayed as grey. The algorithm clearly
reveals a near-checkerboard structure that correctly separates the two types of sample.

5. Results for tumour classification

We now illustrate the spectral clustering algorithm on three public domain cDNA microarray data sets.
These involve lymphoma, prostate cancer and lung cancer. In each case, the samples correspond to285
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FIG. 4. Lymphoma—scatter plots of the three dominant singular vectors: DLBCL (circles), CLL (triangles down), FL (triangles
up), B cells (pluses), T cells (dots), transformed cell lines (squares), resting blood B cells (diamonds), germinal centre B cells
(stars) and normal lymph node/tonsil (crosses). Left: original log-ratio data. Right: absolute values of the log-ratio data.

tissues from different patients, and information is known about the existence of different sample types.
Hence, we focus here on the ability of the algorithm to identify meaningful sample clusters that are
consistent with the biological literature. We begin with a brief description of how the cDNA data are
generated.

Microarrays are created by spotting genes from a genome on to a glass microscope slide. Cells290

are grown under two different conditions: experiment and control. The mRNA is isolated from them
and converted to cDNA. Red and green fluorescent dyes are used to distinguish the experiment and
control cDNA, which is then hybridized with the microarray. Two computerized images are produced
by scanning the green-labelled and red-labelled cDNA. Data are collected as numerical values for each
colour and the logarithm of the red/green ratio is calculated. Hence, a log-ratio of zero indicates no295

change in the expression level between experimental and control samples, a log-ratio greater than zero
indicates the increase and a log-ratio less than zero indicates the decrease in the experimental sample.
Data are arranged into a matrix with ai j ∈ R representing the log-ratio for gene i in sample j . It is quite
common that some matrix elements are missing as a result of experimental uncertainties. In our tests,
missing log-ratios were set to zero.300
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FIG. 5. Lymphoma—scatter plots as in Fig. 4: DLBCL (circles), CLL (triangles down) and FL (triangles up).

In all cases, we use the row/column scaling Dweight
L = D

1
2
gene and Dweight

R = D
1
2
sample, and use the

scaled singular vectors D
− 1

2
samplev

[k] to scatter plot the samples.
In addition to using the two-signed data matrix, we also consider the case where the same spectral

algorithm is applied to the absolute value matrix |ai j |. Using the SVD to cluster nonnegative data
is a well-established technique (Dhillon, 2001; Kluger et al., 2003), and in this case the first singular305

vector, v [1], contains background information that is not relevant to the task. Hence, we compare the

information provided by D
− 1

2
samplev

[1], D
− 1

2
samplev

[2] and D
− 1

2
samplev

[3] from the algorithm applied to

ai j with that provided by D
− 1

2
samplev

[2], D
− 1

2
samplev

[3] and D
− 1

2
samplev

[4] from the algorithm applied
to |ai j |.

From a biological perspective,310

• using the two-signed data, ai j , we take the view that up-regulated genes are different from down-
regulated genes, and we attempt to find groups of samples on which groups of genes are consistently
up- or down-regulated, whereas
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FIG. 6. Lymphoma—scatter plots as in Fig. 4: germinal centre B cells (stars), germinal centre B-like DLBCL (triangles up) and
activated B-like DLBCL (circles).

• using |ai j |, we take the view that up- or down-regulation is a sign of ‘activity’ (relative to the normal
state of the gene), and we attempt to find groups of samples on which groups of genes are consistently315

active.

Both viewpoints may lead to useful findings. In this work, we have focussed on deriving and analysing
an algorithm for the two-signed case, and we show now that the approach can recover information that
is lost when |ai j | is used.

The data set from Alizadeh et al. (2000) contains 4026 genes measured across 96 samples: 46 dif-320

fuse large B-cell lymphoma (DLBCL), 11 chronic lymphocytic leukaemias (CLLs), nine follicular lym-
phomas (FLs), 10 activated blood B cells, six transformed cell lines, six T cells, four resting blood B
cells, two germinal centre B cells and two normal lymph nodes/tonsils.

We see from Fig. 4 that with the original (two-signed) log-ratio data, the first singular vector dis-
tinguishes between DLBCLs and the group of CLLs, FLs and resting blood B cells. In agreement with325

Alizadeh et al. (2000), (a) CLLs and FLs were clustered next to resting B-cell samples, (b) DLBCLs
were distinct from CLLs and FLs and (c) some DLBCLs were similar to tonsil. We can also conclude
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FIG. 7. Prostate cancer—scatter plots as in Fig. 4: normal (circles), tumours (triangles down) and lymph node metastases (stars).

that there was a common expression signature apparent in DLBCLs and transformed cell lines and in
B cells and T cells. The second singular vector distinguishes DLBCLs from B and T cells and trans-

formed cell lines. With |ai j |, D
− 1

2
samplev

[2] distinguishes between CLLs, FLs and resting blood B cells330

on the left- (these three groups clustered together as before) and T cells on the right-hand side of the
scatter plot.

We now look at the effect of applying the method to a restricted data set, containing fewer sample
types. When we restrict the data to samples of the three most prevalent adult lymphoid malignancies,
DLBCLs, CLLs and FLs, a clear distinction between the three types can be seen in both the two-signed335

and the absolute value cases, as shown in Fig. 5. Here, the second and the third dominant singular vectors
produced the clearest separation.

In Fig. 6, only the DLBCLs and the germinal centre B cells samples were used in order to rediscover
two DLBCL subtypes seen in Alizadeh et al. (2000): germinal centre B-like and activated B-like. With
the original data, the third singular vector was able to recognize the difference we were looking for,340

positioning two germinal centre B cells samples into germinal centre B-like subgroup. This example
clearly justifies the use of two-signed data: the right-hand side of Fig. 6 shows that the absolute value
version did not separate the DLBCL subtypes.
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FIG. 8. Lung cancer—scatter plots as in Fig. 4: normal (crosses), adenocarcinomas (circles), squamous (squares), large-cell (tri-
angles up) and small-cell (stars) tumours.

Gene expression in 112 prostate tissues, of which 62 were primary tumours, 41 matched normal
prostate tissues and nine unmatched lymph node metastases was studied in Lapointe et al. (2004). The345

5153 genes whose expression varied most across samples had been selected out of 26 000 genes. In
Fig. 7, we see that with the original data, samples were divided into two major clusters by the first
singular vector. The left cluster contains tumours, with metastases far left, and the right cluster contains
normal samples and five tumours. The absolute value data did not support such a separation.

The gene expression profiles for 67 human lung tumours and six normal tissues were examined350

in Garber et al. (2001) using 918 genes. Lung tumours included adenocarcinomas, squamous,
large-cell and small-cell lung tumours. The distinction between small-cell and nonsmall-cell lung can-
cers seems to be very important due to different medical treatment of patients. Results are shown in
Fig. 8. Separation of normal samples and squamous tumours from adenocarcinomas is apparent in both
cases. The small-cell lung tumours were recognized in the absolute value case.355

6. Summary and conclusions

Our aim in this work was to derive, analyse and test a spectral clustering algorithm for cDNA data
containing both positive and negative entries. Using these two-signed data, where positive and negative
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values represent up- and down-regulation, respectively, allows a simple biological interpretation of the
the reordered data. We gave theoretical support for the approach, based on a biologically justified hy-360

pothesis, and showed that the algorithm will exploit ‘checkerboard’ patterns that are hidden in the data.
A tumour classification case study, using three public domain data sets, showed that this approach can
find information that is lost when the more traditional ‘absolute value’ approach is used. Overall, two-
signed and absolute value spectral clustering should be viewed as complementary techniques, based on
different hypotheses, that therefore summarize the data in different ways.365
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